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over [F, factors into irreducibles as follows:
f=x>+x+1mod2
f =x(x+ 1)?mod 3
f=Gx+Dx+2)(x+3)mods.

There is one point in the fiber over (2) intersecting (f), namely the closed point
(2, x3 + x + 1). There are two closed points in the fiber over (3) given by (3, x)
and (3, x + 1) (with some “multiplicity” at the latter point). Over (5) there are three
closed points: (5, x + 1), (5, x + 2), and (5, x + 3). For the diagram above, the
prime p might be p = 53, since this is the first prime p greater than S for which
this polynomial has three irreducible factors mod p. Note that while the prime (f) is
drawn as a smooth curve in this diagram to emphasize the geometric similarity with
the structure of Spec k[x, y] in the previous example, the fibers above the primes in
Spec Z are discrete, so some care should be exercised. For example, since f factors
as (x +2)(x2 + x + 6) mod 7, the intersection of ( f) with the fiber above (7) contains
only the two points (7, x + 2) and (7, xZ 4 x + 6), each with multiplicity one.

The possible number of closed points in (f) lying in a fiber over (p) € SpecZ
is controlled by the Galois group of the polynomial f over Q (cf. Section 14.8). For
example, f = x* + 1 has one closed point in the fiber above (2) and either two or four
closed points in a fiber above (p) for p odd (cf. Exercise 8).

The space Spec R together with its Zariski topology gives a geometric generaliza-
tion for arbitrary commutative rings of the points in a variety V. We now consider the
question of generalizing the ring of rational functions on V.

When V is a variety over the algebraically closed field k the elements in the quotient
field k(V) of the coordinate ring k[ V'] define the rational functions on V. Each element
« in k(V) can in general be written as a quotient a/f of elements a, f € k[V] in
many different ways. The set of points U at which « is regular is an open subset of
V; by definition, it consists of all the points v € V where o can be represented by
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some quotient a/f with f(v) # 0, and then the representative a/f defines an element
in the local ring O, y. Note also that the same representative a/f defines & not only
at v, but also at all the other points where f is nonzero, namely on the open subset
Vi ={w € V| f(w) # 0} of V. These open sets V (called principal open sets,
cf. Exercise 21 in Section 2) for the various possible representatives a/ f for « give an
open cover of U. The example of the function @ = x/j for V = Z(xz — yw) C A?
preceding Proposition 51 shows that in general a single representative for a does not
suffice to determine all of U — for this example, U = V; U V;, and U is not covered
by any single V (cf. Exercise 25 of Section 4).

This interpretation of rational functions as functions thatare regular on open subsets
of V can be generalized to Spec R. We first define the analogues X¢ in X = Spec R of
the sets V¢ and establish their basic properties.

Definition. Forany f € R let X; denote the collection of prime ideals in X = Spec R
that do not contain f. Equivalently, X is the set of points of Spec R at which the value
of f € Ris nonzero. The set X is called a principal (or basic) open set in Spec R.

Since Xy is the complement of the Zariski closed set Z( f) itis indeed an open set
in Spec R as the name implies. Some basic properties of the principal open sets are
indicated in the next proposition. Recall that a map between topological spaces is a
homeomorphism if it is continuous and bijective with continuous inverse.

Proposition 56. Let f € R and let X be the corresponding principal open set in
X = Spec R. Then

(1) Xy = X if and only if f is a unit, and X = @ if and only if f is nilpotent,

2) XyNXg = Xgg,

3 X5 C X, U---UX, ifandonlyif f € rad(gi, ..., g:); in particular X = X,
if and only if rad( f) = rad(g),

(4) the principal open sets form a basis for the Zariski topology on Spec R, i.e.,
every Zariski open set in X is the union of some collection of principal open
sets Xy,

(5) the natural map from R to Ry induces a homeomorphism from Spec R to Xy,
where Ry is the localizationof R at f,

(6) the spectrum of any ring is quasicompact (i.e., every open cover has a finite
subcover); in particular, X is quasicompact, and

(7 if ¢ : R — S is any homomorphism of rings (with ¢ (1) = 1) then under
the induced map ¢* : ¥ = Spec S — Spec R the full preimage of the principal
open set X in X is the principal open set Yy(f) in Y.

Proof: Parts (1), (2) and (7) are leftas easy exercises. For (3), observe that, by defi-
nition, X, U---UX, consists of the primes P not containing at leastone of g1, . .., gn.
Hence X, U---UX,, isthe complement of the closed set Z((g1, - - - , &,)) consisting of
the primes P that contain the ideal generated by gy, ..., g,. If (g1, ..., &) = R then
Xg U---U X, = X and there is nothing to prove. Otherwise, Xy C X, U---U X,
if and only if every prime P with f ¢ P also satisfies P ¢ Z((g1,---,8x))- This
latter condition is equivalent to the statement that if the prime P contains the ideal
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(g1, ---,8n) then P also contains f, i.e., f is contained in the intersection of all the
prime ideals P containing (g, ..., g,). Since this intersection is rad(gy, ..., g,) by
Proposition 12, this proves (3).

If U = X — Z(I) is a Zariski open subset of X, then U is the union of the sets X
with f € I, which proves (4).

The natural ring homomorphism from R to the localization Ry establishes a bi-
jection between the prime ideals in Ry and the prime ideals in R not containing (f)
(Proposition 38). The corresponding Zariski continuous map from Spec Ry to Spec R
is therefore continuous and bijective. Since every ideal of Ry is the extension of some
ideal of R (cf. Proposition 38(1)), it follows that the inverse map is also continuous,
which proves (5).

In (6), every open set is the union of principal open sets by (4), so it suffices to
prove that if X is covered by principal open sets X, (for i in some index set .7) then X
is a finite union of some of the X, . If the ideal I generated by the g; were a proper ideal
in R, then I would be contained in some maximal ideal P. But in this case the element
P in X = Spec R would not be contained in any principal open set X, , contradicting
the assumption that X is covered by the X .. Hence I = R andso 1 € R can be written

as a finite sum 1 = ayg;, + --- + a,gi, with iy, ..., i, € J. Consider the finite union
Xg U---UX, . Any point P in X not contained in this union would be a prime in
R that contains g;,, ..., g, hence would contain 1, a contradiction. It follows that

X =X, U---UX, as needed. The second part of (6) follows from (5).

We now define an analogue for X = Spec R of the rational functions on a variety
V. As we observed, for the variety V a rational function & € k(V) is a regular function
on some open set U. At each point v € U there is a representative a/f for o with
f () # 0, and this representative is an element in the localization O, y = k[V]z).
In this way the regular function @ on U can be considered as a function from U to the
disjoint union of these localizations: the point v € U is mapped to the representative
a/f € k[V]zw). Furthermore the same representative can be used simultaneously not
only at v but on the whole Zariski neighborhood V¢ of v (so, “locally near v,” « is
given by a single quotient of elements from k[V]). Note thata/f is an element in the
localization k[V ], which is contained in each of the localizations k[V]z (., forw € V;.

We now generalize this to Spec R by considering the collection of functions s from
the Zariski open subset U of Spec R to the disjoint union of the localizations Rp for
P € U such that s(P) € Rp and such that s is given locally by quotients of elements
of R. More precisely:

Definition. Suppose U is aZariski open subset of Spec R. If U = @4, define O(U) = 0.
Otherwise, define O(U) to be the set of functions s : U — | |y Ro from U to the
disjoint union of the localizations R for Q € U with the following two properties:
1) s(Q) € Ry forevery Q € U, and
(2) for every P € U there is an open neighborhood X; € U of P in U and an
element a/f" in the localization Ry defining s on Xy, i.e., s(Q) = a/f" € Ry
forevery Q € X;.

If s,t are elements in O(U) then s + t and st are also elements in O(U) (cf.
Exercise 18), so each O(U) is aring. Also, every a € R gives an element in O(U)
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defined by s(Q) = a € Rp, and in particular 1 € R gives an identity for the ring O(U).
If U’ is an open subset of U, then there is a natural restriction map from O(U) to O(U’)
which is a homomorphism of rings (cf. Exercise 19).

Definition. Let R be a commutative ring with 1, and let X = Spec R.
(1) The collection of rings O(U) for the Zariski open sets of X together with the
restriction maps O(U) — OU"’) for U’ C U is called the structure sheaf on
X, and is denoted simply by O (or Oy).
(2) The elements s of O(U) are called the sections of O over U. The elements of
O(X) are called the global sections of O.

The next proposition generalizes the result of Proposition 51 that the only rational
functions on a variety V that are regular everywhere are the elements of the coordinate
ring k[V].

Proposition 57. Let X = Spec R and let O = Oy be its structure sheaf. The global
sections of O are the elements of R, i.e., O(X) = R. More generally, if X is a principal
open setin X for some f € R, then O(Xy) is isomorphic to the localization Ry.

Proof: Supposethata/ f" is an element of the localization Ry. Then the map defined
by s(Q) = a/f" € Rp for Q € Xy gives an element in O(Xy), and it is immediate
that the resulting map ¥ from Ry to O(Xy) is a ring homomorphism. Suppose that
a/f" =b/f™ in Ry forevery Q € Xy,i.e, g(af™ —bf") =0in R for some g ¢ Q.
If I is the ideal in R of elements r € R with r(af™ — bf") = 0, it follows from g € I
that / is not contained in Q forany Q € Xy. Put another way, every prime ideal of R
containing I also contains f. Hence f is contained in the intersection of all the prime
ideals of R containing I, which is to say that f € rad I. Then fV € I for some integer
N > 0,andso fN(af™ — bf") = 0in R. But this shows that a/f" = b/f™ in Ry and
so the map ¥ is injective. Suppose now that s € O(X). Then by definition X s can be
covered by principal open sets X,, on which s(Q) = a;/g;" € R for every Q € X,,..
By (6) of Proposition 56, we may take a finite number of the g; and then by taking
different ¢; we may assume all the n; are equal (since a; /g;" = (a;g; "*)/g!" if n is the
maximum of the n;). Sinces(Q) = a;/g!' = a_,-/g;’ inRpforallQ € X, = X, NX,,
the injectivity of ¢ (applied to R, ) shows that a; /8; = a;/g;} in Rg,g,. This means
that g,-g_,-N(a,-g;‘ —a;gl) =0,ie,

aigl g™ = a8/ N g;N
in R for some N > 0, and we may assume N sufficiently large that this holds for every
i and j. Since Xy is the union of the X, = X gt f is contained in the radical of the

ideal generated by the g”* by (3) of Proposition 56, say
fM — Z b; g;l+N
i
for some M > 1 and b; € R. Definea = Y_b;a;g" € R. Then

g aif" =) bitajgi g™ = ) bilaigl'e"") = g"*"a.
i i
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It follows that a/ f* = a;/g} in R, and so the element in O(X) defined by a/f*
in Ry agrees with s on every X, and so on all of X since these open sets cover Xy.
Hence the map ' gives an isomorphism Ry = O(Xy). Taking f = 1 gives R = O(X),
completing the proof.

In the case of affine varieties V the local ring O, v at the point v € V is the
collection of all the rational functions in k(V) that are defined at v. Put another way,
O, v is the union of the rings of regular functions on U for the open sets U containing
P, where this union takes place in the function field k(V) of V. In the more general
case of X = Spec R, the rings O(U) for the open sets containing P € Spec R are not
contained in such an obvious common ring. In this case we proceed by considering the
collection of pairs (s, U) with U an open set of X containing P and s € O(U). We
identify two pairs (s, U) and (s’, U’) if there is an open set U” C U N U’ containing
P on which s and s’ restrict to the same element of O(U"”). In the situation of affine
varieties, this says that two functions defined in Zariski neighborhoods of the point v
define the same regular function at v if they agree in some common neighborhood of
v. The collection of equivalence classes of pairs (s, U) defines the direct limit of the
rings O(U), and is denoted lim O(U) (cf. Exercise 8 in Section 7.6).

Definition. If P € X = Spec R, then the direct limit, @O(U ), of the rings O(U)
for the open sets U of X containing P is called the stalk of the structure sheaf at P, and
is denoted Op.

Proposition 58. Let X = Spec R and let O = Oy be its structure sheaf. The stalk of
O at the point P € X is isomorphic to the localization Rp of R at P: Op = Rp. In
particular, the stalk Op is a local ring.

Proof: If (s, U) represents an element in the stalk O p, then s(P) is an element of
the localization Rp. By the definition of the direct limit, this element does not depend
on the choice of representative (s, U), and so gives a well defined ring homomorphism
¢ from Op to Rp. If a, f € R with f ¢ P, then the map s(Q) = a/f € Ry defines
an element in O(Xy). Then the class of (s, Xy) in the stalk Op is mapped to a/f
in Rp by ¢, so ¢ is a surjective map. To see that ¢ is also injective, suppose that the
classes of (s, U) and (s, U’) in Op satisfy s(P) = s'(P) in Rp. By definition of O(U),
s = a/g" on X, for some g ¢ P. Similarly, s’ = b/(g’)" on X for some g’ ¢ P.
Since a/g" = b/(g')" in Rp, there is some h ¢ P with h(a(g’)” — bg") =0in R. If
Q € Xggn = Xg N Xg N Xy, this last equality shows that a/g" = b/(g')"™ in Ry, so
that s and s’ agree when restricted to X gz, By definition of the direct limit, (s, U) and
(s, U’) define the same element in the stalk Op, which proves that ¢ is injective and
establishes the proposition.

Proposition 58 shows that the algebraically defined localization Rp for P € Spec R
plays the role of the local ring O, y of regular functions at v for the affine variety
V. If mp denotes the maximal ideal PRp in Rp and k(P) = Rp/mp denotes the
corresponding quotient field (which by Proposition 46(1) is also the fraction field of
R/ P), then the tangent space at P is defined to be the k( P)-vector space dual of mp/ mz},.

Sec. 15.5 The Prime Spectrum of a Ring 741



This is an algebraic definition that generalizes the definition of the tangent space T, v
to a variety V at a point v (by Proposition 52). This can now be used to define what it
means for a point in Spec R to be nonsingular: the point P € Spec R is nonsingular or
smooth if the local ring Rp is what is called a “regular local ring” (cf. Section 16.2).

Proposition 58 also suggests a nice geometric view of the structure sheaf on Spec R.
If we view each point P € Spec R as having the local ring Rp above it, then above the
open set U in X = Spec R is a “sheaf” (in the sense of a “bundle”) of these “stalks”
(in the sense of a “stalk of wheat”), which helps explain some of the terminology. A
section s in the structure sheaf O(U) is a map from U to this bundle of stalks. The
image of U under such a section s is indicated by the shaded region in the following
figure.

/ U X = SpecR

Definition. Let R be acommutativering with 1. The pair (Spec R, Ospec k), consisting
of the space Spec R with the Zariski topology together with the structure sheaf Ogpec ,
is called an affine scheme.

The notion of an affine scheme gives a completely algebraic generalization of the
geometry of affine algebraic sets valid for arbitrary commutative rings, and is the starting
point for modern algebraic geometry.

Examples

(1) If F is any field then X = Spec F = {(0)}. In this case there are only two open sets
X and @, both of which are principal open sets: X = X; and § = X¢. The global
sections are O(X) = F. There is only one stalk: Oy = Fo = F.

(2) If R = Z then because R is a PI.D. every open set in X = Spec Z is principal open:

X,={(p)Iptn}  and
O(X,) = Z, = Z[1/n] = {a/b € Q | if the prime p | b then p | n}.
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Fornonzero p the stalk at (p) is the local ring Zp), and the stalk at (0) is Q. All the
restriction maps as well as the maps from sections to stalks are the natural inclusions.
(3) For a general integral domain R with quotient field F the stalks and sections are

OW)=1{a/b € F|b¢ Pforall P € U}
Op=Rp={a/beF|b¢ P}

where the stalk at (0) is F, i.e., Oy = F. Again, the restriction maps and the maps
to the stalks are all inclusions.

(4) For the local ring R = Z3) = {a/b € Q | b odd} we have Spec R = {(0), (2)} with
(2) the only closed point and {(0)} = X7 a principal open set. The sections O({(0)})
are R, = Q, and the stalks are Oy = Ry = Qand O3) = Rz) = R.

We next consider the relationship of the affine schemes corresponding to rings R
and S with respect to a ring homomorphism from R to S.

Suppose that ¢ : R — S is a ring homomorphism. We have already seen in
Proposition 56(7) that there is an induced continuous map ¢* from ¥ = Spec S to
X = Spec R and that under this map the full preimage of the principal open set X,
for g € R is the principal open set Y. It follows that ¢ also induces a map on
corresponding sections, as follows. Let Q' € Y be any element in Spec S and let
0 = ¢*(Q") = ¢~ 1(Q’) € X be the corresponding element in Spec R. If U is a Zariski
open set in X containing Q, then U’ = (¢*)~! (U) is a Zariski open set in Y containing
Q'. Note that ¢ induces a natural ring homomorphism, ¢ say, from the localization
Ry to the localization Sy defined by pp(a/f) = ¢(a)/¢(f) € So for f ¢ Q. Let
s € Ox(U) be a section of the structure sheaf of X given locally in the neighborhood
Xgof P € X bya/g". Itis easy to check that the composite

s:USHUS I_IRQ_w) I_I Sor

QelU Q'el
defines a map given locally in the neighborhood Y, by the element ¢(a)/¢(g)", so
that s’ € Oy (U’) is a section of the structure sheaf of Y. It is then straightforward to
check that the resulting map ¢* : Ox(U) — Oy (U’)is aring homomorphism (mapping
1 € Ox(U) to 1 € Oy(U")) that is compatible with the restriction maps on Ox and
Oy (cf. Exercise 20). It also follows that there is an induced ring homomorphism on
the stalks: ¢* : Ox p — Oy p for any point P’ € Spec S and corresponding point
P = ¢*(P’) € Spec R. Under the isomorphism in Proposition 58, the homomorphism
¢* from Rp = Ox p to Spr = Oy, p: is just the natural ring homomorphism ¢p on the
localizations induced by the homomorphism ¢. In particular, the inverse image under
¢* of the maximal ideal in the local ring Oy p is the maximal ideal in the local ring
Ox.p.

Definition. Suppose (Spec R, Ogpec g) and (Spec S, Ospecs) are two affine schemes.
A morphism of affine schemes from (Spec S, Ospecs) to (Spec R, Ospecg) is a pair
(¢*, ¢*) such that
(1) ¢* : Spec S — Spec R is Zariski continuous,
(2) there are ring homomorphisms ¢* : O(U) — O(e*~1(U)) for every Zariski
open subset U in Spec R that commute with the restriction maps, and
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(3) if P’ € Spec S with corresponding point P = ¢*(P) € Spec R, then under the
induced homomorphism on stalks ¢* : Ospec kR, p —> Ospec s, p the preimage of
the maximal ideal of Ogpe, s, p+ is the maximal ideal of Ogpec g, p-

A homomorphism ¢y : A — B from the local ring A to the local ring B with
the property that the preimage of the maximal ideal of B is the maximal ideal of A is
called a local homomorphism of local rings. The third condition in the definition is
then the statement that the induced homomorphism on stalks is required to be a local
homomorphism.

With this terminology, the discussion preceding the definition shows that a ring ho-
momorphism ¢ : R — S induces a morphism of affine schemes from (Spec S, Ospecs)
to (Spec R, OSpec R)-

Conversely, suppose (¢*, ¢*) isamorphism of affine schemes from (Spec S, Ospec s)
to (Spec R, Ogpec g)- Then in particular, for U = Spec R, (¢")~1(U) = Spec S, so by
assumption there is a ring homomorphism ¢* : Ospecr(Spec R) = Ogpecs(Spec S)
defined on the global sections. By Proposition 57, we have Ogpec r(Spec R) = R and
Ospec s (Spec S) = S asrings. Composing with these isomorphisms shows that ¢ gives
aring homomorphism ¢ : R — S. By Proposition 58 we have a local homomorphism
¢" : Rp — Sps, and by the compatibility with the restriction homomorphisms it follows
that the diagram

R—w>S

L

w#
R p —> S P’
commutes, where the two vertical maps are the natural localization homomorphisms.
Since ¢* is assumed to be a local homomorphism, ("~ 1(P'Sp)) = PRp, from which
it follows that ¢ ~!(P’) = P. Hence the continuous map from Spec S to Spec R induced
by ¢ is the same as ¢*, and it follows easily that ¢ also induces the homomorphism ¢*.
This shows that there is a ring homomorphism ¢ : R — S inducing both ¢* and ¢* as
before.
We summarize this in the following proposition:

Theorem 59. Every ring homomorphism ¢ : R — S induces a morphism

(¢*, (P#) : (Spec S, OSpcc s) = (Spec R, OSpec R)

of affine schemes. Conversely, every morphism of affine schemes arises from such a
ring homomorphism ¢.

Theorem 59 is the analogue for Spec R of Theorem 6, which converted geometric
questions relating to affine algebraic sets to algebraic questions for their coordinate
rings.

The condition that the homomorphism on stalks be a local homomorphism in the
definition of a morphism of affine schemes is necessary: a continuous map on the
spectra together with a set of compatible ring homomorphisms on sections (hence also
on stalks) is not sufficient to force these maps to come from a ring homomorphism.
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Example

Let R = Zg) and S = Q as in the preceding set of examples. Define ¢* : SpecQ —
Spec Z) by ¢*((0)) = (2) (which is Zariski continuous). Define ot O(SpecR) —
O(Spec S) tobe the inclusion map Zzy <> Qand define ¢* forallotherUU C Spec R simply
to be the zero map. It is straightforward to check that these homomorphisms commute
with the restriction maps. This family of maps does not arise from a ring homomorphism,
however, because on the stalks for (0) € Spec S and ¢*((0)) = (2) € Spec R the induced
homomorphism

¢# : OSpcc R.(2) <> OSpecS,(O)

is the injection Zz) < Q, which is not a local homomorphism (the inverse image of (0)
is (0) and not the maximal ideal 27Z)).

The proof of Theorem 59 shows that a morphism (¢*, ¢*) of affine schemes necessarily
comes from the ring homomorphism defined by ¢* on global sections. In this example,
the homomorphism on global sections is the inclusion map of R into S. The inclusion map
from R to S defines a map from Spec S to Spec R that maps (0) € Spec S to (0) € Spec R
and not to (2) € Spec R, so this map does not agree with the original map ¢*.

The previous example shows that the converse in Theorem 59 would not be true
without the third (local homomorphism) condition in the definition of a morphism of
affine schemes. As a result, Theorem 59 shows that the appropriate place to view affine
schemes is in the category of locally ringed spaces. Roughly speaking, a locally ringed
space is a topological space X together with a collection of rings O(U) for each open
subset of X (with a compatible set of homomorphisms from O(U) to O(U’) if U’ C U
and with some local conditions on the sections) such that the stalks Op = lim OU) for
P € U arelocalrings. The morphisms in this category are continuous maps between the
topological spaces together with ring homomorphisms between corresponding O(U)
with precisely the same conditions as imposed in the definition of a morphism of affine
schemes.

A scheme is a locally ringed space in which each point lies in a neighborhood
isomorphic to an affine scheme (with some compatibility conditions between such
neighborhoods), and is a fundamental object of study in modern algebraic geometry.
The affine schemes considered here form the building blocks that are “glued together”
to define general schemes in the same way that ordinary Euclidean spaces form the
building blocks that are “glued together” to define manifolds in analysis.

EXERCISES

All rings are assumed commutative with identity, and all ring homomorphisms are assumed to
map identities to identities.

1. If N is the nilradical of R, prove that Spec R and Spec R/N are homeomorphic. [Show
that the natural homomorphism from R to R/ N induces a Zariski continuous isomorphism
from Spec R/ N to Spec R.]

2. Let I be an ideal in the ring R. Prove that the continuous map from Spec R/I to Spec R

induced by the canonical projection homomorphism R — R/I maps Spec R/I homeo-
morphically onto the closed set Z([) in Spec R.
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10.

11.

12.

13.

14.

15.

. Prove that two elements f, g € R have the same values at all elements P in Spec R if and

only if f — g is contained in the nilradical of R. In particular, prove that an element in an
affine k-algebra is uniquely determined by its values.

. Let k be an arbitrary field, not necessarily algebraically closed. Prove that the prime ideals

in k[x, y] (i.e., the elements of Spec k[x, y]) are
i (0),
(ii) (f) where f is an irreducible polynomial in k[x, y], and
(iii) (p(x), g(x,y)) where p(x) is an irreducible polynomial in k[x] and g(x, y) is an
irreducible polynomial in k[ x, y] that is irreducible modulo p(x), i.e., g(x, y) remains
irreducible in the quotient k[x, y]/(p(x)).

Prove that mSpec k[x, y] consists of the primes in (iii). [Use Exercise 20 in Section 1.]

. Letm = (p(x), g(x, y)) be a maximal ideal in k[x, y] as in the previous exercise. Show

that K = k[x, y]/m is an algebraic field extension of k, so that k[x, y] can also be viewed
as a subring of K[x, y]. If x, y are mapped to ¢, B € K, respectively, under the canonical
homomorphism k[x, y] — k[x, y]/m, prove that m = k[x, y]N(x —a,y —B) € K[x, y].

. Describe the elements in Spec R[x] and Spec C[x]. Describe the elements in Spec Z3)[x]

where Z(z) = {a/b € Q| b is odd) is the localization of Z at the prime (2).

. Let (f) = (x> + x + 1) in SpecZ[x] viewed as fibered over SpecZ as in Example 3

following Proposition 55. Show that there are two closed points in the fiber over (2), three
closed points in the fiber over (5), four closed points in the fiber over (19), and five closed
points in the fiber over (211).

. Let (f) = (x* + 1) in Spec Z[x] viewed as fibered over Spec Z asin Example 3 following

Proposition 55. Prove that there is one closed point in the fiber over (2), four closed points
in the fiber over p for p odd, p = 1 mod 8, and two closed points in the fiber over p for
all other odd primes p (cf. Corollary 16 in Section 3 of Chapter 14).

. Prove that the elements in the fiber over (p) of the Zariski continuous map from Spec Z[ x]

to Spec Z are homeomorphic with the elements in Spec(Z[x] ®z Fp).

Let X = Spec R and let X be the principal open set corresponding to f € R. Prove that
Xf N Xy = Xyp. Provethat Xy = X if and only if f is a unit in R, and that Xy = @ if
and only if f is nilpotent.

If Xy and X, are principal open sets in X = Spec R, prove that the open set Xy U X, is
the complement of the closed set Z(I) where I = (f, g) is the ideal in R generated by f
and g.

Prove that a Zariski open subset U of X = Spec R is quasicompact if and only if U is
a finite union of principal open subsets. Give an example of a ring R, a Zariski open
subset U of Spec R, and a Zariski open covering of U that cannot be reduced to a finite
subcovering.

Let¢ : R — S be a homomorphism of rings. Prove that under the induced map ¢* from
Y = SpecS to X = Spec R the full preimage of the principal open set Xy in X is the
principal open set Yy in Y.

Suppose that R = R; x R is the direct product of the rings R; and R;. Prove that
X = Spec R is the disjoint union of open subspaces X1, X2 (which are therefore also
closed), where X; is homeomorphic to Spec R; and X; is homeomorphic to Spec R;.
Prove that X = Spec R is not connected if and only if R is the direct product of two
nonzero rings if and only if R contains an idempotent e with e # O, 1 (cf. the previous
exercise).
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16. Provethat X = Spec Risirreducible (i.e., any two nonempty open subsets have a nontrivial
intersection) if and only if X s N X, # @ for any two nonempty principal open sets Xy and
X,. Deduce that X = Spec R is irreducible if and only if the nilradical of R is a prime
ideal. [Use Exercise 10.]

17. Let G = (o) be a group of order 2, let R = Z[G] = {a + bo | a,b € Z} be the

corresponding group ring, and let X = Spec R.

(a) Prove that the nilradical of R is (0) butis not a prime ideal. Prove that X = Xt U X~
where Xt =Z(1 —-0o)and X~ =21 +0). [Use 1 +0)(1 —0) =0.]

(b) Provethatthe homomorphism Z[G] — Z defined by mapping o to 1 induces a home-
omorphism of X* with Spec Z, and the homomorphism mapping o to —1 induces a
homeomorphism of X~ with Spec Z.

(c) Prove that X* N X~ consists of the single elementm = (1 + 0,1 —0) = (2,1 —0)
and that thisis a closed pointin X.

(d) Show that (1 — ¢) and (1 + o) are the unique non-closed points in X, with closures
X* and X, respectively. Describe the closed points, mSpec R, in X and prove that
Spec Z[ (o )] can be pictured as follows:

(14+0) 3,1-0) (5,1-0)
x-
SpecZ[{o )]
m
X+
(1-0) 3,140) (5, 1+0)
o*
SpecZ
) ?) (€)) &)

18. Let O be the structure sheaf on X = SpecR, let U be an open set in X, and suppose
s,t € O(U). If s = a/f{ on Xy, and t = b/f" on Xy,, show that

st = (abf{" fH/AR™ and s+t =(@f" ;" + b /AT

on Xy, f,- Deduce that O(U) is a commutative ring with identity.

19. Let O be the structure sheaf on X = SpecR, let V C U be open sets in X, and let

s € O(U). Suppose P € V andthats = a/f" on Xy C U.

(a) Show that there is a principal open set Xy- C V N X containing P.

(b) Show that (f’')™ = bf forsome b € R.

(c) Show thats = (ab")/(f’)™" on X and conclude that restricting s to V gives a well
defined ring homomorphism from O(U) to O(V).

20. Let ¢ : R > S be a homomorphism of rings, let X = Spec R, Y = Spec S, and let
V C U be Zariski open sabsets of X. Set V' = (¢*)~1(V) and U’ = (¢*)"1(U), the
corresponding Zariski open subsets of ¥ with respect to the continuous map ¢* : ¥ — X
induced by ¢. Prove that the induced map go# : Ox(U) - Oy(U’) on sections is a ring
homomorphism. Prove that V' € U’ and that (p# is compatible with restriction i.e., that
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the diagram

Ox(U) —¥— Oy

l l

#
Ox(V) —£— Oy(v)
is commutative, where the vertical maps are the restriction homomorphisms.

21. Suppose D is a multiplicatively closed subset of R. Show that the localization homo-
morphism R — D~IR induces a homeomorphism from Spec(D~!R) to the collection of
prime ideals P of R with PN D = 0.

22. Show that Spec k[x, y]/(xy) is connected but is the union of two proper closed subsets
each homeomorphic to Spec k[x], hence is not irreducible (cf. Exercise 16).

23. For each ofthe following rings R exhibit the elements of Spec R, the open sets U in Spec R,
the sections O(U) of the structure sheaf for Spec R for each open U, and the stalks Op at
each point P € SpecR:

(a) Z/4Z (b) Z/6Z (©) Z/2Z x Z/3Z ) Z/2Z x Z[2Z x Z]2Z.

24. (a) If every ideal of R is principal, show every open set in Spec R is a principal open set.
(b) Show thatif R = Z[x]/(4, x?) then R contains a nonprincipal ideal, but every open

set in Spec R is a principal open set.

25. (a) If M is an R-module prove that Supp(M) is a Zariski closed subset of Spec R. [Use
Exercise 33 of Section 4.]
(b) If M is a finitely generated R-module prove that Supp(M) = Z(Ann(M)) C Spec R.
[Use Exercise 34 of Section 4.]

26. Suppose M is a finitely generated module over the Noetherian ring R.
(a) Prove that there are finitely many minimal primes % Pj, ..., P, containing Ann(M).
[Use Corollary 22.]
(b) Provethat{P,, ..., P,}isalsothe setofminimal primesinAss g (M) andthat Supp(M)
is the union ofthe Zariski closedsets Z(Py), ..., Z(P,) inSpec R. [Usethe previous
exercise and Exercise 40 in Section 4.]

The previous exercise gives a geometric view of a finitely generated module M over aNoetherian
ring R: over each point P in Spec R is the localization Mp (the stalk over P). The stalk is
nonzero precisely over the points in the Zariski closed subsets Z(Py), ..., Z(P,) where the P,
are the minimal primes in Assg(M). These ideas lead to the notion of the (coherent) module
sheaf on Spec R associated to M (with a picture similar to that of the structure sheaf following
Proposition 58), which is a powerful tool in modern algebraic geometry.

27. Let R = k[x, y] and let M be the ideal (x, y) in R. Prove that Supp(M) = Spec R and
Assg(M) = {0}.

The next two exercises show that the associated primes for an ideal  in a Noetherian ring R in
the sense of primary decomposition are the associated primes for 7 in the sense of Assg (R/I).

28. This exercise proves that the ideal Q in a Noetherian ring R is P-primary if and only if
Assgr(R/Q) = {P}.
(a) Suppose Q is a P-primary ideal and let M be the R-module R/Q. If0 #m € M,
show that Q C Ann(m) C P and that rad Ann(m) = P. Deduce that if Ann(m) is a
prime ideal then it is equal to P and hence that Assg (R/Q) = { P). [Use Exercise 33
in Section 1.]
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29.

30.

31.

Sec.

(b) For any ideal Q of R, let 0 # M C R/Q. Prove that the radical of Ann(M) is the
intersection of the prime ideals in Supp(M). [Use Proposition 12 and Exercise 25.]

(¢) For M as in (b), prove that the radical of AnnM is also the intersection of the prime
ideals in Assg (M). [Use Exercise 26(b).]

(d) If Q is an ideal of R with Assg(R/Q) = {P} prove thatrad 0 = P. [Use the fact
that Q = Ann(R/Q) and (c).]

(e) If O is an ideal of R with Assg(R/Q) = {P} prove that Q is P-primary. [Ifab € Q
witha ¢ QO consider 0 # M = (Ra + Q)/Q < R/Q and show that b is con-
tained in AnnM C rad Ann(M). Use Exercises 33-34 in Section 1, to show that
Assg(M) = {P}, then use (c) to show that rad Ann(M) = P, and conclude finally
thatb € P.]

Suppose I = Q1 N ---N Qp is a minimal primary decomposition of the ideal 7/ in

the Noetherian ring R with P, = radQ;, i = 1,...,n. This exercise proves that

Assr(R/I) = {P, ..., P,}.

(a) Prove that the natural projection homomorphisms induce an injection of R/I into
R/Q1® --- ® R/Q, and deduce that Assg(R/I) € {P1, ..., P,}. [Use Exercise 34
in Section 1 and the previous exercise.]

(b) Let Q) = NjxQ;. Show that the minimality of the decomposition implies that
0# Q;/1 = (Q; + Qi)/Qi S R/Q;i. Deduce that Assg(Q;/I) = {P;}. [Use Exer-
cises 33—34 in Section 1 and the previous exercise.] Deduce that {P;} € Assg(R/I),
sothat Assg(R/I) = {P1,..., Py}. [Use Q;/I C R/I and Exercise 34 in Section 1.]

Let I be the ideal (x2, xy, xz, yz) in R = k[x, y, z]. Prove that Assg(R/I) consists of the
primes {(x, y), (x, 2), (x, ¥, 2)}.
(Spec for Quadratic Integer Rings) Let R be the ring of integers in the quadratic field
K = Q(v/D) where D is a squarefree integer and let P be a nonzero prime ideal in R.
This exercise shows how the prime ideals in R are determined explicitly from the primes
(p) in Z, giving in particular a description of Spec R fibered over Spec Z.
As in the discussion and example following Theorem 29, we have R = Z[w] where
o = +/Dif D = 2, 3mod 4 (respectively, w = (14++/D)/2 if D = 1 mod 4), with minimal
polynomial m,(x) = x2—D (respectively, m(x) = x2—x+(1-D) /4),and PNZ = pZ
is a nonzero prime ideal of Z.
(a) Foranyprime p inZ show that R/pR = Z[x]/(p, m»(x)) = Fp[x]/(M(x)) asrings,
where m(x) is the reduction of m.,(x) modulo p. Deduce that there is a prime ideal
P in R with PNZ = (p) (this gives an alternate proof of Theorem 26(2) in this case).
(b) Usetheisomorphismin (a) to prove that P is determined explicitly by the factorization
of m(x) modulo p:

(i) If m,(x) = (x —a)*mod p where a € Z then P = (p, w — a) and pR = P2,
Show that this case occurs only for the finitely many primes p dividing the
discriminant of m,(x).

(ii) Ifm,(x) = (x —a)(x —b) mod p with integers a, b € Z that are distinct modulo
p then P is either P = (p, w — a) or P, = (p, w — b) and Py, P, are distinct
prime ideals in R with pR = Py P,.

(iii) If m, (x) is irreducible modulo p then P = pR.

(c) Show that the picture for Spec R over Spec Z for any D is similar to that for the case

R = Z[i] when D = —1: there is precisely one nonclosed point (0) € Spec R over

(0) € SpecZ, precisely one closed point P € Spec R over each of the primes (p) in

Spec Z in (i) (called ramified primes) and over the primes in (iii) (called inert primes),

and precisely two closed points over the primes in (ii) (called split primes).
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CHAPTER 16

Artinian Rings,
Discrete Valuation Rings,
and Dedekind Domains

Throughout this chapter R will denote a commutative ring with 1 # 0.
16.1 ARTINIAN RINGS

In this section we shall study the basic theory of commutative rings that satisfy the
descending chain condition (D.C.C.) on ideals, the Artinian rings (named after E. Artin).
While one might at first expect that these rings have properties analogous to those for
the commutative rings satisfying the ascending chain condition (the Noetherian rings),
in fact this is not the case. The structure of Artinian rings is very restricted; for example
an Artinian ring is necessarily also Noetherian (Theorem 3). Noncommutative Artinian
rings play a central role in Representation Theory (cf. Chapters 18 and 19).

Definition. For any commutative ring R the Krull dimension (or simply the dimension)
of R is the maximum possible length of a chain Py C P, C P, C - - - C P, of distinct
prime ideals in R. The dimension of R is said to be infinite if R has arbitrarily long
chains of distinct prime ideals.

A ring with finite dimension must satisfy both the ascending and descending chain
conditions on prime ideals (although not necessarily on all ideals). A field has dimension
0 and a Principal Ideal Domain that is not a field has dimension 1.

We shall see shortly that rings with D.C.C. on ideals always have dimension 0
(i.e., primes are maximal). If R is an integral domain that is also a finitely generated
k—algebra over a field k, then the dimension of R is equal to the transcendence degree
over k of the field of fractions of R (cf. Exercise 11). In particular, the Krull dimension
agrees with the definition introduced earlier for the dimension of an affine variety. The
advantage of the definition above is that it does not refer to any k—algebra structure and
applies to arbitrary commutative rings R.

Definition. The Jacobson radical of R is the intersection of all maximal ideals of R
and is denoted by Jac R.
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The Jacobson radical is analogous to the Frattini subgroup of a group, and it enjoys
some corresponding properties (cf. Exercise 24 in Section 6.1):

Proposition 1. Let 7 be the Jacobson radical of the commutative ring R.
(1) If I is a proper ideal of R, then sois (I, J), the ideal generated by I and 7.
(2) The Jacobson radical contains the nilradical of R: rad0 C Jac R.
(3) Anelement x belongs to 7 if and only if 1 — rx is a unit for all € R.
(4) (Nakayama’s Lemma) If M is any finitely generated R-module and M = M,
then M = 0.

Proof: If I is a proper ideal in R, then I € M for some maximal ideal M. Since
J € M, also (I, J) € M, which proves (1).

Part (2) follows from the definitions of the two radicals and Proposition 12 in
Section 15.2 since maximal ideals are prime.

Suppose 1 — rx is not a unit and let M be a maximal ideal containing 1 — rx. Since
1¢ M,rx ¢ M,soxcannotbelongto 7 because 7 C M. Conversely, suppose x ¢ 7,
i.e., there is a maximal ideal M with x ¢ M. Then R = (x, M), hence 1 = rx + y for
somey € M. Thus 1 — rx =y € M and so 1 — rx is not a unit, which proves (3).

To prove (4), assume M # 0 and let n be the smallest integer such that M is
generated by n elements, say my, ..., m,. Since M = JM we have

m, =rimy +romy+---+r.m, forsomery,ra, ..., r, € J.

Thus (1 —r,)m, =rimy +- - -+ r,_1mu—;. By (3), 1 —r, is a unit, so m,, lies in the
module generated by m,, ..., m,_1, contradicting the minimality of n. Hence M = 0,
completing the proof.

Definition. A commutative ring R is said to be Artinian or to satisfy the descending
chain condition on ideals (or D.C.C. on ideals) if there is no infinite decreasing chain of
ideals in R, i.e., whenever I} DO I, D I3 D - - - is a decreasing chain of ideals of R, then
there is a positive integer m such that I = I, for all k > m. Similarly, an R-module
M is said to be Artinian if it satisfies D.C.C. on submodules.

It is immediate from the Lattice Isomorphism Theorem that every quotient R/I of
an Artinian ring R by an ideal [/ is again an Artinian ring.

The following result for Artinian rings is parallel to results in Theorem 15.2. The
proof is completely analogous, and so is left as an exercise.

Proposition 2. The following are equivalent:
(1) R is an Artinian ring.
(2) Every nonempty set of ideals of R contains a minimal element under inclusion.

The next result gives the main structure theorem for Artinian rings.
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Theorem 3. Let R be an Artinian ring.
(1) There are only finitely many maximal ideals in R.
(2) The quotient R/(Jac R) is a direct product of a finite number of fields. More
precisely, if My, ..., M, are the finitely many maximal ideals in R then

R/(JacR) =k x --- x k,,,

where k; is the field R/M; forl1 <i <n.

(3) Every prime ideal of R is maximal, i.e., R has Krull dimension 0. The Jacobson
radical of R equals the nilradical of R and is a nilpotent ideal: (Jac R)" =0
forsome m > 1.

(4) The ring R is isomorphic to the direct product of a finite number of Artinian
local rings.

(5) Every Artinian ring is Noetherian.

Proof: To prove (1), let S be the set of all ideals of R that are the intersection of
a finite number of maximal ideals. By Proposition 2, S has a minimal element, say
MyNM;N---NM,. Then for any maximal ideal M we have

MOMONMN---NM,=M,NM,N---NM,,

soM D MyNMN---NM, ByExercise 11 in Section 7.4, M D M; for some i.
Thus M = M; and so M, ..., M, are all the maximal ideals of R.

The proof of (2) is immediate from the Chinese Remainder Theorem (Section 7.6)
appliedto My, ..., M,, since these maximal ideals are clearly pairwise comaximal and
their intersection is Jac R.

For (3), we first prove .7 = Jac R is nilpotent. By D.C.C. there is some m > 0
such that 7™ = J™* for all positive i. By way of contradiction assume 7™ # 0. Let
S be the set of proper ideals I such that I 7™ # 0, so J € S. Let I be a minimal
element of S. There is some x € I such that x 7™ # 0, so by minimality we must
have Iy = (x). But now ((x)NJ™ = xJ™*! = xJ™, so it follows by minimality of
(x) that (x) = (x).J. By Nakayama’s Lemma above, (x) = 0, a contradiction. This
proves Jac R is nilpotent.

Since Jac R is nilpotent, in particular Jac R C rad 0, so these two ideals are equal
by the second statement in Proposition 1.

Every prime ideal P in R contains the nilradical of R, hence contains Jac R by
what has already been proved,. The image of P is a prime ideal in the quotient ring
R/(JacR) = k; x --- x k,. Butin a direct product of rings R, x R; (where each R;
has a 1) every ideal is of the form I; x I, where I; is an ideal of R; for j = 1, 2 (cf.
Exercise 3 in Section 7.6). It follows that a prime ideal in k; X - - - X k,, consists of the
elements that are O in one of the components. In particular, such a prime ideal is also a
maximal ideal in k; x --- x k,, and it follows that P was a maximal ideal in R, which
finishes the proof of (3).

Let My, ..., M, be all the distinct maximal ideals of R and let Jac R)” = Q asin

(3). Then
[[mr< (]‘[ M,-) C (JacR)™ = 0.
i=1 i=1
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By the Chinese Remainder Theorem it follows that
R = (R/M]") x (R/IM7') x - -+ x (R/M;}),

and each R/M[" is an Artinian ring with unique maximal ideal M;/M]", proving (4).
To prove (5), it suffices by (4) to prove that an Artinian local ring is Noetherian, so
assume R is Artinian with unique maximal ideal M. In this case we have M = JacR,
so M™ = (Jac R)™ = 0 for some positive m. Then R = R/M"™, and in this case it is
an exercise to see that R/M™ is Noetherian if and only if it is Artinian (cf. Exercise 8).

Corollary 4. The ring R is Artinian if and only if R is Noetherian and has Krull
dimension 0.

Proof: The forward implication was proved in Theorem 3. Suppose now that R is
Noetherian and that R has Krull dimension 0, i.e., that prime ideals of R are maximal.
Since R is Noetherian, by Corollary 22(3) in Section 15.2, the ideal (0) = P, - - - P,
is the product of (not necessarily distinct) prime ideals, and these prime ideals are
then maximal since R has dimension 0. By the Chinese Remainder Theorem, R is
isomorphic to the direct product of a finite number of Noetherian rings of the form
R/M™ where M is a maximal ideal in R. As in the proof of (5) of the theorem, R/M"™
is Artinian, and it follows that R is Artinian.

Examples
(1) Let n > 1 be an integer. Since the ring R = Z/nZ is finite, it is Artinian. If
n= p‘;l p;z ... p& is the unique factorization of » into distinct prime powers, then

Z/nZ = (Z/p]'Z) x (Z/p3'Z) x - - - x (Z/p>Z).

Each Z/p{"Z is an Artinian local ring with unique maximal ideal (p;)/(p;"), so this
is the decomposition of Z/nZ given by Theorem 3(4). The Jacobson radical of R
is the ideal generated by p;p> - - - ps. the squarefree part of n and R/(Jac R) =
(Z|P1Z) % - - - x (Z] psZ) is a direct product of fields. The ideals generated by p; for
i =1,...,s are the maximal ideals of R.

(2) For any field k, a k-algebra R that is finite dimensional as a vector space over k is
Artinian because ideals in R are in particular k-subspaces of R, hence the length of
any chain of ideals in R is bounded by dim R.

(3) Suppose f is a nonzero polynomial in k[x] where k is a field. Then the quotient ring
R = k[x]/(f(x)) is Artinian by the previous example. The decomposition of R as a
direct product of Artinian local rings is given by

k[x1/(f (6)) = klx]1/(fi(x)®) x -+ x k[x]/ (fs(x)%)

where f(x) = fi(x)® - - - fs(x)% is the factorization of f(x) into powers of distinct
irreducibles in k[x] (cf. Proposition 16 in Section 9.5). The Jacobson radical of R is
the ideal generated by the squarefree part of f(x) and the maximal ideals of R are the
ideals generated by the irreducible factors f; (x) fori = 1, ..., s similar to Example 1.
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EXERCISES

Let R be a commutative ring with 1 and let .7 be its Jacobson radical.
1. Suppose R is an Artinian ring and [ is an ideal in R. Prove that R/ is also Artinian.
2. Show that every finite commutative ring with 1 is Artinian.
3. Prove that an integral domain of Krull dimension 0 is a field.
4. Prove that an Artinian integral domain is a field.

5. Suppose I is a nilpotent ideal in R and M = IM for some R-module M. Prove that
M=0.

6. Suppose that0 — M’ —» M —> M"” —> 0 is an exact sequence of R-modules. Prove
that M is an Artinian R-module if and only if M’ and M” are Artinian R-modules.

7. Suppose R = F is a field. Prove that an R-module M is Artinian if and only if it is
Noetherian if and only if M is a finite dimensional vector space over F.

8. Let M be a maximal ideal of the ring R and suppose that M" = 0 for some n > 1. Prove
that R is Noetherian if and only if R is Artinian. [Observe the each successive quotient
M /M i=0,....,n—1inthefiltrationR 2 M D --- D M"1 > M" = 0is amodule
over the field F = R/M. Then use the previous two exercises and Exercise 6 of Section
15.1]

9. Let M be a finitely generated R-module. Prove thatif xi, . . ., x, are elements of M whose
images in M/J M generate M /J M, then they generate M. Deduce thatif R is Noetherian
and the images of ay, . . ., an in J/J? generate 7/ J?, then J = (ay, ..., an). [Let N
be the submodule generated by x1, ..., x, and apply Nakayama’s Lemma to the module
A=M/N]

10. Let R = Z) be the localization of Z at the prime ideal (2). Prove that Jac R = (2) is the
ideal generated by 2. If M = Q, prove that M/2M is a finitely generated R-module but
that M is not finitely generated over R. Why doesn’t this contradict the previous exercise?
[Note the hypotheses in Nakayama’s Lemma.]

11. Let V be an affine variety over a field k and let R = k[V] be its coordinate ring. Let
d;(R) denote the transcendence degree of the field of fractions (V) over k, and let d,(R)
be the Krull dimension of R defined in terms of chains of prime ideals. This exercise
shows d,(R) = d,(R). By Noether’s Normalization Lemma there is a polynomial subring
Ry = k[y1, ..., ym] of R such that R is integral over R;.

(a) Show that d;(R;) = d;(R) = m and that d,(R;) = dp(R). Deduce that we may
assume R = Rj. [Use the Going-up and Going-down Theorems (cf. Theorem 26,
Section 15.3) to prove the second equality.]

(b) When R = R; show that dp(R) > d;(R) by exhibiting an explicit chain of prime
ideals of length m.

(c) When R = R; show that any nonzero prime ideal of R contains an element f such
that R(f) is transcendental over R of transcendence degree 1. Use induction to show
that dp,(R) < d;(R), and deduce that d,(R) = d;(R).

12. Let R be a Noetherian local ring with maximal ideal M.

(a) The quotient M /M? is a module (i.e., vector space) over the field R/M. Prove that
d = dim g/m (M/M?) is finite.

(b) Prove that M can be generated as an ideal in R by d elements and by no fewer. [Use
Exercise 9.]

(c) LetR =k[x1, ..., xn](x,....x,) bethelocalization ofthe polynomial ring k[ x1, . . ., xx]
over the field k at the maximal ideal (x;, ..., Xn), and let M be the maximal ideal in
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R. Prove thatdim g/m (M /M2) = n = dim R. [Cf. the previous exercise.]

It can be shown that dim g/p (M /M 2y > dim R for any Noetherian local ring R with maximal
ideal M. A Noetherian local ring R is called a regular local ring if dim g/p (M /M 2) =dimR.
Itis afactthat a regular local ring is necessarily an integral domain and is also integrally closed.

13. If R is a Noetherian ring, prove thatthe Zariski topology on Spec R is discrete (i.e., every
subset is Zariski open and also Zariski closed) if and only if R is Artinian.

14. Suppose I is the ideal (x1, x%, xg , ... ) in the polynomial ring k[x], x2, x3, ... ] where k is
afield and let R be the quotient ring k[x], x7, x3, ... ]/ I. Prove that the image of the ideal
(x1, x2, x3, ...) in R is the unique prime ideal in R but is not finitely generated. Deduce
that R is a local ring of Krull dimension O but is not Artinian.

16.2 DISCRETE VALUATION RINGS

Inthe previous section we showed that the Artinian rings are the Noetherian rings having
Krull dimension 0. We now consider the easiest Noetherian rings of dimension 1, the
Discrete Valuation Rings first introduced in Section 8.1:

Definition.
(1) A discrete valuation on afield K is a function v : K* — Z satisfying
(i) v is surjective,
@ii) v(xy) =v(x)+v(y) forallx,ye€ KX,
(iii) v(x +y) > min{v(x), v(y)} forallx,y € K* withx +y # 0.
The subring {x € K | v(x) > 0} U {0} is called the valuation ring of v.
(2) An integral domain R is called a Discrete Valuation Ring (D.V.R.) if R is the
valuation ring of a discrete valuation v on the field of fractions of R.

The valuation v is often extended to all of K by defining v(0) = +o0, in which case
(ii) and (iii) hold for all @, b € K.

Examples
(1) The localization Z) of Z at any nonzero prime ideal (p) is a D.V.R. with respect
to the discrete valuation v, on Q defined as follows (cf. Exercise 27, Section 7.1).
Everyelementa/b € Q* canbe written uniquely in the form p" (a; /b;) wheren € Z,
a1 /b1 € Q* and both q; and b are relatively prime to p. Define

n ()= (5) =

One easily checks that the axioms for a D.V.R. are satisfied. We call v, the p-adic
valuation on Q. The corresponding valuation ring is the set of rational numbers with
n > 0 together with 0, i.e., the rational numbers a/b where b is not divisible by p,
which is Z( p)-

(2) For any field F, let f be an irreducible polynomial in F[x]. Every nonzero element in
the field F (x) can be written uniquely in the form f”(a/b) wheren € Z,a/b € F[x]*
and both a and b are relatively prime to f. Then

vf (f”%) =n
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defines a valuation on F(x) and the corresponding valuation ring is the localization
F[x]ys of F[x] at f consisting of the rational functions in F(x) whose denominator is
notdivisibleby f. When f = x —a is apolynomial of degree 1 in F[x], the valuation
vy gives the order of the zero (if n > 0) or pole (if n < 0) of the element in F(x) at
x=a.

(3) The ring of formal Laurent series F((x)) with coefficients in the field F has a discrete

valuation v defined by
(o)
v (Z aixi) =n
i>n

(cf. Exercise 5, Section 7.2). The corresponding D.V.R. is the ring F[[x]] of power
series in x with coefficients in F.

Note that v(1) = v(1) + v(1) implies that v(1) = O, so every Discrete Valuation
Ring R is aring with identity 1 # 0. Since R is a subring of a field by definition, R is
in particular an integral domain. Itis easy to see that a D.VR. is a Euclidean Domain
(cf. Example 4 in Section 8.1), so in particular is also a P1.D. and a U.ED. In fact
the factorization and ideal structure of a D.V.R. is very simple, as the next proposition
shows.

Proposition S. Suppose R is a Discrete Valuation Ring with respect to the valuation v,
and let ¢ be any element of R with v(t) = 1. Then
(1) A nonzero element # € R is a unit if and only if v(u) = 0.
(2) Everynonzero element r € R can be written in the form r = u#" for some unit
u € R and some n > 0. Every nonzero element x in the field of fractions of R
can be written in the form x = ut" for some unit # € R and some n € Z.
(3) Every nonzero ideal of R is a principal ideal of the form (¢") for some n > 0.
In particular, R is a Noetherian ring.

Proof: If uis aunit, then uv = 1 for some v € R and then v(u)+v(v) = v(uv) =1
with v(#) > 0 and v(v) > O shows that v(u) = 0. Conversely, if # is nonzero and
v(u) = O thenu™! € K satisfies v(u~!) + v(u) = v(1) = 0. Hence v(z~!) = 0 and
u~! € R, so u is a unit. This proves (1).

For (2), note that if v(x) = n then v(xt™) = 0, so xt™" = u is a unit in R by (1).
Hence x = ut", where x € R if and only if n = v(x) > 0.

If I is anonzeroidealin R, letr € I be an element with v(r) minimal. If v(r) = n,
then r differs from " by a unit by (2),so¢" € I and (#") < I. If now a is any nonzero
element of 1, then v(a) > n by choice of n. Then v(az™) > 0 and so at™ € R,
which shows that a € (¢#"). Hence I = ("), proving the first statement in (3). Itis then
clear that ascending chains of ideals in R are finite, proving that R is Noetherian and
completing the proof.

Definition. If R is a D.V.R. with valuation v, then an element ¢ of R with v(t) = 1 is
called a uniformizing (or local) parameter for R.
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Corollary 6. Let R be a Discrete Valuation Ring.

(1) Thering R is anintegrally closed local ring with unique maximal ideal given by
the elements with strictly positive valuation: M = {r € R | v(r) > 0}. Every
nonzero ideal in R is of the form M" for some integer n > 0.

(2) The only prime ideals of R are M and 0, i.e., Spec R = {0, M}. In particular,
aD.V.R. has Krull dimension 1.

Proof: Any U.FD. is integrally closed in its fraction field (Example 3 in Section
15.3), so R is integrally closed. The remainder of the statements follow immediately
from the description of the ideals of R in Proposition 5.

The definition of a Discrete Valuation Ring is extremely explicit in terms of a
valuation on the fraction field, and as a result it appears that it might be difficult to
recognize whether a givenring R is a D.V.R. from purely “internal” algebraic properties
of R. In fact, the ring-theoretic properties in Proposition 5 and Corollary 6 characterize
Discrete Valuation Rings. The following theorem gives several alternate algebraic
descriptions of Discrete Valuation Rings in which there is no explicit mention of the
valuation.

Theorem 7. The following properties of a ring R are equivalent:

(1) R is aDiscrete Valuation Ring,

(2) RisaPILD. with a unique maximal ideal P # O,

(3) Ris aU.ED. with a unique (up to associates) irreducible element #,

(4) Ris aNoetherian integral domainthatis also a local ring whose unique maximal
ideal is nonzero and principal,

(5) R is aNoetherian, integrally closed, integral domain that is also a local ring of
Krull dimension 1 i.e., R has a unique nonzero prime ideal: Spec R = {0, M}.

Proof: That (1) implies each of the other properties was proved above.

If (2) holds then (3) is immediate since irreducible elements generate prime ideals
in a U.ED. (Proposition 12, Section 8.3).

If (3) holds, then every nonzero element in R can be written uniquely in the form
ut" for some unit 4 and some n > 0. Then every nonzero element in the fraction field
of R can be written uniquely in the form ut" for some unit # and some n € Z. Itis now
straightforward to check that the map v(ut") = n is a discrete valuation on the field of
fractions of R, and R is the valuation ring of v, and (1) holds.

Suppose (4) holds, let M = (¢) be the unique maximal ideal of R, and let My =
NS, M'. Then Mo = M Mj, and since R is Noetherian My, is finitely generated. By
hypothesis M = Jac R, so by Nakayama’s Lemma M, = 0. If  is any proper, nonzero
ideal of R then thereissomen > Osuchthat! € M"butI ¢ M"+!. Leta € I — M"+!
and write a = ¢"u for some u € R. Then u ¢ M, and so u is a unit in the local ring
R. Thus (a@) = (t") = M" for every a € I — M"*!, This shows that I = (¢"), and so
every ideal of R is principal, which shows that (2) holds.

We have shown that (1), (2), (3) and (4) are equivalent, and that each of these
implies (5). To complete the proof we show that (5) implies (4), which amounts to
showing that the ideal M in (5) is a principal ideal. Since 0 # M = Jac R and M is
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finitely generated because R is Noetherian, by Nakayama’s Lemma (Proposition 1(4)),
M # M?. Lett € M — M?. We argue that M = (t). By Proposition 12 in Section 15.2,
the assumption that M is the unique nonzero prime ideal in R implies that M = rad (¢),
and then Proposition 14 in Section 15.2 implies that some power of M is contained
in (¢). Proceeding by way of contradiction, assume (f) # M, so that M" C (¢) but
M"1 ¢ (¢) for some n > 2. Then there is an element x € M"~! — (¢) such that
xM C (t). Note that ¢t # 0 so y = x/t belongs to the field of fractions of R. Also,
y ¢ R because x =ty ¢ (¢). However, by choice of x we have yM C R, and then
one checks that yM is an ideal in R. If yM = R then 1 = ym for some m € M. This
leads to a contradiction because we would then have ¢ = xm € M?, contrary to the
choice of t. Thus yM is a proper ideal, hence is contained in the unique maximal ideal
of R, namely yM C M. Now M is a finitely generated R-module on which y acts by
left multiplication as an R-module homomorphism. By the same (determinant) method
as in the proof of Proposition 23 in Section 15.3 there is a monic polynomial p with
coefficients in R such that p(y)m = O for all m € M. Since p(y) is an element of a
field containing R and M, we must have p(y) = 0. Hence Yy is integral over R. Since
R is integrally closed by assumption, it follows that y € R, a contradiction. Hence
M = (1) is principal, so (5) implies (4), completing the proof of the theorem.

Corollary 8. If R is any Noetherian, integrally closed, integral domain and P is a
minimal nonzero prime ideal of R, then the localization Rp of R at P is a Discrete
Valuation Ring.

Proof: By results in Section 15.4, the localization Rp is a Noetherian (Proposition
38(4)), integrally closed (Proposition 49), integral domain (Proposition 46(2)), that is
a local ring with unique nonzero prime ideal (Proposition 46(4)), so Rp satisfies (5) in
the theorem.

Examples

(1) If R is any Principal Ideal Domain then every localization Rp of R at a nonzero prime
ideal P = (p) is a Discrete Valuation Ring. This follows immediately from Corollary
8 since R is integrally closed (being a U.ED., cf. Example 3 in Section 15.3) and
nonzero prime ideals in a P.I.D. are maximal (Proposition 8.7). Note that the quotient
field K of Rp is the same as the quotient field of R, so each nonzero prime p in R
produces a valuation v, on K, given by the formula

v(p"%) =n

where a and b are elements of R not divisible by p. This generalizes both Examples
1 and 2 above.

(2) The ring Zp of p-adic integers is a Discrete Valuation Ring since it is a PL.D. with
unique maximal ideal pZ, (cf. Exercise 11, Section 7.6). The fraction field of Z,, is
called the field of p-adic numbers and is denoted Q. The element p is a uniformizing
parameter for Zp, so every nonzeroelementin Q, can be written uniquely in the form
p"u for some n € Z and unit u € Z;,‘, (where u = ap + a1p + a2p2 + ... with
0 < ap < p as in Exercise 11(c), Section 7.6). The corresponding p-adic valuation
vp on Q, is then given by v, (p"u) = n.
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A discrete valuation v on a field K defines an associated metric (or “distance
function”), d,,, on K as follows: fix any real number 8 > 1 (the actual value of 8 does
not matter for verifying the axioms of a metric), and for all a, b € K define

da,b)=||la—b||, where |la|l,=p""®

and where we set d, (a, a) = 0. It is easy to check that d, satisfies the three axioms for
a metric:

(i) d.(a, b) = 0, with equality holding if and only if a = b,
(ii) dy(a,b) = d, (b, a), i.e., d, is symmetric,
(iii) d,(a,b) <d,(a,c)+d,(c,b),foralla, b, c € K, i.e.,d, satisfies the “triangle
inequality.”
The triangle inequality is a consequence of axiom (ii1) of the discrete valuation. Indeed,
a stronger version of the triangle inequality holds:

(iii) d,(a, b) < max{d,(a, c),d,(c,b)}, foralla, b, c € K.

For this reason d, is sometimes called an wultrametric. One may now use Cauchy
sequences to form the completion of K with respect to d,,, denoted by K, in the same
way that the real numbers R are constructed from the rational numbers Q. It is not
difficult to show that K, is also a field with a discrete valuation that agrees with v on
the dense subset K of K.

Examples

(1) Consider the p-adic valuation v, on Q and take § = p. Write ||a ||, for || a|l,,, so
that for a, b relatively prime to p,
a
Il p" pllp=r "
Note that integers (or rational numbers) have small p-adic absolute value if they are
divisible by a large power of p. For example, the sequence 1, p, p?, p3, ... converges
to zero in the p-adic metric.

It is not too difficult to see that the completion of QQ with respect to the p-adic
metric is the field Q, of p-adic numbers, and the completion of Z is the ring Z;, of
p-adicintegers. One way to see this is to check that each element a of the completion
may be represented as a p-adic Laurent series:

o0
a= ) ap  whereng€Zandg €{0,1,...,p— 1} foralli,
n=ng
and then use Example 2 previously. In terms of this expansion, the p-adic valuation
is given by vp(a) = ng (when ay,, # 0).
(2) In a similar way, the completion of F (x) with respect to the valuation v, in Example
2 at the beginning of this section gives the field F((x)) with corresponding valuation
ring F[[x]] in Example 3 in the same set of examples.

The completion of a field K with respect to a discrete valuation v is a field K|,
in which the elements can be easily described in terms of a uniformizing parameter.
In addition, K, is a topological space where the topology is defined by the metric d,.
Furthermore, Cauchy sequences of elements in K, converge to elements of K, (i.e., K,
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is complete in the v-adic topology). This is similar to the situation of the completion
R of QQ with respect to the usual Euclidean metric. This allows the application of ideas
from analysis to the study of such rings, and is animportant tool in the study of algebraic
number fields and in algebraic geometry.

Fractional Ideals

We complete our discussion of Discrete Valuation Rings by giving another characteri-
zation of D.V.R.s in terms of “fractional ideals,” which can be defined for any integral
domain:

Definition. For any integral domain R with fraction field K, a fractional ideal of R
is an R-submodule A of K such that dA C R for some nonzero d € R (equivalently, a
submodule of the form d—11 for some nonzerod € R and ideal I of R).

The equivalence of these two definitions follows from the observation that dA is
an R-submodule (i.e., an ideal) of R.

The notion of a fractional ideal in K depends on the ring R. Loosely speaking,
a fractional ideal is an ideal of R up to a fixed “denominator” d. The ideals of R are
also fractional ideals of R (with denominator d = 1) and are the fractional ideals that
are contained in R. For clarity these are occasionally called the integral ideals of R.
When R is a Noetherian integral domain, a fractional ideal of R is the same as a finitely
generated R-submodule of K (cf. Exercise 6).

For any x € K the (cyclic) R-module Rx = {rx | r € R} is called the principal
fractional ideal generated by x.

If A and B are fractional ideals, their product, AB, is defined to be the set of all
finite sums of elements of the form ab wherea € Aandb € B. If A = d~!I and
B = (d’)"1J forideals I, J in R and nonzero d, d’ € R, then AB = (dd’)~'1J where
1J is the usual productideal. In particular, this shows that the product of two fractional
ideals is a fractional ideal.

Definition. The fractional ideal A is said to be invertible if there exists a fractional
ideal B with AB = R, in which case B is called the inverse of A and denoted A~1.

If A is an invertible fractional ideal, the fractional ideal B with AB = R is unique:
AB = AC = R implies B = B(AC) = (BA)C =C.

Proposition 9. Let R be an integral domain and let A be a fractional ideal of R.

(1) If A is a nonzero principal fractional ideal then A is invertible.

(2) If A is nonzero then the set A’ = {x € K | xA C R} is a fractional ideal of
R In general we have AA’ C R and AA’ = R if and only if A is invertible, in
which case A~! = A'.

(3) If A is an invertible fractional ideal of R then A is finitely generated.

(4) The set of invertible fractional ideals is an abelian group under multiplication
with identity R. The set of nonzero principal fractional ideals is a subgroup of
the invertible fractional ideals.
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Proof: If A = xR is a nonzero principal fractional ideal, then taking B = xR
shows that A is invertible, proving (1).

One easily sees that A’ is an R-submodule of K. If A is a nonzero fractional
ideal there is some nonzero element d € R such that dA C R, so A contains nonzero
elements of R. Let a be any nonzero element of A contained in R. Then by definition
of A’ we have aA’ C R, so A’ is a fractional ideal. Also by definition, AA’ € R. If
AA’ = R then A is invertible with inverse A™! = A’. Conversely, if AB = R, then
B C A’ by definition of A’. Then R = AB € AA’ C R, showing that AA’ = R,
proving (2).

If A is invertible, then AA’ = R by (2) and so 1 = aja] + - - - + a,a), for some
ai,...,a, € Aandaj, ..., a, € A'. Ifa € A, thena = (aa})a, +- - -+(aa))a,, where
each aa; € R by definition of A’. It follows that A is generated over R by ay, ..., a,
and so A is finitely generated, proving (3).

Finally, itis clear that the product of two invertible fractional ideals is again invert-
ible. This product is commutative, associative, and RA = A for any fractional ideal.
The inverse of an invertible fractional ideal is an invertible fractional ideal by definition,
proving the first statement in (4). The second statement in (4) is immediate since the
product of xR and yR is (xy)R and the inverse of xR is x ' R.

Definition. If R is an integral domain, then the quotient of the group of invertible
fractional ideals of R by the subgroup of nonzero principal fractional ideals of R is
called the class group of R. The order of the class group of R is called the class number
of R.

The class group of R is the trivial group and the class number of R is 1 if and only
if R is a P.I.D. The class group of R measures how close the ideals of R are to being
principal.

Whether a fractional ideal A of R is invertible is also related to whether A is
projective as an R-module. Recall that an R-module M is projective over R if and only
if M is a direct summand of a free module (Proposition 30, Section 10.5). Equivalently,

M is projective if and only if there is afree R-module F and R-module homomorphisms
f:F—> Mandg: M — F with f o g = 1 (Proposition 25, Section 10.5).

Proposition 10. Let R be anintegral domain with fraction field K and let A be a nonzero
fractional ideal of R. Then A is invertible if and only if A is a projective R-module.

Proof: Assume first that A is invertible, so ) \_, a;a! = 1 for some a; € A and
a! € A’ asin (2) of Proposition 9. Let F be the free R-module on y, ..., y,. Define

f:F—> Aby fQ_riy)=) i riaiandg: A— Fby f(c) =) i (ca)y:. It
is immediate that both f and g are R-module homomorphisms (note that ca; € R by
definition of A’). Since

n n n
(fog)o)=f (Z(ca,f)y,) =) (caa; =c (Z a.-a,f> =c,
i=1 i=1 i=1
so f o g =1 and A is a direct summand of F, hence is projective.
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Conversely, suppose that A is nonzero and projective, so there is a free R-module
F and R-homomorphisms f : F - Aand g : A —» F with f o g = 1. Fix any
0 # a € Aandsuppose ga) =Y ;_, a;y; wheredi € Randyy,..., y, is part of a set
of free generators for F. Define a; = f(y;) anda] = a;/a € K fori =1, ..., n. For
any b € A we have bg(a) = ag(b) = g(ab) since g is an R-module homomorplnsm
Write g(b) = Y r_, bii + 2 jc.7 biyj where {y;} for j € J arethe remaining elements
in the set of free generators for F. Then

n

Y bady: = (ab)yi + Y _(ab;)y; .

i=l1 i=1 jeJ

We may equate coefficients of the elements in the free R-module basis for F in this

equation and it follows that g(b) = » /_, b; y; where b; € R and that bd; = ab; for
i =1,..., n. In particular, it follows from the definition of 4] that ba] = b(a; /a) = b;
is an element of R for every element b of A. This shows thata € A’ fori =1,...,n

Since f o g = 1, we have

a=fogl@a=7f (ia}y;) = Zn:ti,-ai = i(aa,f)a,- =a (Z”: a;a,f) ,
i=1 i=1 i=1 i=1

and so Y ;_, a;al = 1. It follows that AA’ = R and so A is invertible by Proposition
9, completing the proof.

The next result shows that if the integral domain R is also a local ring, then whether
fractional ideals are invertible determines whether R is a D.V.R.

Proposition 11. Suppose the integral domain R is a local ring that is not a field. Then
R is a Discrete Valuation Ring if and only if every nonzero fractional ideal of R is
invertible.

Proof: If R is a D.V.R. with uniformizing parameter ¢, then by Proposition 5 every
nonzero ideal of R is of the form (¢") for some n > 0 and every element d in R can
be written in the form u¢™ for some unit # € R and some m > 0. It follows that every
nonzero fractional ideal of R is of the form t" R for some N € Z, so is a principal
fractional ideal and hence invertible by the previous proposition.

Conversely, suppose that every nonzero fractional ideal of R is invertible. Then
every nonzero ideal of R is finitely generated by (3) of Proposition 9, so R is Noetherian.
Let M be the unique maximal ideal of R. If M = M? then M = 0 by Nakayama’s
Lemma, and then R would be a field, contrary to hypothesis. Hence there is an element
t with ¢ e M — M2, By assumption M is invertible, and since ¢t € M, the fractional
ideal tM ! is a nonzero ideal in R. If tM~' C M, thent € M?, contrary to the choice
of t. Hence tM~! = R, so (t) = M, and M is a nonzero principal ideal. It follows by
the equivalent condition 4 of Theorem 7 that R is a D.V.R., completing the proof.

We end this section with an application to algebraic geometry.
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Nonsingularity and Local Rings of Affine Plane Curves

Let k be an algebraically closed field and let C be an irreducible affine curve over k.
In other words, C is an affine algebraic set whose coordinate ring k[C] is an integral
domain and whose field of rational functions k(C) has transcendence degree 1 over k
(cf. Section 15.4).

Recall that, by definition, the point v on C is nonsingular if m, ¢ /mﬁyc is a 1-
dimensional vector space over k, where m, ¢ is the unique maximal ideal in the local
ring O, ¢ of rational functions on C defined at v.

Proposition 12. Let v be a point on the irreducible affine curve C over k. Then C is
nonsingular at v if and only if the local ring O, ¢ is a Discrete Valuation Ring.

Proof: Suppose first that v is nonsingular. Then dim(m, ¢ /mz'c) =1, and since
O,,c is Noetherian, it follows from Exercise 12 in Section 1 that m, ¢ is principal.
Hence O, ¢ is aD.V.R. by Theorem 7(4). Conversely, suppose O, ¢ isaD.V.R. andt is
a uniformizing element for O, c. Then every element in m, ¢ can be written uniquely
in the form at for some a in O, c. The map from m, ¢ to O, c/m, ¢ defined by
mapping at to a mod m, ¢ is easily checked to be a surjective O, ¢-module homomor-
phism with kernel mﬁ, c- Hence m, ¢ /mﬁ' ¢ is isomorphic as an O, ¢/m, c-module to
Oy.c/my, c. Since O, ¢c/m, ¢ = k (Proposition 46(5) in Section 15.4), it follows that
dim ;(m, ¢ /mﬁ'c) = 1, and so v is a nonsingular point on C.

Definition. If v is a nonsingular point on C with corresponding discrete valuation v,
defined on k(C), then v,(f) = n for f € k(V) is the order of zero of f at v (if n > 0)
or the order of the pole of f at v (if n < 0).

Using the criterion for nonsingularity for points on curves in Proposition 12 we can
prove a result first mentioned in Section 15.4:

Corollary 13. An irreducible affine curve C over an algebraically closed field k is
smooth if and only if its coordinate ring k[C] is integrally closed.

Proof: The curve C is smooth if and only if every localization O, ¢ is a D.V.R.
Since k[{C] has Krull dimension 1 (Exercise 11 in Section 1), the same is true for each
O,.c. It then follows by Theorem 7(5) that every localization O, ¢ is a D.V.R. if and
only if O, c is integrally closed. By Proposition 49 in Section 15.4, this in tum is
equivalent to the statement that k[C] is integrally closed, which proves the corollary.

EXERCISES

1. Suppose R is a Discrete Valuation Ring with respect to the valuation v on the fraction field
K of R. If x, y € K with v(x) < v(y) prove that v(x + y) = min(v(x), v(y)). [Note that
x+y=x(1+y/x)]

2. Suppose R is a Discrete Valuation Ring with unique maximal ideal M and quotient
F = R/M. For any n > 0 show that M"/M"+! is a vector space over F and that
dim p(M"/M"+1) = 1.
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3. Suppose R is an integral domain that is also a local ring whose unique maximal ideal
M = (¢) is nonzero and principal, and suppose that N,>1(#") = 0. Prove that R is a
Discrete Valuation Ring. [Show that every nonzero element in R can be written in the
form ut" for some unit # € R and some n > 0.]

4. Suppose R is a Noetherian local ring whose unique maximal ideal M = (¢) is principal
Prove that either R is a Discrete Valuation Ring or #” = 0 for some n > 0. In the latter
case show that R is Artinian.

5. Suppose that R is a Noetherian integral domain that is also a local ring of Krull dimension
1. Let M be the unique maximal ideal of R and let F = R/M, so that M/M? is a vector
space over F.

(a) Prove that if dim r(M/M?) = 1 then R is a Discrete Valuation Ring.
(b) If every nonzero ideal of R is a power of M prove that R is a Discrete Valuation Ring.

6. Let R be an integral domain with fraction field K. Prove that every finitely generated R-
submodule of K is a fractional ideal of R. If R is Noetherian, prove that A is a fractional
ideal of R if and only if R is a finitely generated R-submodule of K.

7. If R is an integral domain and A is a fractional ideal of R, prove that if A is projective
then A is finitely generated. Conclude that every integral domain that is not Noetherian
contains an ideal that is not projective.

8. Suppose R is a Noetherian integral domain that is also a local ring with nonzero maximal
ideal M. Prove that R is a D.V.R. if and only if the only M-primary ideals in R are the
powers of M.

9. Let C = Z(xz — y?, yz — x3, 22 — x%y) C A3 over the algebraically closed field k. If
v = (0,0, 0) € C, prove that dim x(m,,c /mz’ ¢) = 3 so that v is singular on C. Conclude
that k[C] is not integrally closed in k(C) and determine its integral closure. [cf. Exercise
27, Section 15.4.]

16.3 DEDEKIND DOMAINS

In the previous section we showed that Discrete Valuation Rings are the local rings that
are integrally closed Noetherian integral domains of Krull dimension 1. In this section
we consider the effect of relaxing the condition that the ring be a local ring:

Definition. A Dedekind Domain is a Noetherian, integrally closed, integral domain
of Krull dimension 1.

Equivalently, R is a Dedekind Domain if R is a Noetherian, integrally closed,
integral domain that is not a field in which every nonzero prime ideal is maximal.

The first result shows that Dedekind Domains are a generalization of the class of
Principal Ideal Domains. We shall see later (Theorem 22) that there is a structure
theorem for finitely generated modules over a Dedekind Domain extending the corre-
sponding result for P1.D.s proved in Section 12.1.

Proposition 14.
(1) Every Principal Ideal Domain is a Dedekind Domain.

(2) The ring of integers in an algebraic number field is a Dedekind Domain.
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Proof: A PI.D. is clearly Noetherian, is integrally closed since it is a U.ED. (Ex-
ample 3, Section 15.3), and nonzero prime ideals are maximal (Proposition 7 in Section
8.2), which proves (1). Let Ok be the ring of integers in the number field K, i.e.,
the integral closure of Z in K. Then Corollary 25 in Section 15.3 shows that O is
integrally closed, Ok is Noetherian by Theorem 29 in Section 15.3, and the fact that
nonzero prime ideals in O are maximal was proved in the discussion following the
same theorem. This proves (2).

The following theorem gives a number of important equivalent characterizations of
Dedekind Domains. Recall that the basic properties of fractional ideals were developed
in the previous section.

Theorem15. Suppose R is an integral domain with fraction field K # R. The following
are equivalent conditions for R to be a Dedekind Domain:
(1) The ring R is Noetherian, integrally closed, and every nonzero prime ideal is
maximal.
(2) The ring R is Noetherian and for each nonzero prime P of R the localization
Rp is a Discrete Valuation Ring.
(3) Every nonzero fractional ideal of R in K is invertible.
(4) Every nonzero fractional ideal of R in K is a projective R-module.
(5) Every nonzero proper ideal I of R can be written as a finite product of prime
ideals: I = P, P; - - - P, (not necessarily distinct).
When the condition in (5) holds, the set of primes { Py, . . ., P,;} is uniquely
determined and so every nonzero proper ideal I of R can be written uniquely
(up to order) as a product of powers of prime ideals.

Proof: If R satisfies (1), then Rp is a D.V.R. by Corollary 8, so (1) implies (2).
Conversely, assume each Rp is a D.VR. Then R is integrally closed by Proposition
49 in Section 15.4 and every nonzero prime ideal is maximal by Proposition 46(3) in
Section 15.4, so (2) implies (1).

Suppose now that (1) is satisfied and that A is a nonzero fractional ideal of R.
Let A’ = {x € K | xA C R} as in Proposition 9. For any prime ideal P of R the
behavior of R-modules under localization shows that (AA")p = Ap(A")p = Ap(Ap)
(cf. Exercise 4). Since Rp is aD.V.R. by what has already been shown, Ap(Ap)’ = Rp
by Proposition 11. Hence (AA’)p = Rp for all nonzero primes P of R, so AA’ = R
(Exercise 13 in Section 15.4), and A is invertible, showing (1) implies (3). Conversely,
suppose every nonzero fractional ideal of R is invertible. Then every ideal in R is
finitely generated by Proposition 9(3), so R is Noetherian. Every localization Rp of R
at anonzero prime P is a local ring in which the nonzero fractional ideals are invertible
(cf. Exercise 4), hence is a D.V.R. by Proposition 11. Hence (3) implies (2) and so (1),
(2) and (3) are equivalent. The equivalence of these with (4) is given by Proposition 10.

Suppose now that (1) is satisfied, and let I be any nonzero proper ideal in R. Since
R is Noetherian, I has a minimal primary decomposition I = Q, N---N @, as in
Theorem 21 of Section 15.2. The associated primes P; = rad Q; fori = 1,...,n are
all distinct, and since primes are maximal in R by hypothesis, the associated primes are
all pairwise comaximal, and it follows easily that the same is true for the Q; (Exercise
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5). It followsthat Q; N---N Q, = Q1 - - - O, (Theorem 17 in Section 7.6) so that I is
the product of primary ideals. The P-primary ideals of R correspond bijectively with
the P Rp-primary ideals in the localization Rp (Proposition 42(3) in Section 15.4), and
since Rp is aD.V.R. (because (1) implies (2)), it follows from Corollary 6 that if Q is
a P-primary ideal in R then Q = P™ for some integer m > 1. Applying this to Q;,
i =1, ..., nshows that [ is the product of powers of prime ideals, which gives the first
implication in (5).

Conversely, suppose that all the nonzero proper ideals of R can be written as a
product of prime ideals. We first show for any integral domain that a factorization of
an ideal into invertible prime ideals is unique, i.e., if P, - - - P, = 131 . I’m are two
factorizations of I into invertible prime ideals then n = m and the two sets of primes
{Py,..., P} and {i’l, ..., P .} are equal Suppose P, is a minimal element in the set
{131, .. P }. Since- Pl -P, C Py, the prime ideal P1 contains one of the primes
p,..., P,,, say P C Pl Similarly P; contains P, forsomei = 1,...,m. Then
P C P C Pl and by the minimality of P, it follows that P~ =P = Pl, so the
factorization becomes P, P, - - - P, = P\ P, - - - P,,. Since P, is invertible, multiplying
by the inverseideal showsthat P, -- - P, = P 13,,, and an easy induction finishes the
proof. In particular, the uniqueness statement in (5) now follows from the first statement
in (5) since in a Dedekind domain every fractional ideal, in particular every prime ideal
of R, is invertible.

We next show that invertible primes in R are maximal. Suppose then that P is an
invertible prime ideal in R and takea € R,a ¢ P. We want to show that P +aR = R.
By assumption, the two ideals P + aR and P + a?R can be written as a product of
prime ideals, say P +aR = P -- - P, and P 4+ a’R = }7’1 ce i’m. Notethat P C P;
fori = 1,...,nand also P C i’l for j = 1,...,m. In the quotient R/P, which
is an integral domain, we have the factorization (@) = (P;/P) - - - (P,/P), and each
P,/ P is a prime ideal in R/P. Since the product is a principal ideal, each P;/P is
also an invertible R/ P-ideal (cf. Exercise 2). Similarly, @) = (i’l /P) - (13,,,/ P)
is a factorization into a product of invertible prime ideals. Then (a@)? = (Pl /P)?--
(P,/P)? = (Pl /P) - (Pm / P) give two factorizations into a product of invertible
prime ideals in the integml domain R/ P, so by the uniqueness result in the previous
paragraph, m = 2n and {P,/P. P\/P, ..., P,/P. P,/P} = {P|/P,...,P,/P}). 1t
follows that the set of primes P,..., I’m in R consists of the primes P, ..., P,, each
repeated twice. This shows that P + a’R = (P + aR)?. Since P C P + a®?R and
(P +aR)? € P?+4aR, wehave P C P?2+aR, soeveryelement x in P can be written
in the form x = y 4+ az where y € P? and z € R. Thenaz = x — y € P and since
a ¢ P, we have z € P, which shows that P C P2 +aP. Clearly P:4yagP C P
and so P = P2+ aP = P(P + aR). Since P is assumed invertible, it follows that
R = P +aRforanya € R — P, which proves that P is a maximal ideal.

We now show thatevery nonzero prime ideal is invertible. If P is a nonzero prime
ideal, let @ be any nonzero element in P. By assumption, Ra = P, - - - P, can be
written as a product of prime ideals, and P, ..., P, areinvertible since their productis
principal (by Exercise 2 again). Since P; --- P, = Ra C P, the prime ideal P contains
P; for some 1 <i < n. Since P; is maximal by the previous paragraph, it follows that
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P = P; is invertible.

Finally, since every nonzero proper ideal of R is a product of prime ideals, it follows
that every nonzero ideal of R is invertible, and since every fractional ideal of R is of
the form (d~!)I for some ideal in R, also every fractional ideal of R is invertible. This
proves that (5) implies (3), and complete the proof of the theorem.

The following corollary follows immediately from Proposition 14:

Corollary 16. If O is the ring of integers in an algebraic number field K then every
nonzero ideal I in Ok can be written uniquely as the product of powers of distinct
prime ideals:

I=P'P?--- P,

where Py, ..., P, are distinct prime idealsand ¢; > 1 fori =1,...,n.

Remark: The development of Dedekind Domains given here reverses the historical
development. As mentioned in Section 9.3, the unique factorization of nonzero ideals
into a product of prime ideals replaces the failure of unique factorization of nonzero
elements into products of prime elements in rings of integers of number fields. This
property of rings of integers in Corollary 16 is what led originally to the definition of an
ideal, and Dedekind originally defined what we now call Dedekind Domains by property
5 in Theorem 15. It was Noether who observed that they can also be characterized by
property (1), which we have taken as the initial definition of a Dedekind Domain.

The unique factorization into prime ideals in Dedekind Domains can be used to
explicitly define the valuations vp on R with respect to which the valuation rings are
the localizations Rp in Theorem 15(2) (cf. Exercise 6). We now indicate how unique
factorization for ideals can be used to define a divisibility theory for ideals similar to
the divisibility of integers in Z.

Definition. If A and B are ideals in the integral domain R then B is said to divide A
(and A is divisible by B) if there is an ideal C in R with A = BC.

If B divides A then certainly A € B. If R is a Dedekind Domain, the converse is
true: A C B implies C = AB~! € BB™! = R so C is anideal in R with BC = A.

We can also define the notion of the greatest common divisor (A, B) of two ideals
A and B: (A, B) divides both A and B and any ideal dividing both A and B divides
(A, B). The second statement in the next proposition shows that this greatest common
divisor always exists for integral ideals in a Dedekind Domain and gives a formula for
it similar to the formula for the greatest common divisor of two integers.

Proposition 17. Suppose R is a Dedekind Domain and A, B are two nonzero ideals
in R, with prime ideal factorizations A = P --- P and B = P{" - - - /" (where
e, fi >0fori =1,...,n). Then
(1) A € B if and only if B divides A (i.e., “to contain is to divide”) if and only if
fi<efori=1,...,n,
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2 A+B=(AB) = lein(e"f') .+ . pmnens) g6 in particular A and B are
relatively prime, A + B = R, if and only if they have no prime ideal factors in
common.

Proof: We proved the first statement in (1) above. If each f; < e;, then taking
C = PP~ fi... P&~ C R shows that B divides A. Conversely, if B divides A, then
writing C as a product of prime ideals in A = BC shows that f; < ¢; for all i, which
proves all of (1). Since A + B is the smallest ideal containing both A and B, (2) now
follows from (1).

Proposition 18. (Chinese Remainder Theorem) Suppose R is a Dedekind Domain,

Py, P, ..., P, are distinct prime ideals in R and a; > O are integers, i = 1,...,n.
Then
R/P" --- P = R/P" x R/Py* x -+ x R/ P,
Equivalently, for any elements r, r2, . . ., 7, € R thereexists an element r € R, unique
up to an element in P;" - - - P%, with
r=rimod P, r=romodP)’, ..., r=r,modP.

Proof: This is immediate from Theorem 17 in Section 7.6 since the previous propo-
sition shows that the P;* are pairwise comaximal ideals.

Corollary 19. Suppose ! is an ideal in the Dedekind Domain R. Then
(1) there is an ideal J of R relatively prime to I such that the product I J = (a) is
a principal ideal,
(2) if I is nonzero then every ideal in the quotient R/ is principal; equivalently, if
I is an ideal of R containing I then I} = I + Rb for some b € R, and
(3) every ideal in R can be generated by two elements; in fact if / is nonzero and
O#aelthenl = Ra+ Rbforsomeb € I.

Proof: Suppose I = P{" - - - P% is the prime ideal factorization of I in R. For
eachi = 1,...,n, letr; be an element of P — Pf*'. By the proposition, there is an
element a € R witha = r; mod P7*" forall i. Hence a € P% — P#*! forall i, so the
power of P; in prime ideal factorization of (a) is precisely e; by (1) of Proposition 17:

(a) = Pl"l ... P,f"P:j:l' ... P:x"'

for some prime ideals P, 1, ..., P, distinctfrom Py, ..., P,. Letting J = P,frl‘ RV i
gives (1). For (2), by the Chinese Remainder Theorem it suffices to prove that every
idealin R/ P™ is principal in the case of a power of a prime ideal P, and this is immediate
since R/P™ = Rp/P™ Rp and the localization Rp is a P1.D. Finally, (3) follows from

(2) by taking I = Ra.

The first statement in Corollary 19 shows thatthere is an integral ideal J relatively
prime to I lying in the inverse class of I in the class group of R. One can even impose
additional conditions on J, cf. Exercise 11.
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Corollary 20. If R is a Dedekind Domain then R is a P1.D. (i.e., R has class number
1) if and only if R is a U.ED.

Proof: Every P.ID. is a U.ED., so suppose that R is a U.ED. and let P be any
prime ideal in R. Then P = Ra + Rb for some a # 0 and b in R by Corollary 19.
We have (a’) € P for one of the irreducible factors a’ of a since their product is an
element in the prime P, and then P divides (a’) in R by Proposition 17(1). It follows
that P = (a’) is principal since (a’) is a prime ideal (Proposition 12 in Section 8.3).
Since every ideal in R is a product of prime ideals, every ideal of R is principal, i.e., R
isaPILD.

Corollary 20 shows that the class number of a Dedekind domain R gives a measure
of the failure of unique factorization of elements. It is a fundamental result in algebraic
number theory that the class number of the ring of integers of an algebraic number field
is finite. For general Dedekind Domains, however, the class number need not be finite.
In fact, for any abelian group A (finite or infinite) there is a Dedekind Domain whose
class group is isomorphic to A.

Modules over Dedekind Domains and the Fundamental Theorem
of Finitely Generated Modules

We turn next to the consideration of modules over Dedekind Domains R. Every frac-
tional ideal of R is an R-module and the first statement in the following proposition
shows that two fractional ideals of R are isomorphic as R-modules if and only if they
represent the same element in the class group of R.

Proposition 21. Let R be a Dedekind Domain with fraction field K.

(1) Suppose I and J are two fractional ideals of R. Then I = J as R-modules
if and only if I and J differ by a nonzero principal ideal: I = (a)J for some
O0#a€k

(2) More generally, suppose I}, I, ..., I,and Jy, Jy, . .., J,, are nonzero fractional
ideals in the fraction field K of the Dedekind Domain R. Then

11@12@@111 g-116912@"'@1711
as R-modules if and only if n = m and the product ideals I; 1, - - - I, and
J1J; - - - J, differ by a principal ideal:
1112 s Iy = (a)JIJZ SRR A
forsome 0 # a € K.
(3) In particular,
LehLd -, =ZR®---®R (1 I,---1,)
N ———
n—1 factors

and R"®1 = R"®J ifand only if I and J differ by a principal ideal: I = (a)J,
ack

Proof: Multiplication by 0 # a € K gives an R-module isomorphism from J to
(a)J, soif I = (a)J wehave I = J as R-modules. For the converse, observe that we
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may assume J # 0 and then I = J implies R = J~!I. But this says that J~!1 = aR
is principal (with generator a given by the image of 1 € R), i.e., I = (a)J, proving (1).

We next show that for any nonzero fractional ideals / and J that @ J = R 1J.
Replacing I and J by isomorphic R-modules al and bJ, if necessary, we may assume
that / and J are integral ideals that are relatively prime (cf. Exercise 12), so that
I+J=RandINJ =1J. Itis easy to see that the map from I/ & Jtol +J = R
defined by mapping (x, y) to x+y is a surjective R-module homomorphism with kernel
I N J =1J,so we have an exact sequence

0—1J—I1I®dJ—R—0

of R-modules. This sequence splits since R is free,so I & J = R & I J, as claimed.

The first statement in (3) now follows by induction, and combining this statement
with (1) shows thatif I --- I,, = (a)J; - - - J,, forsome nonzeroa € K thenl, ®---® 1,
is isomorphic to J, @- - - @ J,,. This proves the “if” statement in (2). It remains to prove
the “only if” statement in (2) since the corresponding statement in (3) is a special case.
Sosuppose L& LD--- B, =ZNH D LHL®--- @ J, as R-modules.

Since I ®r K is the localization of the ideal I in K (cf. Proposition 41 in Section
15.4) it follows that I ® x K = K forany nonzero fractional ideal I of K. Since tensor
products commute with direct sums, (I; @ --- ® I,,) ®g K = K" is an n-dimensional
vector space over K. Similarly, /; @ ---® J,, ®g K = K", from which it follows that
n=nm.

Note that replacing I; by the isomorphic fractional ideal a;~!I; for any nonzero
element a; € I; does not effect the validity of the statements in (2). Hence we may
assume /), contains R, and similarly we may assume that each of the fractional ideals
in (2) contains R. Let ¢ denote the R-module isomorphism from I); & --- @ I, to
Jh®---dJ,.Fori =1,2,...,ndefine

¢(,...,0,1,0,...,0) = (@1,i,a2i>---, i) E 1D L ®---BJy
where 1 € I on the left hand side occurs in position i. Since ¢ is an R-module
homomorphism it follows that
Ji=aj1h+aj2hLb+---+ajili +---+ajnly
for each j = 1,2,..., n. Taking the product of these ideals for j = 1,2,...,n it
follows that
@ 195,2--a, )l --- 1, € hJo--- Jy
for any permutation { j;, jo, - - -, jn} of {1, 2, ..., n}. Hence
dhl--- I, C hJp---J,
where d is the determinant of the matrix (a; ;), since the determinant is the sum of
terms €(0)ay.4(1) - * * Qn.o(ny Where €(o) is the sign of the permutation o of {1, 2, ..., n}.
Similarly, for j =1, ..., n, define
‘p_l((o""’07 1’0770)) = (bl,j,bl,j’---,bn,j) € 11 @126@111
where 1 € J; on the left hand side occurs in position j. The product of the two matrices
(a;,j) and (b; ;) is just the identity matrix, so d # O and the determinant of the matrix
(bi.j) is d~'. As above we have

d_lJIJZ et Jn - 1112 ot In’
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which shows that I1 I, - - - I, = (@)1 J, - - - J,, where 0 # a = d~! € K, completing
the proof of the proposition.

We now consider finitely generated modules over Dedekind Domains and prove
a structure theorem for such modules extending the results in Chapter 12 for finitely
generated modules over P1.D.s.

Recall that the rank of M is the maximal number of R-linearly independent elements
in M, or, equivalently, the dimension of M ®x K as a K-vector space, where K is the
fraction field of R (cf. Exercises 1-4, 20 in Section 12.1).

Theorem 22. Suppose M is a finitely generated module over the Dedekind Domain R.
Let n > 0 denote the rank of M and let Tor(M) be the torsion submodule of M. Then
M=R®R®---®R®I & Tor(M)

n factors

for some ideal I of R, and
Tor(M) = R/Pf1 X R/P.f2 X --+ X R/ P

for some s > 0 and powers P;", e; > 1, of (not necessarily distinct) prime ideals. The
ideals P, fori =1, ..., s are unique and the ideal 7 is unique up to multiplication by
a principal ideal.

Proof: Suppose first that M is a finitely generated torsion free module over R,
i.e., Tor(M) = 0. Then the natural R-module homomorphism from M to M Qg K
is injective, so we may view M as an R-submodule of the vector space M ®r K. If
M has rank n over R, then M ®g K is a vector space over K of dimension n. Let
X1, ..., Xy be abasis for M ®g K over K and let m,, ..., m; be R-module generators
for M. Eachm;,i = 1, ..., s can be written as a K-linear combination of xj, ..., X,,.
Let O £ d € R be a common denominator for all the coefficients in K of these linear
combinations, and set y; = x;/d,i =1, ....n. Then

MCRyi+--+Ry, CKx1+---+ Kx,

which shows that M is contained in a free R-submodule of rank »n and every element
m in M can be written uniquely in the form

m=ay1+---+anyn

withay,...,a, € R. Themap ¢ : M — R defined by ¢(a1y1 + - - - + anyn) = a, is
an R-module homomorphism, so we have an exact sequence

0—kergp—M-515,—0

where I, is the image of ¢ in R, hence is an ideal in R. The submodule ker g is
also a torsion free R-module whose rank is at most n — 1 (since it is contained in
Ry +---+ Ry,_1), and it follows by comparing ranks that /; is nonzero and that ker ¢
has rank precisely n — 1. By (4) of Theorem 15, I is a projective R-module, so this
sequence splits:

M= 1) & (ker ¢).
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By induction on the rank, we see that a finitely generated torsion free R-module is
isomorphic to the direct sum of » nonzero ideals of R:

M=1LoL®: I

Since Iy, ..., I, are each projective R-modules, it follows that any finitely generated
torsion free R-module is projective.

If now M is any finitely generated R-module, the quotient M/Tor(M) is finitely
generated and torsion free, hence projective by what was just proved. The exact se-
quence

0 — Tor(M) — M — M/Tor(M) — 0O

therefore splits, and so
M = Tor(M) & (M /Tor(M)).

By the results in the previous paragraph M /Tor(M) is isomorphic to a direct sum of n

nonzero ideals of R, and by Proposition 21 we obtain
M%F@R@---@R@I @ Tor(M)

N—

n factors

for someideal / of R. The uniqueness statement regarding the ideal / is also immediate
from the uniqueness statement in Proposition 21(3).

It remains to prove the statements regarding the torsion submodule Tor(M). Sup-
pose then that N is a finitely generated torsion R-module. Let I/ = Ann(XN) be the
annihilator of N in R and suppose I = P{" - - - P;* is the prime ideal factorization of /
in R, where Py, ..., P, are distinct prime ideals. Then N is a module over R/ I, and

R/I=R/P" x R/P;* x --- x R/ P
It follows that
N = (N/P{'N)x (N/P;*N) x --- x (N/P{*N)

as R-modules. Each N/ PN is a finitely generated module over R/P° = Rp/P¢Rp
where Rp is the localization of R at the prime P, i.e., is a finitely generated module over
Rp that is annihilated by P°Rp. Since R is a Dedekind Domain, each Rp is a PLD.
(even a D.VR.), so we may apply the Fundamental Theorem for Finitely Generated
Modules over a P.I.D. to see that each N/P¢N is isomorphic as an Rp-module to a
direct sum of finitely many modules of the form Rp/ P/ Rp where f < e. It follows
thateach N/ P¢N is isomorphic as an R-module to a direct sum of finitely many modules
of the form R/ P/ R where f < e. This proves that N is isomorphic to the direct sum
of finitely many modules of the form R/ Pif" for various prime ideals P;. Hence Tor(M)
can be decomposed into a direct sum as in the statement in the theorem.

Finally, it remains to prove that the ideals Pfi fori =1, ..., sin the decomposition
of Tor(M) are unique. Thisis similar to the uniqueness argument in the proof of Theorem
10 in Section 12.1 (cf. also Exercises 11-12 in Section 12.1): for any prime ideal P of
R, the quotient Pi~'M/P* M is a vector space over the field R/ P and the difference
dim g/p P'='M/ P' M — dim g/p P' M/ P'*' M is the number of direct summands of M
isomorphic to R/ P*, hence is uniquely determined by M. This concludes the proof of
the theorem.
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If M is a finitely generated module over the Dedekind Domain R as in Theorem 22,
then the isomorphism type of M as an R-module is determined by the rank n, the prime
powers P fori = 1,..., s (called the elementary divisors of M, and the class of the
ideal I in the class group of R (called the Steinitz class of M). Note that a P1.D. is the
same as a Dedekind Domain whose class number is 1, in which case every nonzero ideal
I of R is isomorphic as an R-module simply to R. In this case, Theorem 22 reduces
to the elementary divisor form of the structure theorem for finitely generated modules
over PI.D.s in Chapter 12. There is also an invariant factor version of the description
of the torsion R-modules in Theorem 22 (cf. Exercise 14).

The next result extends the characterization of finitely generated projective modules
over P.I.D.s (Exercise 21 in Section 12.1) to Dedekind Domains.

Corollary 23. A finitely generated module over a Dedekind Domain is projective if
and only if it is torsion free.

Proof: We showed that a finitely generated torsion free R-module is projective in
the proof of Theorem 22, so by the decomposition of M in Theorem 22, M is projective
if and only if Tor(M) is projective (cf. Exercise 3 in Section 10.5). To complete the
proof it suffices to show that no nonzero torsion R-module is projective, which is left
as an exercise (cf. Exercise 15).

EXERCISES

1. If Ris an integral domain, show that every fractional ideal of R is invertible if and only if
every integral ideal of R is invertible.

2. Suppose R is an integral domain with fraction field K and Aq, A2, ..., A, are fractional
ideals of R whose product is a nonzero principal fractional ideal: AjAz - - - A, = Rx for
some 0 # x € K. Foreachi =1, ..., nprove that A; is an invertible fractional ideal with
inverse (x 1) Ay - - - Ai—14i41 - - An.

3. Suppose R is an integral domain with fraction field K and P is a nonzero prime ideal in
R. Show that the fractional ideals of Rp in K are the R p-modules of the form ARp where
A is a fractional ideal of R.

4. Suppose R is an integral domain with fraction field K and A is a fractional ideal of R in
K.Let A’ ={x € K | xA C R} asin Proposition 9.
(a) For any prime ideal P in R prove that the localization (A’) p of A at P is a fractional
ideal of Rp in K.
(b) If A is a finitely generated R-module, prove that (A")p = (Ap)’ where (Ap)’ is the
fractional Rp ideal {x € K | xAp € Rp} corresponding to the localization A p.

5. If Q1 isa P,-primary ideal and Q5 is a P,-primary ideal where P; and P, are comaximal
ideals in a Noetherian ring R, prove that Q; and Q> are also comaximal. [Use Proposition
14 in Section 15.2.]

6. Suppose R is a Dedekind Domain with fraction field K.
(a) Prove that every nonzero fractional ideal of R in K can be written uniquely as the
product of distinct prime powers P} --- P," where the g; are nonzero integers, possibly
negative.
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(b) If 0 # x € K, let P'?®) be the power of the prime P in the factorization of the
principal ideal (x) as in (a) (Where vp (x) = 0 if P is not one of the primes occurring).
Prove vp is a valuation on K with valuation ring R p, the localization of R at P.

. Suppose R is a Noetherian integral domain that is not a field. Prove that R is a Dedekind

Domain if and only if for every maximal ideal M of R there are no ideals I of R with
M? c I C M. [Use Exercise 12 in Section 1 and Theorems 7 and 15.]

. Suppose R is a Noetherian integral domain with Krull dimension 1. Prove that every

D

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

nonzero ideal  in R can be written uniquely as a product of primary ideals whose radicals
are all distinct. [Cf. the proof of Theorem 15. Use the uniqueness of the primary compo-
nents belonging to the isolated primes in a minimal primary decomposition (Theorem 21
in Section 15.2).]

Suppose R is an integral domain. Prove that Rp is a D.V.R. for every nonzero prime ideal
P'if and only if Ry, is a D.V.R. for every nonzero maximal ideal.

Suppose R is a Noetherian integral domain that is not a field. Prove that R is a Dedekind
Domain if and only if nonzero primes M are maximal and every M-primary ideal is a
power of M.

If I and J are nonzero ideals in the Dedekind Domain R show there exists anintegral ideal
I1 in R that is relatively prime to both I and J such that I; I is a principal ideal in R.

IfI and J are nonzero fractional ideals for the Dedekind Domain R prove there are elements
a, B € K such that of and BJ are nonzero integral ideals in R are relatively prime.

Suppose I and J are nonzero ideals in the Dedekind Domain R. Prove that there is an ideal
I = 1 that is relatively prime to J. [Use Corollary 19 to find an ideal I, with LI = (a)
and(lp, J) = R. [f , = P{'--. P{", choose b € Rwithb € P — Pf*! andb = 1 mod P
for every prime P dividing J. Show that (b) = LI for some ideal I) and consider (a)I;
to prove that I; = I1.]

Prove that every finitely generated torsionmodule over a Dedekind Domain R isisomorphic
to a direct sum R/I} & R/1, & --- & R/I, with unique nonzero ideals I, ..., I, of R
satisfying ) € b C --- C I,, (called the invariant factors of M). [cf. Section 12.1.]

If P is anonzero prime ideal in the Dedekind Domain R prove that R/ P" is not a projective
R-module for any n > 1. [Consider the exact sequence 0 — P"/P"+1 » R/p"+l 5
R/P" — 0.] Conclude that if M # 0 is a finitely generated torsion R-module then M is
not projective. [cf. Exercise 3, Section 10.5.]

Prove that the class number of the Dedekind Domain R is 1 if and only if every finitely
generated projective R-module is free.

Suppose R is a Dedekind Domain.

(a) Show that 7 ~ J if and only if I = J as R-modules defines an equivalence relation
on the set of nonzero fractional ideals of R. Let C(R) be the corresponding set
of R-module isomorphism classes and let [I] € C(R) denote the equivalence class
containing the fractional ideal 7 of R.

(b) Show that the multiplication [I][J] = [ & J] gives a well defined binary operation
with respect to which C(R) is an abelian group with identity 1 = [R].

(c) Prove that the abelian group C(R) in (b) is isomorphic to the class group of R.

If R is a Dedekind Domain and 7 is any nonzero ideal, prove that R /I contains only finitely

many ideals. In particular, show that R/ is an Artinian ring.

Suppose ! is a nonzero fractional ideal in the Dedekind Domain R. Explicitly exhibit 1
as a direct summand of a free R-module to show that I is projective. [Consideg I & I!
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and use Proposition 21.]

20. Suppose I and J are two nonzero fractional ideals in the Dedekind Domain R and that
I" = J" for some n # 0. Prove that I = J.

21. Suppose K is an algebraic number field and Oy is the ring of integers in K. If P is a
nonzero prime ideal in Ok prove that P = (p, ) for some prime p € Z and algebraic
integer m € Ok.

22. Suppose K = Q(+/D) is a quadratic extension of Q where D is a squarefree integer and
Ok is the ring of integers in K.
(a) Prove that |Ok /(p)| = p?. [Observe that Og = 72 as an abelian group.]
(b) Use Corollary 16 to show that there are 3 possibilities for the prime ideal factorization
of (p) in Ok:
(@) (p) = P is a prime ideal with |Og/P| = p?,
(ii) (p) = Py P, with distinct prime ideals Py, P; and |Og/P| = |Ok/P2| = p,
(i) (p) = P? for some prime ideal P with |Og/P| = p.

(In cases (i), (ii), and (iii) the prime p is said to be inert, split, or ramified in O g, respec-
tively. The set of ramified primes is finite: the primes p dividing D if D = 1, 2mod4;

p = 2 and the primes p dividing D if D = 3mod4. Cf. Exercise 31 in Section 15.5.)

(c) Determine the prime ideal factorizations of the primes p = 2, 3, 5,7, 11 in the ring
of integers O = Z[/—5] of K = Q(+/-5).

23. Let O be the ring of integers in the algebraic closure Q of Q.

(a) Show that the infinite sequence of ideals in O (2) C W?2) c (i/f) cW2)c---is
strictly increasing, and so O is not Noetherian.

(b) Show that O has Krull dimension 1. [Use Theorem 26 in Section 15.3.]

(c¢) Let K be a number field and let I be any ideal in Ok . Show that there is some finite
extension L of K such that I becomes principal when extended to Oy, i.e., the ideal
1Oy is principal (where L depends on I)—you may use the theorem that the class
group of K is a finite group. [cf. Exercise 20.]

(d) Provethat O is a Bezout Domain (cf. Section 8.1).

24. Suppose F and K are algebraic number fields with QQ € F C K, with rings of integers
OF and Ok, respectively. Since O € Ok, the ring O is naturally a module over OF.
(a) Prove Oy is a torsion free Op-module of rank n = [K : F]. [Compute ranks over
Z.] If Ok is free over O then Oy is said to have a relative integral basis over Of.
(b) Prove that if F has class number 1 then Ok has a relative integral basis over O

If K = Q(/=5, +/2) then the ring of integers O is given by
Ok =Z+ZV=5+ZJ=10+Zw  wherew = (v—10 + +/2)/2.

(c) If F1 = Q(+/2) prove that Ok has a relative integral basis over O, and find an
explicit basis {&, 8): Ok = Of, -a + OF, - B.

) If F, = Q(+~/=5),showthat P3 = (3,1 ++/=5) = (3,5 — +/=5) is a prime ideal
of O, that is not principal and that Og = Of, - 1 + (1/3)P3 - w. [Check that
V=10 = —(5—+/=5)w/3.] Conclude that the Steinitz class of O as a module over
OF, is the nontrivial class of P; in the class group of o F, and so there is no relative
integral basis of Og over OF, .

(e) Determine whether Ok has a relative integral basis over the ring of integers of the
remaining quadratic subfield F3 = Q(+/—10) of K.

25. Suppose C is a nonsingular irreducible affine curve over an algebraically closed field k.
Prove that the coordinate ring k[C] is a Dedekind Domain.
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CHAPTER 17

Introduction to Homological Algebra
and Group Cohomology

Let R be aring with 1. In Section 10.5 we saw that a short exact sequence

0—L- M5 N—0 17.1)

of R-modules gives rise to an exact sequence of abelian groups

0 —> Homg(N, D) > Homg(M, D) %> Homg(L, D) 17.2)

for any R-module D and that the homomorphism ¥’ is in general not surjective so
this sequence cannot always be extended to a short exact sequence. Equivalently,
homomorphisms from L to D cannot in general be lifted to homomorphisms from M
into D. In this chapter we introduce some of the techniques of “homological algebra,”
which provide a method of extending some exact sequences in a natural way. For
the situation above one obtains an infinite exact sequence involving the “cohomology
groups” Exty(__, D) (cf. Theorem 8), and these groups provide a measure of the set
of homomorphisms from L into D that cannot be extended to M. We then consider
the analogous questions for the other two functors considered in Section 10.5, namely
taking homomorphisms from D into the terms of the sequence (1) and tensoring the
sequence (1) with D.

In the subsequent sections we concentrate on an important special case of this
general type of homological construction—the “cohomology of finite groups.” We
make explicit the computations in this case and indicate some applications of these
techniques to establish some new results in group theory. In this sense, Sections 2—4
may be considered as an explicit “example” illustrating some uses of the general theory
in Section 1.

Cohomology and homology groups occur in many areas of mathematics. The for-
mal notions of homology and cohomology groups and the general area of homological
algebra arose from algebraic topology around the middle of the 20" century in the
study of the relation between the higher homotopy groups and the fundamental group
of a topological space, although the study of certain specific cohomology groups, such
as Schur’s work on group extensions (described in Section 4), predates this by half a
century. As with much of algebra, the ideas common to a number of different areas were
abstracted into general theories. Much of the language of homology and cohomology
reflects its topological origins: homology groups, chains, cycles, boundaries, etc.
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17.1 INTRODUCTION TO HOMOLOGICAL ALGEBRA—EXT AND TOR

In this section we describe some general terminology and results in homological al-
gebra leading to the so called Long Exact Sequence in Cohomology. We then define
certain (cohomology) groups associated to the sequence (2) and apply the general ho-
mological results to obtain a long exact sequence extending this sequence at the right
end. We then indicate the corresponding development for sequences obtained by taking
homomorphisms from D to the terms in (1) or by tensoring the terms with D.

We begin with a generalization of the notion of an exact sequence, namely a se-
quence of abelian group homomorphisms where successive maps compose to zero (i.e.,
the image of one map is contained in the kernel of the next):

Definition. Let C be a sequence of abelian group homomorphisms:

0—C" 2l — .. ot ol (17.3)
(1) The sequence C is called a cochain complex if the composition of any two
successive maps is zero: dn1 o d, = 0 for all n.
(2) If C is a cochain complex, its n'™ cohomology group is the quotient group
ker d,, 11/ image d,,, and is denoted by H" (C).

There is a completely analogous “dual” version in which the homomorphisms are

between groups in decreasing order, in which case the sequence corresponding to (3) is

. dy, d, d . .. .
written - - - = C, = - - - = Co — 0. Then if the composition of any two successive

homomorphisms is zero, the complex is called a chain complex, and its homology
groups are defined as H,(C) = kerd,/imaged,;. For chain complexes the notation
is often chosen so that the indices appear as subscripts and are decreasing, whereas for
cochain complexes the indices are superscripts and are increasing. We shall instead use
auniform notation for the maps on both, since it will be clear from the context whether
we are dealing with a chain or a cochain complex.

Chain complexes were the first to arise in topological settings, with cochain com-
plexes soon following. With our applications in Section 2 in mind, we shall concentrate
on cochains and cohomology, although all of the general results in this section have
similar statements for chains and homology. We shall also be interested in the situation
where each C” is an R-module and the homomorphisms d,, are R-module homomor-
phisms (referred to simply as a complex of R-modules), in which case the groups H" (C)
are also R-modules.

Note that if C is a cochain (respectively, chain) complex then C is an exact sequence
if and only if all its cohomology (respectively, homology) groups are zero. Thus the
n'® cohomology (respectively, homology) group measures the failure of exactness of a
complex at the n'™ stage.

Definition. Let A = {A"} and B = {B"} be cochain complexes. A homomorphism
of complexes a : A — B is a set of homomorphisms o, : A" — B”" such that for every
n the following diagram commutes:
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. __>A"—>An+] —_— e
lan la (17.4)

« —>B'—>prtl ——> ...

Proposition 1. A homomorphism & : A — B of cochain complexes induces group
homomorphisms from H" (A) to H"(B) for n > 0 on their respective cohomology
groups.

Proof: It is an easy exercise to show that the commutativity of (4) implies that
the images and kernels at each stage of the maps in the first row are mapped to the
corresponding images and kernels for the maps in the second row, thus giving a well
defined map on the respective quotient (cohomology) groups.

Definition. Let A = {A"}, B = {B"} and C = {C"} be cochain complexes. A short

exact sequence of complexes0 > A 5 B LY C — 0is a sequence of homomorphisms

of complexes such that 0 — A" x g hy C" — 0Ois shortexactfor every n.

One of the main features of cochain complexes is that they lead to long exact
sequences in cohomology, which is our first main result:

Theorem 2. (The Long Exact Sequence in Cohomology) Let0 — A 5B —ﬁ> C—>0
be a short exact sequence of cochain complexes. Then there is a long exact sequence
of cohomology groups:

0 - H%A) » H°B) - H°C) % H'(A)
(17.5)

— H'(B) > H'(C) 3 HXA) > -

where the maps between cohomology groups at each level are those in Proposition 1.
The maps §, are called connecting homomorphisms.

Proof: The details of this proof are somewhat lengthy. For each n the verification
that the sequence H"(A) - H"(B) — H"(C) is exact is a straightforward check of
the definition of exactness of each map, similar to the proof of Theorem 33 in Section
10.5. The construction of a connecting homomorphism §,, is outlined in Exercise 2.
Some work is then needed to show that §,, is a homomorphism, and that the sequence
is exact at §,,.

One immediate consequence of the existence of the long exact sequence in Theorem
2 is the fact that if any two of the cochain complexes A, B, C are exact, then so is the
third (cf. Exercise 6).
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Homomorphisms and the Groups Extg (A,B)

To apply Theorem 2 to analyze the sequence (2), we try to produce a cochain complex
whose first few cohomology groups in the long exact sequence (5) agree with the terms
in (2). To do this we introduce the notion of a “resolution” of an R-module:

Definition. Let A be any R-module. A projective resolution of A is an exact sequence

i PP — B PS5 A— 0 (17.6)

such that each P; is a projective R-module.

Every R-module has a projective resolution: Let Py be any free (hence projective)
R-module on a set of generators of A and define an R-module homomorphism € from
Py onto A by Theorem 6 in Chapter 10. This begins the resolution € : P > A — 0.
The surjectivity of € ensures that this sequence is exact. Next let Ko = kere and let Py
be any free module mapping onto the submodule K of Py; this gives the second stage
P; — Py — A which, by construction, is also exact. We can continue this way, taking
at the n® stage a free R-module P, that maps surjectively onto the submodule ker d,
of P,, obtaining in fact a free resolution of A.

One of the reasons that projective modules are used in the resolution of A is that
this makes it possible to lift various maps (cf. the proof of Proposition 4 following, for
instance).

In general a projective resolution is infinite in length, butif A is itself projective, then

it has a very simple projective resolution of finite length, namely 0 — A L aso
given by the identity map from A to itself.

Given the projective resolution (6), we rhay form a related sequence by taking
homomorphisms of each of the terms into D, keeping in mind that this reverses the
direction of the homomorphisms. This yields the sequence

0 —>Homg(A, D) —> Homg(Py, D) > Homg(Py, D) 2> - .-

- % Hompg(Pa_1, D) ~> Homg(P,, D) &4 ... 17.7)
where to simplify notation we have denoted the induced maps from Homg(P,—1, D) to
Homg(P,, D) forn > 1 again by d,, and similarly for the map induced by € (cf. Section
10.5). This sequence is not necessarily exact, however it is a cochain complex (this
is part of the proof of Theorem 33 in Section 10.5). The corresponding cohomology
groups have a special name.

Definition. Let A and D be a R-modules. For any projective resolution of A as in (6)
letd, : Homg(P,_1, D) = Homg(P,, D) for alln > 1 as in (7). Define
Exty(A, D) = kerd, 4/ imaged,

where Ext, (A, D) = kerdj. The group Exty (A, D)is called the n™ cohomology group
derived from the functor Homg(__, D). When R = Z the group Ext7(A, D) is also
denoted simply Ext"(A, D).
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Note that the groups Ext (A, D) are also the cohomology groups of the cochain
complex obtained from (7) by replacing the term Homg(A, D) with zero (which does
not effect the cochain property), i.e., they are the cohomology groups of the cochain
complex 0 - Homg(Py, D) — - - -.

We shall show below that these cohomology groups do not depend on the choice
of projective resolution of A. Before doing so we identify the 0® cohomology group
and give some examples.

Proposition 3. For any R-module A we have Ext‘,’e (A, D) = Homg(A, D).

. d . .
Proof: Since the sequence P; 5 P S A > 0is exact, it follows that the

corresponding sequence 0 — Homg(A, D) 5 Homg (Py, D) 4 Homg (P, D) is
also exact by Theorem 33 in Section 10.5 (noting the first comment in the proof).
Hence Ext(,’e (A, D) = ker d; = image ¢ = Homg (A, D), as claimed.

Examples
(D) Let R = Z and let A = Z/mZ for some m > 2. By the proposition we have
Ext)(Z/mZ, D) = Homgz(Z/mZ, D), and it follows that Ext3(Z/mZ, D) = nD,
where ,,D = {d € D | md = 0} are the elements of D that have order dividing m.
For the higher cohomology groups, we use the simple projective resolution

0—>2Z-57Z—> Z/mZ — 0

for A given by multiplication by m on Z. Taking homomorphisms into a fixed Z-
module D gives the cochain complex

0 —> Homgz(Z/mZ, D) — Homz(Z, D) —> Homgz(Z, D) —> 0 —> - -.

We have D = Homgz(Z, D) (cf. Example 4 following Corollary 32 in Section 10.5)
and under this isomorphism we have E)(tlZ (Z/ mZ, D) = D/mD for any abelian group
D. It follows immediately from the definition and the cochain complex above that
Ext%(Z/ mZ, D) = 0 for all n > 2 and any abelian group D, which we summarize as

Ext}(Z/mZ, D) = ,,D
Ext},(Z/mZ, D) = D/mD
Ext7(Z/mZ, D) =0, foralln>2.
(2) The same abelian groups may be modules over several different rings R and the Extg
cohomology groups depend on R. For example, suppose R = Z/mZ for some integer
m > 1. An R-module D is the same as an abelian group D with exponent dividing m,

i.e., mD = 0. In particular, for any divisor d of m, the group Z/dZ is an R-module,
and

d
S 2 imz s 2ymz S 2ymz 2> 2ymZ — 24dZ —> O

is a projective (in fact, free) resolution of Z/dZ as a Z/mZ-module, where the final
map is the natural projection mapping x modm to x mod d. Taking homomorphisms
into the Z/mZ-module D, using the isomorphism Homz/mz(Z/mZ, D) = D, and
removing the first term gives the cochain complex

0o—»>0-%p™ p 4 prd. .
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Hence
Ext},,,z(Z/dZ, D) = 4D,
Ext%/mZ(Z/dZ, D) = (njqyD/dD, nodd,n>1,
Ext%/mZ(Z/dZ, D)= 4D/(m/d)D, neven,n>2,

where D = {d € D | kd = 0} denotes the set of elements of D killed by k. In
particular, Exty, /pzZ(Z/pZ, Z/pZ) = Z/pZ for all n > 0, whereas, for example,
Ext}(Z/ pZ, 7/ pZ) = O for alin > 2.

In order to show that the cohomology groups Ext, (A, D) are independent of the
choice of projective resolution of A we shall need to be able to “compare” resolutions.
The next proposition shows that an R-module homomorphism from A to B lifts to a
homomorphism from a projective resolution of A to a projective resolution of B — this
lifting property is one instance where the projectivity of the modules in the resolution
is important.

Proposition 4. Let f : A — A’ be any homomorphism of R-modules and take
projective resolutions of A and A’, respectively. Then for each n > 0 there is a lift f,
of f such that the following diagram commutes:

dz d €
Py Py A 0
fll fol fl (17.8)
I d' ¢
t P Yp A’ 0

where the rows are the projective resolutions of A and A’, respectively.

Proof: Given the two rows and map f in (8), then since Py is projective we may
lift the map fe : P - A’ toamap fo : Po — Pgin such a way that €' fo = fe
(Proposition 30(2) in Section 10.5). This gives the first lift of f. Proceeding inductively
in this fashion, assume f;, has been defined to make the diagram commutative to that
point. Thus image f,d,+1 € kerd,. The projectivity of P, implies that we may lift
the map fudyy1 : Poy1 — P, toamap foy1 : Poy1 — P,y to make the diagram
commute at the next stage. This completes the proof.

The commutative diagram in Proposition 4 implies that the induced diagram

0 —— Homg (A, D) —— Homg(Py, D) —— Homg(P;, D) —— - -

f T fOT h T
0 — Homg(A, D) —> Homg(P;, D) — Homg(P{, D) —— - --
17.9)
is also commutative. The two rows of this diagram are cochain complexes, and this

commutative diagram depicts ahomomorphism of these cochain complexes. By Propo-
sition 1 we have an induced map on their cohomology groups:
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Proposition 5. Let f : A — A’ be ahomomorphism of R-modules and take projective
resolutions of A and A’ as in Proposition 4. Then for every n there is an induced group
homomorphism ¢, : Exty(A’, D) — Exty(A, D) on the cohomology groups obtained
via these resolutions, and the maps ¢, depend only on f, not on the choice of lifts f;,
in Proposition 4.

Proof: The existence of the map on the cohomology groups Ext}, follows from
Proposition 1 applied to the homomorphism of cochain complexes (9). The more
difficult part is showing these maps do not depend on the choice oflifts f;, in Proposition
4. This is easily seen to be equivalent to showing that if f is the zero map, then the
induced maps on cohomology groups are also all zero. Assume thenthat f = 0. By the
projectivity of the modules P; one may inductively define R-module homomorphisms
sy : P, = P, with the property that for all n,

fo=4d, 15, + sp_1dy (17.10)

so the maps s, give reverse downward diagonal arrows across the squares in (8). (The
collection of maps {s, } is called a chain homotopy between the chain homomorphism
given by the f,, and the zero chain homomorphism, cf. Exercise 4.) Taking homo-
morphisms into D gives diagram (9) with additional upward diagonal arrows from the
homomorphisms induced by the s,,, and these induced homomorphisms satisfy the re-
lations in (10) (i.e., they form a homotopy between cochain complex homomorphisms).
It is now an easy exercise using the diagonal maps added to (9) to see that any ele-
ment in Homg (P, D) representing a coset in Ext}(A’, D) maps to the zero coset in
Exty (A, D) (cf. Exercise 4). This completes the argument.

One may also check that the homomorphism ¢j : Ext%(A’ ,D) —> Ext%(A, D) in
Proposition 5 is the same as the map f : Homg(A’, D) — Homg(A, D) defined in
Section 10.5 once the corresponding groups have been identified via the isomorphism
in Proposition 3.

Theorem 6. The groups Exty (A, D) depend only on A and D, i.e., they are independent
of the choice of projective resolution of A.

Proof: In the notation of Proposition 4 let A" = A, let f : A — A’ be the
identity map and let the two rows of (8) be two projective resolutions of A. For any
choice oflifts of the identity map, the resulting homomorphisms on cohomology groups
¢n : Exty(A’, D) — Ext} (A, D) are seen to be isomorphisms as follows. Add a third
row to the diagram (8) by copying the projective resolution in the top row below the
second row. Let g be the identity map from A’ to A and lift g to maps g, : P, — P,
by Proposition 4. Let ¢, : Extix(A, D) — Exty(A’, D) be the resulting map on
cohomology groups. The maps g, o f, : P, — P, are now a lift of the identity map
g o f, and they are seen to induce the homomorphisms ¢, o v, on the cohomology
groups. However, since the first and third rows are identical, taking the identity map
from P, to itself for all » is a particular lift of g o f, and this choice clearly induces the
identity map on cohomology groups. The last assertion of Proposition 5 then implies
that ¢, o ¥, is also the identity on Ext} (A, D). By a symmetric argument ¥, o ¢, is the
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identity on Exty (A’, D). This shows the maps ¢, and v, are isomorphisms, as needed
to complete the proof.

For a fixed R-module D and fixed integer n > 0, Proposition 5 and Theorem 6 show
that Extg(__, D) defines a (contravariant) functor from the category of R-modules to
the category of abelian groups.

Thenext result shows that projective resolutions for a submodule and corresponding
quotient module of an R-module M can be fit together to give a projective resolution
of M.

Proposition 7. (Simultaneous Resolution) Let0 —- L — M — N — 0 be a short
exact sequence of R-modules, let L = A have a projective resolution as in (6) above,
and let N have a similar projective resolution where the projective modules are denoted
by P,. Then there is a resolution of M by the projective modules P, & P, such that
the following diagram commutes:

0 Fo P& Py Py 0 (17.11)
00— L —/8 M N 0
0 0 0

Moreover, the rows and columns of this diagram are exact and the rows are split.

Proof: The left and right nonzero columns of (11) are exact by hypothesis. The
modules in the middle column are projective (cf. Exercise 3, Section 10.5) and the row
maps are the obvious ones to make each row a split exact sequence. It remains then to
define the vertical maps in the middle column in such a way as to make the diagram
commute. This is accomplished in a straightforward manner, working inductively from
the bottom upward — the first step in this process is outlined in Exercise 5.

Theorem 2 and Proposition 7 now yield the long exact sequence for Extg that
extends the exact sequence (2).
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Theorem 8. Let0 - L - M — N — 0 be a short exact sequence of R-modules.
Then there is a long exact sequence of abelian groups

0 — Homg(N, D) — Homg(M, D) — Homg(L, D) % Exty(N, D) 17.12)

— ExtL(M, D) - Exty(L, D) 3 Ext4(N, D) > - - -

where the maps between groups at the same level n are as in Proposition 5 and the
connecting homomorphisms §, are given by Theorem 2.

Proof: Take a simultaneous projective resolution of the short exact sequence as
in Proposition 7 and take homomorphisms into D. To obtain the cohomology groups
Ext from the resulting diagram, as noted in the discussion preceding Proposition 3 we
replace the lowest nonzero row in the transformed diagram with a row of zeros to get
the following commutative diagram:

0 —> Homg(P,, D) —> Homg(P; & P,, D) —> Homg(Py, D) —> 0

0 —> Homg(Po, D) —> Homg(Py ® Py, D) —> Homg(Po, D) —> 0

0 0 0 (17.13)

The columns of (13) are cochain complexes, and the rows are split by Proposition 29(2)
of Section 10.5 and the discussion following it. Thus (13) is a short exact sequence of
cochain complexes. Theorem 2 then gives along exact sequence of cohomology groups
whose terms are, by definition, the groups Ext,(__, D), forn > 0. The 0 order terms
are identified by Proposition 3, completing the proof.

Theorem 8 shows how the exact sequence (2) can be extended in a natural way and
shows that the group Ext}Q (N, D) is the first measure of the failure of (2) to be exact on
the right — in fact (2) can be extended to a short exact sequence on the right if and only
if the connecting homomorphism &g in (12) is the zero homomorphism. In particular, if
Ext}Q (N, D) = 0 for all R-modules N, then (2) will be exact on theright for every exact
sequence (1). We have already seen (Corollary 35 in Section 10.5) that this implies the
R-module D is injective. Part of the next result shows that the converse is also true and
characterizes injective modules in terms of Extg groups.

Proposition 9. For an R-module Q the following are equivalent:
(1) Q is injective,
(2) Exth(A, Q) = 0 for all R-modules A, and
(3) Extx(A, Q) = Ofor all R-modules A and all n > 1.
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Proof: We showed (2) implies (1) above, and (3) implies (2) is trivial, so it remains
to show that if Q is injective then Ext} (A, Q) = O for all R-modules A and all n > 1.
Take a projective resolution

"'_)Pn_)Pn—l_)""_)PO__)A—_)O
for A. Since Q is injective, the sequence
0 — Homy(A, Q) - Homg(Py, Q) — - --— Hompg(P,_1,Q) - Homy(P,,Q) — - --

is still exact (Corollary 35 in Section 10.5), so all of the cohomology groups for this
cochain complex are 0. In particular, the groups Ext} (A, Q) forn > 1 are all trivial,
which is (3).

For a fixed R-module D, the result in Theorem 8 can be viewed as explaining what
happens to the short exact sequence 0 - L — M — N — 0 on the right after
applying the left exact functor Homg(__, D). This is why the (contravariant) functors
Ext},(__, D) are called the right derived functors for the functor Homg(__, D).

One can also consider the effect of applying the left exact functor Homg (D, _ ), i.e.,
by taking homomorphisms from D rather than into D. The next theorem shows that in
fact the same Extg groups define the (covariant) right derived functors for Homg (D, _ )
as well.

Theorem 10. Let0 - L - M — N — 0 be a short exact sequence of R-modules.
Then there is a long exact sequence of abelian groups

0— HOmR(D, L) - HOIIIR(D’ M) e HomR(D, N) ﬁ)) EXt}Q(D, L) (17 14)

— Exth(D, M) > Exth(D, N) 5> Exti(D,L) — - -

Proof: Let0 - L - M — N — 0 be a short exact sequence of R-modules.
By taking a projective resolution of D and then applying Homg(__, L), Homg(__, M)
and Homg (__, N) to this resolution one obtains the columns in a commutative diagram
similar to (13), but with L, M and N in the second positions rather than the first.
Applying the Long Exact Sequence Theorem to this array gives (14).

Theorem 10 shows that the group Extk (D, L) measures whether the exact sequence
0 — Homg(D. L) — Homg(D, M) — Homg(D, N)

can be extended to a short exact sequence — it can be extended if and only if y is
the zero homomorphism. In particular, this will always be the case if the module D
has the property that Extk (D, B) = 0 for all R-modules B; in this case it follows by
Corollary 32 in Section 10.5 that D is a projective R-module. As in the situation of
injective R-modules in Proposition 9, the vanishing of these cohomology groups in fact
characterizes projective R-modules:
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Proposition 11. For an R-module P the following are equivalent:
(1) P is projective,
2) Ext}Q(P, B) = 0 for all R-modules B, and
(3) Extx(P, B) = 0 for all R-modules B and alln > 1.

Proof: We proved (2) implies (1) above, and (3) implies (2) is trivial, so it remains
to prove that (1) implies (3). If P is a projective R-module, then the simple exact
sequence

0—>P—1>P—>0

given by the identity map on P is a projective resolution of P. Taking homomorphisms
into B gives the simple cochain complex

0 — Homg(P, B) - Homg(P, B) = 0 —> - — 0 —> - -
from which it follows by definition that Ext (P, B) = 0 for all n > 1, which gives (3).

Examples
(1) Since Z™ is a free, hence projective, Z-module, it follows from Proposition 11 that

Ext},(Z", B) = 0

for all abelian groups B, allm > 1, and alln > 1.

(2) Itis notdifficult to show that Exty (A1 @ Az, B) = Exty (A1, B) ®Exty (A2, B) forall
n > 0 (cf. Exercise 10), so the previous example together with the example following
Proposition 3 determines Ext7(A, B) for all finitely generated abelian groups A. In
particular, Ext7(A, B) = O for all finitely generated groups A, all abelian groups B,
and all n > 2.

We have chosen to define the cohomology group Exty (A, B) using a projective
resolution of A. There is a parallel development using an injective resolution of B:

0-—-)B-—-)Q0-—-) Ql—-)

where each Q; is injective. In this situation one defines Exty(A, B) as the n® co-
homology group of the cochain sequence obtained by applying Homg (A, _ ) to the
resolution for B. The theory proceeds in a manner analogous to the development of this
section. Ultimately one shows that there is a natural isomorphism between the groups
Ext: (A, B) constructed using both methods.

Examples

(1) Suppose R = Z and A and B are Z-modules, i.e., are abelian groups. Recall that a
Z-module is injective if and only if it is divisible (Proposition 36 in Section 10.5). The
group B can be embedded in an injective Z-module Qg (Corollary 37 in Section 10.5)
and the quotient, Q), of Qg by the image of B is again injective. Hence we have an
injective resolution

00— B— Qy— 01 —0
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of B. Applying Homgz (A, _ ) to this sequence gives the cochain complex
0 — Homgz(A, B) — Homgz(A, Q¢) — Homgz(A, Q1)) — 0 — - --
from which it follows immediately that
Ext7(A, B) =0

for all abelian groups A and B and all n > 2, showing that the result of the previous
example holds also when A is not finitely generated.

Suppose A is a torsion abelian group. Then we have Ext’(A, Z) = Hom(A, Z) = 0
since Z is torsion free. The sequence 0 - Z - Q —» Q/Z — 0 gives an injective
resolution of Z. Applying Hom(A, _ ) gives the cochain complex

0 — Hom(A, Z) — Hom(A, Q) — Hom(A.Q/Z) — 0 — - - -
and since Q is also torsion free, this shows that
Ext} (A, Z) = Homgz (A, Q/Z).

The group Hom(A, Q/Z) is called the Pontriagin dual group to A. If A is a finite
abelian group the Pontriagin dual of A is isomorphic to A (cf. Exercise 14, Section
5.2). In particular, Ext! (A, Z) = A is nonzero for all nonzero finite abelian groups A.
We have Ext"(A, Z) = 0 foralln > 2 by the previous example.

We record an important property of Extk, which helps to explain the name for these
cohomology groups. Recall that equivalent extensions were defined at the beginning
of Section 10.5.

Theorem 12. For any R-modules N and L there is a bijection between Extk (N, L)
and the set of equivalence classes of extensions of N by L.

Although we shall not prove this result, in Section 4 we establish a similar bijection
between equivalence classes of group extensions of G by A and elements of a certain
cohomology group, where G is any finite group and A is any ZG-module.

Example

Suppose R = Zand A = B = Z/pZ. We showed above that Ext}Q (Z/pZ,Z/pZ) = Z/pZ,
so by Theorem 12 there are precisely p equivalence classes of extensions of Z/ pZ by Z/ pZ.
These are given by the direct sum Z/pZ @ Z/pZ (which corresponds to the trivial class in
Ext}Q (Z/pZ, Z/pZ)) and the p — 1 extensions

0 —> Z/pZ —> ZJp*Z -5 Z)pZ —> 0

defined by the map i(x) = ixmodp fori = 1, 2,..., p — 1. Note that while these are
inequivalent as extensions, they all determine the same group Z/ p?Z.
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Tensor Products and the Groups Torﬁ (A,B)

The cohomology groups Exty(A, B) determine what happens to short exact sequences
on the right after applying the left exact functors Hom g(D, _ ) and Homg(__, D). One
may similarly ask for the behavior of short exact sequences on the left after applying
the right exact functor D®pg __ or the right exact functor __ ®pg D. This leads to the Tor
(homology) groups (whose name derives from their relation to torsion submodules),
and we now briefly outline the development of these left derived functors. In some
respects this theory is “dual” to the theory for Extg. We concentrate on the situation for
D®pg__when D is aright R-module. When D is a left R-module there is a completely
symmetric theory for _ ®g D; when R is commutative and all R-modules have the
same left and right R action the homology groups resulting from both developments
are isomorphic.

Suppose then that D is a right R-module. Then for every left R-module B the
tensor product D ®g B is an abelian group and the functor D ® __is covariant and
right exact, i.e., for any short exact sequence (1) of left R-modules,

DQQL—>DOM —> DN —0

is an exact sequence of abelian groups. This sequence may be extended at the left end
to a long exact sequence as follows. Let

dy d
cii—> PSP — -S> PR-—>B—0
be a projective resolution of B, and take tensor products with D to obtain

. —>DOP, % DeP— - -2 DR DB — 0. (17.15)

It follows from the argument in Theorem 39 of Section 10.5 that (15) is a chain complex
— the composition of any two successive maps is zero — so we may form its homology
groups.

Definition. Let D be aright R-module and let B be aleft R-module. For any projective
resolution of B by left R-modules as abovelet1 ® d, : D® P, > D ® P,_, for all
n > 1asin (15). Then

Tor®(D, B) = ker(1 ® d,,)/ image(l ® d,11)

where Torf (D, B) = (D ® Py)/ image(1 ®d\). The group Tor®(D, B) is called the n™
homology group derived from the functor D ® __. When R = Z the group TorZ(D, B)
is also denoted simply Tor, (D, B).

Thus Tor®(D, B) is the n™ homology group of the chain complex obtained from
(15) by removing the term D ® B.

A completely analogous proof to Proposition 3 (but relying on Theorem 39 in
Section 10.5) implies the following:
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Proposition 13. For any left R-module B we have Tor(’f (D,B)=ED®B.

Example

Let R =Z and let B = Z/mZ for some m > 2. By the proposition, Tor%(D, Z/mZ) is
isomorphic to D ® Z/mZ, so we have Torg(D, Z/mZ) = D/mD (Example 8 following
Corollary 12 in Section 10.4). For the higher groups we apply D ® __ to the projective
resolution

0—>2Z-52Z—Z/mZ—0

of B and use the isomorphisms D ® Z = D and D ® Z/mZ = D/mD. This gives the
chain complex

---—>O——>Di>D—>D/mD——>O.

It follows that Tor?(D, Z/mZ) = ., D is the subgroup of D annihilated by m and that
Torf(D, Z/mZ) = 0 for all n > 2, which we summarize as

Toro(D., Z/mZ) = D/mD,

Tor (D, Z/mZ) = ,D,

Tor,(D,Z/mZ) =0, foralln > 2.

As for Ext, the Tor groups depend on the ring R (cf. Exercise 20).
Following a similar development to that for Extg, one shows:

Proposition 14.
(1) The homology groups Tor® (D, B) are independent of the choice of projective
resolution of B, and
(2) for every R-module homomorphism f : B — B’ there are induced maps
¥, : TorR(D, B) — TorR(D, B") on homology groups (depending only on f).

There is a Long Exact Sequence in Homology analogous to Theorem 2, except that
all the arrows are reversed, whose proof follows mutatis mutandis from the argument
for cohomology. This together with Simultaneous Resolution gives:

Theorem1S. Let0 - L - M — N — Obeashortexactsequence of left R-modules.
Then there is a long exact sequence of abelian groups

.-+ > TorR(D, N) 3 Torf(D, L) > Tor®(D, M) —
Tor®(D,N) 3 D®L > D®M > D®N — 0

where the maps between groups at the same level n are as in Proposition 14 (and the
maps §, are called connecting homomorphisms).

There is a characterization of flat modules corresponding to Propositions 9 and 11
whose proof is very similar and is left as an exercise.
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Proposition 16. For a right R-module D the following are equivalent:
(1) D is aflat R-module,
2 Torf (D, B) = O for all left R-modules B, and
A3) Tor,’f (D, B) = Ofor all left R-modules B and alln > 1.

We have defined Tor? (A, B) as the homology of the chain complex obtained by ten-
soring a projective resolution of B on the left with A. The same groups are obtained by
taking the homology of the chain complex obtained by tensoring a projective resolution
of A on the right by B. Put another way, the Tor? (A, B) groups define the (covariant)
left derived functors for both of the right exact functors A @z __and __ ®g B: if D
is a left R-module, then the short exact sequence 0 - L —- M — N — 0 of right
R-modules gives rise to the long exact sequence

... = TorR(N, D) B Torf (L, D) - Tork (M, D) —
TorR(N, D) B L& D > M®g D - N ®g D — 0

of abelian groups. In particular, theleft R-module D is flatif and only if Torf (A, D) = 0
for all right R-modules A.

When R is commutative, A ® g B = B ® g A (Proposition 20 in Section 10.4) for
any two R-modules A and B with the standard R-module structures, and it follows that
Tor,’f (A,B) = Tor,’" (B, A) as R-modules. When R is commutative the Tor long exact

d
sequences are exact sequences of R-modules.

Examples

(D) If R = Z, then since Z™ is free, hence flat (Corollary 42, Section 10.5), we have
Tor,, (A, Z™) = O forall n > 1 and all abelian groups A.

(2) Since Tor,’f (A,B1®B) = Tor,’f (A. By) @Torf (A, By) (cf. Exercise 10), the previous
two examples together determine TorX (A, B) for all abelian groups A and all finitely
generated abelian groups B.

(3) As a particular case of the previous example, Tor;(A, B) is a torsion group and
Tor, (A, B) = O for every abelian group A, every finitely generated abelian group
B, and all n > 2. In fact these results hold without the condition that B be finitely
generated.

(4) The exact sequence 0 —> Z - Q — Q/Z — 0 gives the long exact sequence

-+ = Tor (D, Q) - Tori(D,Q/Z) > D®Z > D®Q > D®Q/Z — 0.

Since Q is a flat Z-module (Example 2 following Corollary 42 in Section 10.5), the
proposition shows that we have an exact sequence

0 — Tor1(D,Q/Z) — D — D®Q

and so Tor; (D, Q/Z) is isomorphic to the kernel of the natural map from D into D®Q,
which is the torsion subgroup of D (cf. Exercise 9 in Section 10.4).

The following results show that, for R = Z, the Tor groups are closely related to
torsion subgroups. The Tor groups first arose in applications of torsion abelian groups
in topological settings, which helps explain the terminology.
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Proposition 17. Let A and B be Z-modules and let# (A) and ¢ (B) denote their respective
torsion submodules. Then Tor; (A, B) = Tor; (¢ (A), t(B)).

Proof: Inthe case where A and B are finitely generated abelian groups this follows
by Examples 3 and 4 above. For the general case, cf. Exercise 16.

Corollary 18. If A isanabelian group then A is torsion freeif and only if Tor; (A, B) = 0
for every abelian group B (in which case A is flat as a Z-module).

Proof: By the proposition, if A has no elements of finite order then we have
Tor; (A, B) = Tor (¢t (A), B) = Tor;(0, B) = Oforevery abelian group B. Conversely,
if Tor; (A, B) = O for all B, then in particular Tor; (A, Q/Z) = 0, and this group is
isomorphic to the torsion subgroup of A by the example above.

The results of Proposition 17 and Corollary 18 hold for any P1.D. R in place of Z
(cf. Exercise 26 in Section 10.5 and Exercise 16).

Finally, we mention that the cohomology and homology theories we have described
may be developed in a vastly more general setting by axiomatizing the essential proper-
ties of R-modules and the Homg and tensor product functors. This leads to the general
notions of abelian categories and additive functors. In the case of the abelian category
of R-modules, any additive functor F to the category of abelian groups gives rise to
a set of derived functors, F,, also from R-modules to abelian groups, for all n > 0.
Then for each short exact sequence 0 - L — M — N — 0 of R-modules there is
a long exact sequence of (cohomology or homology) groups whose terms are F,, (L),
Fn(M) and F,(N), and these long exact sequences reflect the exactness properties of
the functor F. If F is left or right exact then the 0" derived functor 7 is naturally
equivalent to F (hence the 0™ degree groups Fo(X) are isomorphic to F (X)), and if F
is an exact functor then 7,,(X) = Oforall » > 1 and all R-modules X.

EXERCISES

1. Give the details of the proof of Proposition 1.
2, This exercise defines the connecting map 6, in the Long Exact Sequence of Theorem 2 and

proves it is a homomorphism. In the notation of Theorem 2 let 0 — A 5B f» C->o0

be a short exact sequence of cochain complexes, where for simplicity the cochain maps

for A, B and C are all denoted by the same d.

(a) If ¢ € C™ represents the class x € H"(C) show that there is some b € B" with
Bn(b) =c.

(b) Show that d,,41(b) € ker B,+1 and conclude that there is a unique a € A"+! such that
an+1(a) = dp+1(b). [Use ¢ € kerd,+1 and the commutativity of the diagram.]

(c) Show that d,42(a) = 0 and conclude that a defines a class @ in the quotient group
H"t1(A). [Use the fact that o, is injective.]

(d) Prove that g is independent of the choice of b, i.e., if b’ is another choice and @' is its
unique preimage in A"*! then@ = a’, and that z is also independent of the choice of
c representing the class x.

(e) Define 8,(x) = a and prove that §, is a group homomorphism from H"(C) to
H"t1(A). [Use the fact that 8, (x) is independent of the choices of ¢ and b to compute
8 (x1 + x2).]
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3. Suppose
[04
A——>B——>C—> 0

el
N A

is a commutative diagram of R-modules with exact rows.

(a) If ¢ € kerh and B(b) = c prove that g(b) € ker 8’ and conclude that g(b) = &’'(a’)
for some @’ € A’. [Use the commutativity of the diagram.]

(b) Show that §(c) = @’mod image f is a well defined R-module homomorphism from
ker h to the quotient A’/ image f.

(¢) (The Snake Lemma) Prove there is an exact sequence

ker f —> kerg —> kerh LN coker f —> coker g —> cokerh

where coker f (the cokernel of f) is A'/(image f) and similarly for coker g and
coker h.

(d) Show thatif ¢ is injective and B’ is surjective (i.e., the two rows in the commutative
diagram above can be extended to short exact sequences) then the exact sequence in
(c) can be extended to the exact sequence

0 — ker f —> kerg — kerh 2, coker f —> cokerg —> cokerh —> 0

4. Let A = {A") and B = {B") be cochain complexes, where the maps A" — A"t!
and B" — B"*! in both complexes are denoted by d,. ;1 for all n. Cochain complex
homomorphisms ¢« and 8 from A to B are said to be homotopic if for all n there are
module homomorphisms s, : A"*! — B" such that the maps a,, — B, from A" to B"
satisfy

an — Bn = dpSp—t + Sndnyy-

The collection of maps {s,} is called a cochain homotopy from ¢ to 8. One may similarly

define chain homotopies between chain complexes.

(a) Prove that homotopic maps of cochain complexes induce the same maps on cohomol-
ogy, i.e., if ¢ and B are homotopic homomorphisms of cochain complexes then the
induced group homomorphisms from H"(A) to H" (I3) are equal forevery n > 0.
(Thus “homotopy” gives a sufficient condition for two maps of complexes to induce
the same maps on cohomology or homology; this condition is not in general neces-
sary.) [Use the definition of homotopy to show (¢, — B,)(z) € imaged,, for every
z € kerdp41.]

(b) Prove that the relation a ~ 8 if @ and B8 are homotopic is an equivalence relation on
any set of cochain complex homomorphisms.

5. Establish the first step in the Simultaneous Resolution result of Proposition 7 as follows:
assume the first two nonzero rows in diagram (11) are given, except for the map from
Py & Pg to M (where the maps along the row of projective modules are the obvious
injection and projection for this split exact sequence). Let s : Po — M be a lifting to Pg
of the map Pg — N (which exists because Py is projective). Let A be the composition
Py —> L — M in the diagram. Define

n:P®Po>M by mx,y) =Ax)+pui).

Show that with this definition the first two nonzero rows of (11) form a commutative
diagram.
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10.

11.

12.
13.
14.

Sec.

. Let0O> A5 B —ﬁ> C — 0 be a short exact sequence of cochain complexes. Prove that

if any two of A, B, C are exact, then so is the third. [Use Theorem 2.]

. Prove that a finitely generated abelian group A is free if and only if Ext! (A, Z) =
. Prove thatif 0 > L - M — N — 0is a split short exact sequence of R-modules, then

for every n > 0 the sequence 0 — Exty(N, D) — Exty(M, D) — Exty(L, D) — Ois
also short exact and split. [Use a sphtung homomorphism and Proposition 5.]

. Show that

0 —> Z/dZ —> ZmZ > Z/mz ™S 2/mz > Z/m2 ™15 -

is an injective resolution of Z/dZ as a Z/mZ-module. [Use Proposition 36 in Section
10.5.] Use this to compute the groups Ext; /mZ(A’ Z/dZ) in terms of the dual group

Homgz/mz(A, Z/mZ). In particular, if m = p? andd = p, give another derivation of the
result Exty, 102 (Z/pZ,Z/pZ) = Z[pZ.

(a) Prove that an arbitrary direct sum @;¢s P; of projective modules P; is projective and
that an arbitrary direct product [ jes Qj of injective modules Q; is injective.

(b) Prove that an arbitrary direct sum of projective resolutions is again projective and use
this to show Ext}, (®ies Ai, B) = [];¢; Ext}(A;, B) for any collection of R-modules
A; (i € I). [cf. Exercise 12 in Section 10.5.]

(c) Prove that an arbitrary direct product of injective resolutions is an injective resolution
and use this to show Exty (A, []jc; Bj) = [[jc; Extgk (A, B;) for any collection of
R-modules B; (j € J). [cf. Exercise 12 in Section 10. 5 ]

(d) Prove that TorR (A, ®jeyBj) = ®jesTork (A, Bj) for any collection of R-modules
B; (j € J).

(Bass’ Characterization of Noetherian Rings) Suppose R is a commutative ring.

(a) If R is Noetherian, and 7 is any nonzero ideal in R show that the image of any R-
module homomorphism f : I — @;e7Q; from [ into a direct sum of injective
R-modules Qj (j € J) is contained in some finite direct sum of the Q;.

(b) If R is Noetherian, prove that an arbitrary direct sum @;¢ 7 Q; of injective R-modules
is again injective. [Use Baer’s Criterion (Proposition 36) and Exercise 4 in Section
10.5 together with (a).]

(c) Letl; € I, C ... beanascending chain of ideals of R withunion/ andlet/I; — Q;
fori =1, 2,... beaninjection of the quotient ///; into aninjective R-module Q; (by
Theorem 38 in Section 10.5). Prove that the composition of these injections with the
product of the canonical projection maps I — I; gives an R-module homomorphism
1> ®i=12,..0i.

(d) Prove the converse of (b): if an arbitrary direct sum @ je 7 Q; of injective R-modules
is again injective then R is Noetherian. [If the direct sum in (c) is injective, use Baer’s
Criterion to lift f to ahomomorphism F : R — ®;=1,2,..Q;. If the component of
F(1)in Q;isOfori > n prove that I = I, and the ascending chain of ideals is finite.]

Prove Proposition 13: Tor(I)e (D, A) = D ®g A. [Follow the proof of Proposition 3.]
Prove Proposition 16 characterizing flat modules.

Suppose 0 - A - B — C — 0 is a short exact sequence of R-modules. Prove that if
C is a flat R-module, then A is flat if and only if B is also flat. [Use the Tor long exact
sequence.] Give an example to show that if A and B are flat then C need not be flat.

17.1  Introduction to Homological Algebra—Ext and Tor 793



15. (a) If I is an ideal in R and M is an R-module, prove that Torf (M, R/I) is isomorphic

16.

17.

18.

19

D

20.

21.

22

.

to the kernel of the map M ®g I — M that maps m ® i to mi fori € I andm € M.
[Use the Tor long exact sequence associatedto0 — I - R — R/I — 0 noting that
R is flat.]

(b) (A Flatness Criterion using Tor) Prove that the R-module M is flat if and only if
Torf (M, R/I) = O for every finitely generated ideal I of R. [Use Exercise 25 in
Section 10.5.]

Suppose R is a PI.D. and A and B are R-modules. If ¢ (B) denotes the torsion submodule
of B show that Torf(A, t(B)) = Torf(A, B) and deduce that Torf (A, B) is isomorphic
to Torf (t(A), t(B)). [Use Exercise 26 in Section 10.5 to show that B/t(B) is flat over
R, then use the Tor long exact sequence with D = A applied to the short exact sequence
0 - t(B) > B — B/t(B) — 0 and the remarks following Proposition 16.]

Let A=Z/27Z.®Z/3Z.& Z/AZ @ - - -. Prove that Ext!(A, B) = (B/2B) x (B/3B) x
(B /4B) x - - - for any abelian group A. [Use Exercise 10.] Prove that Extl(A, B) = 0 if
and only if B is divisible.

Prove that Z /27 is a projective Z/6Z-module and deduce that TorIZ/ 62 (2/22,7./27) = 0.

Suppose r # 0 is not a zero divisor in the commutative ring R.

(a) Prove that multiplication by r gives a free resolution 0 - R 5 R—> R/rR - 0of
the quotient R/rR.

(b) Prove that Ext%(R/rR, B) = ,B is the set of elements b € B with rb = 0, that
Ext}Q(R/rR, B) = B/rB, and that Ext,(R/rR, B) = 0 forn > 2 for every R-
module B.

(c) Provethat Torf(A, R/rR) = A/rA, thatTorR (A, R/rR) = ,A is the set of elements
a € A withra = 0, and that Tor,’f(A, R/rR) =0 for n > 2 for every R-module A.

Prove that Tor>/ "%(A, Z/dZ) = A/d A, that Tor>/ "*(A, Z,/dZ) = 4A/(m/d)A for n 0dd,

n > 1, and that Tor,,Z/ mZ(A, Z[/dZ) = (n ayA/dA forn even, n > 2. [Use the projective

resolution in Example 2 following Proposition 3.]

Let R = k{x, y] where k is a field, and let I be the ideal (x, y) in R.

(@ Leta : R - R? bethe map a(r) = (yr,—xr) and let 8 : R2 — R be the map
B((r1,r2)) = rix + ry. Show that

0>RSRELER S0

where the map R — R/I = k is the canonical projection, gives a free resolution of k
as an R-module.
(b) Use the resolution in (a) to show that Tor§ k. k) = k.
(c) Prove that Torf (k, I) = k. [Use the long exact sequence corresponding to the short
exact sequence 0 > I - R — k — 0 and (b).}
(d) Conclude from (c) that the torsion free R-module I is not flat (compare to Exercise
26 in Section 10.5).
(Flat Base Change for Tor) Suppose R and S are commutative ringsand f : R — Sisa
ring homomorphism making § into an R-module as in Example 6 following Corollary 12
in Section 10.4. Prove thatif S is flat as an R-module, then Tor,’f(A, B) = Torf (S®RrA, B)
for all R-modules A andall S-modules B. [Show thatsince S is flat, tensoring an R-module
projective resolution for A with S gives an S-module projective resolution of S ®g A.]
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23. (Localization and Tor) Let DR be the localization of the commutative ring R with
respect to the multiplicative subset D of R. Prove that localization commutes with Tor,
i.e., D~1Tor® (A, B) = Tor? 'R(D~'A, D~'B) for all R-modules A and B and all n > 0.
[Use the previous exercise and the fact that D~ IR is flat over R, cf. Proposition 42(6) in
Section 15.4.]

24. (Flamess is local) Suppose R is a commutative ring. Prove that an R-module M is flat if
and only if every localization M p is a flat R p-module for every maximal (hence also for
every prime) ideal in R. [Use the previous exercise together with the characterization of
flatness in terms of Tor.]

25. If R is an integral domain with field of fractions F, prove that Torf (F/R, B) = t(B) for
any R-module B, where t(B) denotes the R-torsion submodule of B.

An R-module M is said to be finitely presentedifthere is an exact sequence
RR—R M0

of R-modules for some integers s and ¢. Equivalently, M is finitely generated by ¢ elements
and the kernel of the corresponding R-module homomorphism R’ — M can be generated by
s elements.

26. (a) Prove that every finitely generated module over a Noetherian ring R is finitely pre-
sented. [Use Exercise 8 in Section 15.1.]
(b) Prove that an R-module M is finitely presented and projective if and only if M is a
direct summand of R” for some integer n > 1.

27. Suppose that M is a finitely presented R-module and that 0 — A 5B £ M — Ois
an exact sequence of R-modules. This exercise proves that if B is a finitely generated
R-module then A is also a finitely generated R-module.

(a) Suppose R® ilf» R' %5 M - 0and el, ..., e is an R-module basis for R'. Show that
there exist by, ..., b, € B so that 8(b;) = ¢(e;) fori =1,...,¢.

(b) If f is the R-module homomorphism from R’ to B defined by f(e;) = b; for
i=1,...,t,show that f(¢¥(R®)) C ker B. [Use ¢ o ¥ = 0.] Conclude that there is
a commutative diagram

RR——>R—>M—>0

b, |

0——A—>B——>M—>0
of R-modules with exact rows.
(c) Provethat A/image g = B/image f and use this to provethat A is finitely generated.
[For the isomorphism, use the Snake Lemma in Exercise 3. Then show that image g
and A/image g are both finitely generated and apply Exercise 7 of Section 10.3.]
(d) If I is anideal of R conclude that R/1 is a finitely presented R-module if and only if
I is a finitely generated ideal.

28. Suppose R is a local ring with unique maximal ideal m and M is a finitely presented
R-module. Suppose m1, ..., mg are elements in M whose images in M/mM form a basis
for M/mM as a vector space over the field R/m.

(a) Prove that my, ..., ms generate M as an R-module. [Use Nakayama’s Lemma.]

(b) Conclude from (a) that there is an exact sequence 0 — ker¢ — R*® 4 M = 0that
maps a set of free generators of R* to the elements m1, . .., mg. Deduce that there is
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an exact sequence
Torf (M. R/m) —> (ker ¢)/m(ker ) —> 0.

[Use the Tor long exact sequence with respect to tensoring with R /m, using the fact
that N ® R/m = N /mN for any R-module N (Example 8 following Corollary 12 in
Section 10.4] and the fact that ¢ : (R/m)* = M/mM is an isomorphism by the choice
ofmy,...,ms.]

(c) Provethatif Torf (M, R/m) = Othenm,, ..., ms areasetof free R-module generators
for M. [Use the previous exercise and Nakayama’s Lemma to show that ker ¢ = 0.]

29. Suppose R is a local ring with unique maximal ideal m. This exercise proves that a finitely

generated R-module is flat if and only if it is free.

(a) Prove that M = F/K is the quotient of a finitely generated free module F by a
submodule K with K € mF. [Let F be a free module with F/mF = M/mM ]

(b) Suppose x € K and write x = aje; + --- + ane, where ey, ..., e, are an R-basis
for F. LetI = (ay,...,a,) be the ideal of R generated by ay, ..., a,). Prove that
if M is flat, then I = mI and deduce that K = 0, so M is free. [Use Exercise 25(d)
of Section 10.5 to see that x € 1K € m/F and conclude that I € m/. Then apply
Nakayama’s Lemma to the finitely generated ideal 1.]

30. Suppose R is a local ring with unique maximal ideal m, M is an R-module, and consider
the following statements:
() M is a free R-module,
(ii) M is a projective R-module,
(iii) M is a flat R-module, and
(iv) TorR(M, R/m) =0.

(a) Prove that (i) implies (ii) implies (iii) implies (iv).

(b) Prove that (i), (ii), and (iii) are equivalent if M is finitely generated. (Exercise 34
below shows (iii) need notimply (i) or (ii) if M is finitely generated but R is not local.)
[Use the previous exercise.]

(c) Prove that (i), (ii), (iii), and (iv) are equivalent if M is finitely presented. (Exercise
35 below shows that (iv) need not imply (i), (ii) or (iii) if M is finitely generated but
not finitely presented.) [Use Exercise 28.]

Remark: It is a theorem of Kaplansky (cf. Projective Modules, Annals of Mathematics,
68(1958), pp. 372-377) that (i) and (ii) are equivalent without the condition that M be
finitely generated.

31. (Localization and Hom for Finitely Presented Modules) Suppose D~ IR is the localization
of the commutative ring R with respect to the multiplicative subset D of R, and let M be

a finitely presented R-module.

(a) For any R-modules A and B prove there is a unique D~'R-module homomorphism
from D~!'Homg (A, B) to Homp-1z(D~'A, D~'B) that maps ¢ € Homg(A, B) to
the homomorphism from D~1A to DB induced by ¢.

(b) For any R-module N and any m > 1 show that Homg (R™, N) = N™ as R-modules
and deduce that D~ 'Homg(R™, N) = (D~ IN)™ as D~!R-modules.

(¢) Suppose R® —> R' —> M — 0 is exact. Prove there is a commutative diagram

0— D !'Homg(M,N) — D 'Homg(R!, N) — D 'Homg(R®, N)

l

0 —Homp-1g(D~M, D~IN) = Homy-1r((D™'R)!, D~'N) =Homp 1z ((D~'R)*,D~'N)
of D™1R-modules with exact rows. [For the first row first take R-module homomor-

796 Chap. 17  Introduction to Homological Algebra



phisms from the terms in the presentation for M into N using Theorem 33 of Section
10.5 (noting the first comment in the proof) and then tensor with the flat R-module
DR, cf. Propositions 41 and 42(6) in Section 15.4. For the second row first ten-
sor the presentation with D~!R and then take D~'R-module homomorphisms into
D7IN]

(d) Use (b) to prove that localization commutes with taking homomorphisms when M
is finitely presented, i.e., D 'Homg(M, N) = Homp-1z (D~M, D~'N) as D IR-
modules. [Show the second two vertical maps in the diagram above are isomorphisms
and deduce that the left vertical map is also an isomorphism.] (This result is not true
in general if M is not finitely presented.)

32. (Localization and Ext for Finitely Presented Modules) Suppose DR is the localization
of the commutative ring R with respect to the multiplicative subset D of R. Prove that
if M is a finitely presented R-module then D~'Ext}(M, N) = Ext}_,.(D~'M, D~'N)
as D~ !R-modules for every R-module N and every n > 0. [Use a projective resolution
of N and the previous exercise, noting that tensoring the resolution with DR gives a
projective resolution for the D~!'R-module D~IN.]

33. Suppose R is a commutative ring and M is a finitely presented R-module (for example a
finitely generated module over a Noetherian ring, or a quotient, R/I, of R by a finitely
generated ideal /, cf. Exercises 26 and 27). Prove that the following are equivalent:

(a) M is a projective R-module,

(b) M is aflat R-module,

(c) M is locally free, i.e., each localization Mp is a free R p-module for every maximal
(hence also for every prime) ideal P of R.

In particular show that finitely generated projective modules are the same as finitely pre-
sented flat modules. [Exercises 24 and 30 show that (b) is equivalent to (c). Use the Ext
criterion for projectivity and Exercises 30 and 32 to see that (a) is equivalent to (c).]

34. (a) Prove that every R-module for the commutative ring R is flat if and only if every
finitely generated ideal I of R is a direct summand of R, in which case every finitely
generated ideal of R is principal and projective (such aring is said to be absolutely flat).
[Use Exercise 15, the previous exercise applied to the finitely presented R-module
R/ 1, and the remarks following Proposition 16.]

(b) Prove that every Boolean ring is absolutely flat. [Use Exercise 24 in Section 7.4,
noting that if / = Rx then x is an idempotent so R = Rx & R(1 — x).]

(c) Let R be the direct product and 7 the direct sum of countably many copies of Z/2Z.
Prove that I is an ideal of the Boolean ring R that is not finitely generated and that
the cyclic R-module M = R/I is flat but not projective (so finitely generated flat
modules need not be projective).

35. Let R bethelocal ring obtained by localizing the ring of C* functions on the openinterval
(—1, 1) at the maximal ideal of functions that are 0 at x = O (cf. Exercise 45 of Section
15.2), let m = (x) be the unique maximal ideal of R and let P be the prime ideal N,;>1m".
Set M = R/P.

(a) Prove that Torf (M, R/m) = 0. [Use Exercise 19 applied with r = x, noting that
R/ P is an integral domain.]

(b) Prove that M is not flat (hence not projective). [Let F be as in Exercise 45 of Section
15.2. Show thatthesequence) - R - R — R/(F) — 0induced by multiplication
by F is exact, but is not exact after tensoring with M.]
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17.2 THE COHOMOLOGY OF GROUPS

In this section we consider the application of the general techniques of the previous
section in an important special case.
Let G be a group.

Definition. An abelian group A on which G acts (on the left) as automorphisms is
called a G-module.

Note that a G-module is the same as an abelian group A and a homomorphism
¢ : G = Aut(A) of G into the group of automorphisms of A. Since an abelian group
is the same as a module over Z, it is also easy to see that a G-module A is the same as
a module over the integral group ring,ZG, of G with coefficients in Z. When G is an
infinite group the ring ZG consists of all the finite formal sums of elements of G with
coefficients in Z.

As usual we shall often use multiplicative notation and write ga in place of g-a for
the action of the element g € G on the element a € A.

Definition. If A is a G-module, let A = {a € A | ga = aforallg € G} be the
elements of A fixed by all the elements of G.

Examples

(1) If ga =aforalla € A and g € G then G is said to act trivially on A. In this case
AC = A. The abelian group Z will always be assumed to have trivial G-action for
any group G unless otherwise stated.

(2) For any G-module A the fixed points A® of A under the action of G is clearly a
ZG-submodule of A on which G acts trivially.

(3) If V is a vector space over the field F of dimension n and G = GL,(F) then V is
naturally a G-module. In this case V¢ = {0} since any nonzero element in V can be
taken to any other nonzero element in V by some linear transformation.

(4) A semidirect product E = A x G as in Section 5.5 in the case where A is an abelian
normal subgroup gives a G-module A where the action of G is given by the homo-
morphism ¢ : G — Aut(A). The subgroup AC consists of the elements of A lying
in the center of E. More generally, if A is any abelian normal subgroup of a group
E, then E acts on A by conjugation and this makes A into a E-module and also an
E/A-module. In this case A¥ = A¥/4 also consists of the elements of A lying in the
center of E.

(5) If K/F is an extension of fields that is Galois with Galois group G then the additive
group K is naturally a G-module, with K¢ = F. Similarly, the multiplicative group
K> of nonzero elements in K is a G-module, with fixed points (K<) = F*.

The fixed point subgroups in this last example played a central role in Galois Theory
in Chapter 14. In general, it is easy to see that a short exact sequence
0—>A—>B—>C—0
of G-modules induces an exact sequence
0— A° — B — C° (17.15)
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that in general cannot be extended to a short exact sequence (in general a coset in the
quotient C that is fixed by G need not be represented by an element in B fixed by G).
One way to see that (15) is exact is to observe that A® can be related to a Hom group:

Lemma 19. Suppose A is a G-module and Homgz; (Z, A) is the group of all ZG-module
homomorphisms from Z (with trivial G-action) to A. Then A® = Homz(Z, A).

Proof: Any G-module homomorphism ¢ from Z to A is uniquely determined by
its value on 1. Let ¢, denote the G-module homomorphism with (1) = a. Since ¢, is
a G-module homomorphism,a = o,(1) = a,(g- 1) = g-a,(1) = g-aforallg € G,
so that @ must lie in A®. Likewise, for any a € AC it is easy to check that the map
a, > a gives an isomorphism from Homz (Z, A) to AC.

Combined with the results of the previous section, the lemma not only shows that
the sequence (15) is exact, it shows that any projective resolution of Z considered as
a ZG-module will give a long exact sequence extending (15). One such projective
resolution is the standard resolution or bar resolution of Z:

s Py S Fy s S RSz (17.16)
Here F,, = Z.G ®7 ZG Qz - - - @z Z.G (Where there are n + 1 factors) for n > 0, which
is a G-module under the action defined on simple tensors by g-(go ® g1 ® -+ - ® g,) =
(880) ® 81 ®- - - ® g,. Itis not difficult to see that F,, is a free ZG-module of rank |G|"
with ZG basis given by the elements 1 ® g1 @ g2 ® - - - ® gn, Wwhere g; € G. The map
aug : Fy — Z is the augmentation map aug(3_,.; @8 = 3, - and the map d,
is given by d1(1 ® g) = g — 1. The maps d,, for n > 2 are more complicated and their
definition, together with a proof that (16) is a projective (in fact, free) resolution can be
found in Exercises 1-3.

Applying (ZG-module) homomorphisms from the termsin (16) to the G-module A
(replacing the first term by 0) as in the previous section, we obtain the cochain complex

0 —> Homzg (Fo, A) 2 Homgzg (Fi, A) 2> Homzg (Fy, A) -2 - -+, (17.17)

the cohomology groups of which are, by definition, the groups Ext,,(Z, A). Then, as
in Theorem 8§, the short exact sequence 0 — A — B —> C —> 0 of G-modules
gives rise to a long exact sequence whose first terms are given by (15) and whose higher
terms are the cohomology groups Exty .(Z, A).

To make this more explicit, we can reinterpret the terms in this cochain complex
without explicit reference to the standard resolution of Z, as follows. The elements
of Homgz (F,, A) are uniquely determined by their values on the ZG basis elements
of F,, which may be identified with the n-tuples (g1, g2, - . ., g,) of elements g; of G.
It follows for n > 1 that the group Homgz (F,, A) may be identified with the set of
functions from G x - - - x G (n copies) to A. For n = 0 we identify Homz (ZG, A)
with A.

Definition. If G is a finite group and A is a G-module, define C 0(G, A) = A and for

n > 1 define C"(G, A) to be the collection of all maps from G" = G x --- x G (n
copies) to A. The elements of C"(G, A) are called n-cochains (of G with values in A).

Sec. 17.2  The Cohomology of Groups 799



Each C"(G, A) is an additive abelian group: for C%(G, A) = A given by the
group structure on A; for n > 1 given by the usual pointwise addition of functions:

(fl + fZ)(gl’ 82s 440 gn) = fl(gls 82,---, gn) + f2(g], 82,---» gn)' Under the iden_
tification of Homzg (F,,, A) with C"(G, A) the cochain maps d,, in (17) can be given
very explicitly (cf. also Exercise 3 and the following comment):

Definition. Forn > 0, define the n coboundary homomorphism from C"(G, A) to
C"1(G, A) by

dn(f)81, -1 8ns1) = 81- f(825---, &ns1)
+ Z(_l)if(gl, ey 8ie1s 8i&it1s Bit2s + -+ s Entl)
i=1

+ D" f e, 80) (17.18)

where the product g; g;+1 occupying the i position of f is taken in the group G.

It is immediate from the definition that the maps d,, are group homomorphisms. It
follows from the fact that (17) is a projective resolution thatd,, od,_; = Oforn > 1 (a
self contained direct proof just from the definition of d,, above can also be given, but is
tedious).

Definition.
(1) Let Z"(G, A) = kerd, forn > 0. The elements of Z"(G, A) are called n-
cocycles.
(2) Let B"(G, A) = imaged,_; forn > 1 and let B°(G, A) = 1. The elements of
B" (G, A) are called n-coboundaries.

Since d,, od,—; = Oforn > 1 we have imaged,_; C kerd,, so that B"(G, A) is
always a subgroup of Z" (G, A).

Definition. For any G-module A the quotient group Z" (G, A)/B" (G, A) is called the
n'® cohomology group of G with coefficients in A and is denoted by H" (G, A), n > 0.

The definition of the cohomology group H" (G, A) in terms of cochains will be
particularly useful in the following two sections when we examine the low dimensional
groups H'(G, A) and H%(G, A) and their application in a variety of settings. It should
be remembered, however, that H"(G, A) = Ext"(Z, A) for alln > 0. In particular,
these groups can be computed using any projective resolution of Z.

Examples

(1) For f = a € CY%G, A) we have dy(f)(g) = g-a — a and so kerdy is the set
{a€ A|g-a=aforall g € G},ie., Z°%G. A) = AC and so

HY(G, A) = A“,
for any group G and G-module A.
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(2) Suppose G = 1 is the trivial group. Then G" = {(1, 1, ..., 1)} is also the trivial group,
so f € C"(G, A) is completely determined by f(1,1,...,1) = a € A. Identifying
f = a we obtain C*(G, A) = A foralln > 0. Then, if f =a € A,

0 ifniseven
1 ifnisodd ’
sod, = 0ifn is even and d,, = 1 is the identity if n is odd. Hence
H°1,A=4%=4
H"(1,A) =0foralln > 1.

(A1, D =a+ Y (~Dia+ (—1y™+a = [
i=1

Example: (Cohomology of a Finite Cyclic Group)
Suppose G is cyclic of order m with generatoro. Let N = 1 +0 +0%+---+ 0™ ! € ZG.
Then N(o — 1) = (0 — 1)N = 0™ — 1 = 0, and so we have a particularly simple free

resolution

Y e BN 7ol SN Fo i 3 T Tt &) SN

where aug denotes the augmentation map (cf. Exercise 8). Taking ZG-module homomor-
phisms from the terms of this resolution to A (replacing the first term by 0) and using the
identification Homzg (ZG, A) = A gives the chain complex

-1 —
0—>AU—>A—£>AU—1 —N>

whose cohomology computes the groups H" (G, A):

AC/NA ifniseven, n > 2

NA/(c —1)A ifnisodd,n >1

where yA = {a € A | Na = 0} is the subgroup of A annihilated by N, since the kernel of
multiplication by o — 1is AC.

If in particular G = (o) acts trivially on A, then N-a = ma, so that in this case
H%G, A) = A, with H"(G, A) = A/mA forevenn > 2, and H"(G, A) = A, the
elements of A of order dividing m, forodd n > 1. Specializing even further to m = 1 gives
Example 2 previously.

H°(G, A) = A®, and H" (G, A) = {

Proposition 20. Suppose mA = 0 for some integer m > 1 (i.e., the G-module A has
exponent dividing 7 as an abelian group). Then

mZ" (G, A) =mB"(G,A) =mH"(G,A) =0 foralln > 0.
In particular, if A has exponent p for some prime p then the abelian groups Z" (G, A),

B"(G, A) and H"(G, A) have exponent dividing p and so these groups are all vector
spaces over the finite field F, = Z/ pZ.

Proof: If f € C"(G, A) is an n-cochain then f € A (if n = 0), in which case
mf =0, or f is a function from G” to A (if n > 1), in which case mf is a function
from G" tomA = 0, so again mf = 0. Hence mZ" (G, A) = mB"(G, A) = 0 since
these are subgroups of C"(G, A). Then mH" (G, A) = 0 since mZ"(G, A) = 0, and
the remaining statements in the proposition are immediate.

By Example 1, the long exact sequence in Theorem 10 written in terms of the
cohomology groups H" (G, A) becomes

Sec. 177.2  The Cohomology of Groups 801



Theorem 21. (Long Exact Sequence in Group Cohomology) Suppose
0—>A—>B—>C—0

is a short exact sequence of G-modules. Then there is a long exact sequence:

0 — A° — B% — ¢ % H'(G, A) — H'(G,B) — HY(G,C) = - --
2% H"(G, A) — H"(G, B) — H"(G.C) -> H"*\(G, A) —> - - -

of abelian groups.

Among many other uses of the long exact sequence in Theorem 21 is a technique
called dimension shifting which makes it possible to analyze the cohomology group
H"+1(G, A) of dimension n + 1 for A by instead considering a cohomology group of
dimension » for a different G-module. The technique is based on finding a G-module
almost all of whose cohomology groups are zero. Such modules are given a name:

Definition. A G-module M is called cohomologically trivial for G if H"(G, M) =0
foralln > 1.

Corollary 22. (Dimension Shifting) Suppose 0 > A —> M — C — 0is a short exact
sequence of G-modules and that M is cohomologically trivial for G. Then there is an
exact sequence

0— A° — M° — c°® — HY(G,A) — 0

and
H"(G, A) = H"(G, C) foralln > 1.

Proof: Since M is cohomologically trivial for G, the portion
H"(G, M) — H"(G,C) — H"'\(G, A) — H"'Y(G, M)
of the long exact sequence in Theorem 21 reduces to
0 — H"(G,C) — H"*Y(G,A) — 0

which shows that H"(G, C) = H"*!(G, A) for n > 1. Similarly, the first portion of
the long exact sequence in Theorem 21 gives the first statement in the corollary.

We now indicate a natural construction that produces a G-module given a module
over a subgroup H of G. When H = 1 is the trivial group this construction produces
a cohomologically trivial module M and an exact sequence as in Corollary 22 for any
G-module A.
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Definition. If H is a subgroup of G and A is an H-module, define the induced G-
module M$(A) to be Homzy(ZG, A). In other words, M§(A) is the set of maps f
from G to A satisfying f(hx) = hf(x) foreveryx € Gand h € H.

The action of anelement g € Gon f € MS(A) is givenby (g- f)(x) = f(xg) for
x € G (cf. Exercise 10 in Section 10.5).

Recall that if H is a subgroup of G and A is an H-module, then the module
ZG ®zy A obtained by extension of scalars from ZH to ZG is a G-module. For a finite
group G, or more generally if H has finite index in G, we have Mg (A) EZGQzy A (cf.
Exercise 10). When G is infinite this need no longer be the case (cf. Exercise 11). The
module ZG ®zy A is sometimes called the induced G-module and the module M,‘j (A)
is sometimes referred to as the coinduced G-module. For finite groups, associativity
of the tensor product shows that M,G, M ,’{ (A)) = M,? (A) for subgroups K < H < G,
and the same result holds in general (this follows from the definition using Exercise 7).

Examples

(@) If H isasubgroupof Gand0 - A - B — C — 0 is a short exact sequence of
H-modules then 0 — Mg (A) » MS(B) - Mg (C) — 0O is a short exact sequence
of G-modules, since Mg(A) = ZG ®zy A and ZG is free, hence flat, over ZH.

(2) When G is finite and A is the trivial H-module Z, the module Mg (Z) is a free Z-
module of rank m = |G : H|. There is a basis by, ..., b, such that G permutes
these basis elements in the same way it permutes the left cosets of H in G by left
multiplication, i.e., if we let b; <> g; H then gb; = b; if and only if gg; H = g; H. The
module Mg (Z) is the permutation module over Z for G with stabilizer H. A special
case of interest is when G = S,, and H = S,,—; where S,, permutes {1, 2, ..., m} as
usual. Permutation modules and induced modules over fields are studied in Part V1.

(3) Any abelian group A is an H-module when H = 1 is the trivial group. The corre-
sponding induced G-module M IG (4) is just the collection of all maps f from G into
A . ForgeGthemapg-f € MIG(A) satisfies (g- f)(x) = f(xg) forx € G.

(4) Suppose A is a G-module. Then there is a natural map

¢:A— MP(A)

from A into the induced G-module M IG (A) in the previous example defined by mapping
a € A to the function f, with f,(x) = xa for all x € G. Itis clear that ¢ is a group
homomorphism, and fg,(x) = x(ga) = (xg)a = f,(xg) = (g- fa)(x) shows that ¢ is
a G-module homomorphism as well. Since f,(1) = a, it follows that f, is the zero
function on G if and only if a = 0 in A, so that ¢ is an injection. Hence we may
identify A as a G-submodule of the induced module MIG (A).

(5) More generally, if A is a G-module and H is any subgroup of G then the function
Ja(x) in the previous example is an element in the subgroup Mg(A) since we have
fa(hx) = (hx)(a) = h(xa) = hfa(x) for al h € H. The associated map from A to
Mg (A) is an injective G-module homomorphism.

(6) The fixed points (Mg(A))G are maps f from G to A with gf = f forall g € G, i.e,,
with (gf)(x) = f(x) forall g, x € G. By definition of the G-action on MS(A), this
is the equation f(xg) = f(x)forall g, x € G. Taking x = 1 shows that f is constant
on all of G: f(g) = f(1) = a € A. The constant function f = a is an element of
M§(A)ifand only ifa = f(hx) = hf(x) = haforall h € H, so (M§(A))C = AH.
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Anelement f,(x) in the previous example is contained in the subgroup (M g (A)C if
and only if xa is constant for x € G, i.e., if and only ifa € AG.

One of the important properties of the G-module M§; (A) induced from the H-
module A is that its cohomology with respect to G is the same as the cohomology of A
with respect to H:

Proposition 23. (Shapiro’s Lemma) For any subgroup H of G and any H-module A
we have H"(G, M§ (A)) = H"(H, A) forn > 0.

Proof: Let--- - P, > --- > Py > Z — 0 be a resolution of Z by pro-
jective G-modules (for example, the standard resolution). The cohomology groups
H"(G, Mg (A)) are computed by taking homomorphisms from this resolution into
Mg(A) = Homgzy (ZG, A). Since ZG is a free ZH-module it follows that this G-
module resolution is also a resolution of Z by projective H-modules, hence by taking
homomorphisms into A the same resolution may be used to compute the cohomol-
ogy groups H"(H, A). To see that these two collections of cohomology groups are
isomorphic, we use the natural isomorphism of abelian groups

& : Homzg(P,, Homzy (ZG, A)) = Homgy (P, A)

given by @(f)(p) = f(p)(1), for all f € Homzc(P,, Homzy(ZG, A))and p € P,.
The inverse isomorphism is defined by taking W ( f')(p) to be the map from ZG to A that
takes g € G to the element f’(gp) in A forall f' € Homzy(P,, A) and p € P, i.e.,
P (f)(p))(g) = f'(gp). Note this is well defined because P, is a G-module. (These
maps are a special case of an Adjoint Associativity Theorem, cf. Exercise 7.) Since
these isomorphisms commute with the cochain maps, they induce isomorphisms on the
corresponding cohomology groups, i.e., H"(G, M5 (A)) = H"(H, A), as required.

Corollary 24. For any G-module A the module M{ (A) is cohomologically trivial for
G,ie., H(G, MZ(A)) =O0forall n > 1.

Proof: This follows immediately from the proposition applied with H = 1 together
with the computation of the cohomology of the trivial group in Example 2 preceding
Proposition 20.

By the corollary, the fourth example above gives us a short exact sequence of
G-modules

0—wAS5M—>C—0

where M = MF (A) is cohomologically trivial for G and where C is the quotient of
MP (A) by the image of A. The dimension shifting result in Corollary 22 then becomes:

Corollary 25. For any G-module A we have H"t!(G, A) = H"(G, MIG(A)/A) for
alln > 1.
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We next consider several important maps relating various cohomology groups.
Some applications of the use of these homomorphisms appear in the following two
sections. -

In general, suppose we have two groups G and G’ and that A is a G-module and
A’ is a G’-module. If ¢ : G’ — G is a group homomorphism then A becomes a
G’-module by defining g'-a = ¢(g')aforg’ € G’ anda € A. Ifnow ¢y : A —> A’
is a homomorphism of abelian groups then we consider whether ¢ is a G’-module
homomorphism:

Definition. Suppose A is a G-module and A’ is a G’-module. The group homo-
morphisms ¢ : G’ — G and ¥y : A — A are said to be compatible if  is a
G’-module homomorphism when A is made into a G’-module by means of ¢, i.e., if
Y (p(gha) = g'¥(a) forall g’ € G’ and a € A.

The point of compatible homomorphisms is thatthey induce group homomorphisms
on associated cohomology groups, as follows.

Ifo:G" — Gandy : A > A’ are homomorphisms, then ¢ induces a homomor-
phism ¢" : (G’)* - G", and so a homomorphism from C"(G, A) to C"*(G’, A) that
maps f to f o¢". The map 9 induces a homomorphism from C"(G’, A) to C"(G’, A")
that maps f to ¢ o f. Taken together we obtain an induced homomorphism

A i CY(G,A) — C' (G, A)
fr— Yo fog".

If in addition ¢ and y are compatible homomorphisms, then it is easy to check that
the induced maps A,, commute with the coboundary operator:

An_'_l Odn = dn OAn

for all n > 0. It follows that A, maps cocycles to cocycles and coboundaries to
coboundaries, hence induces a group homomorphism on cohomology:

At HY(G,A) — H"(G', A")

forn > 0.
We consider several instances of such maps:

Examples
(1) Suppose G = G’ and ¢ is the identity map. Then to say that the group homomorphism
¥ : A > A’is compatible with ¢ is simply the statement that { is a G-module
homomorphism. Hence any G-module homomorphismfrom A to A’ induces a group
homomorphism

H"(G,A) — H"(G,A") forn=>0.

In particular, if 0 > A - B — C — 0 is a short exact sequence of G-modules we
obtain induced homomorphisms from H" (G, A) to H" (G, B) and from H" (G, B) to
H"(G, C)forn > 0. These are simply the homomorphisms in the long exact sequence
of Theorem 21.

(2) (The Restriction Homomorphism)If Ais a G-module, then A is also an H-module for
any subgroup H of G. The inclusion map ¢ : H — G of H into G and the identity
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map ¥ : A — A are compatible homomorphisms. The corresponding induced group
homomorphism on cohomology is called the restriction homomorphism:

Res: H*(G, A) — H"(H,A), n>0.

The terminology comes from the fact that the map on cochains from C"(G, A) to
C"(H, A) is simply restricting a map f from G" to A to the subgroup H" of G".

(3 (The Inflation Homomorphism) Suppose H is a normal subgroup of G and A is a
G-module. The elements A of A that are fixed by H are naturally a module for the
quotient group G/ H under the action defined by (g H)-a = g-a. It is then immediate
that the projection ¢ : G - G/H and the inclusion ¥ : A” — A are compatible
homomorphisms. The corresponding induced group homomorphism on cohomology
is called the inflation homomorphism:

Inf: H"(G/H, A”) — H™(G,A), n>0.

(4) (The Corestriction Homomorphism) Suppose that H is a subgroup of G of index m
and that A is a G-module. Let gj, ..., gm be representatives for the left cosets of H
in G. Define a map

m
VviMG@A)— A by  fr— Y g f(g ).

i=1
Note that if we change any coset representative g; by g;h, then (gih) f((gih)™!) =
gihf(h_lgi—l) = gihh™1f(g7") = gif(g; ") so the map y is independent of the
choice of coset representatives. It is easy to see that i is a G-module homomor-
phism (and even that it is surjective), so we obtain a group homomorphism from
H"(G, MS(A)) to H"(G, A), foralln > 0. Since A is also an H-module, by Shapiro’s
Lemma we have an isomorphism H" (G, M g(A)) = H"(H, A). The composition of
these two homomorphisms is called the corestriction homomorphism:

Cor : H"(H, A) — H"(G,A), n=>0.

This homomorphism can be computed explicitly by composing the isomorphism ¥
in the proof of Shapiro’s Lemma for any resolution of Z by projective G-modules P,
(note these are G-modules and not simply H-modules) with the map v, as follows.
Foracocycle f € Homzy (P,, A) representing a cohomology class c € H"(H, A), a
cocycle Cor (f) € Homzg (P, A) representing Cor (c) € H" (G, A) is given by

m m
Cor (f P =Y & -W(NPNgH =) &fg " p.
i=1 i=1
for p € P,. When n = 0 this is particularly simple since we can take Py = ZG. In

this case f € Homzy (ZG, A) = Mg(A) is a cocycle if f = a is constant for some
a € A and then Cor (f) is the constant function with value Yii,gi-a€ AC:

Cor : HO(H, A) = A¥ — AS = H°(G, A)
m
ar— Zgi -a.
i=1

The next result establishes a fundamental relation between the restriction and core-
striction homomorphisms.
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Proposition 26. Suppose H is a subgroup of G of index m. Then Cor o Res = m, i.e.,
if ¢ is a cohomology class in H"(G, A) for some G-module A, then

Cor(Res(c)) = mc € H"(G, A) foralln > 0.

Proof: This follows from the explicit formula for corestriction in Example 4 above,
as follows. If f € Homgy (P,, A) were in Homzg(P,, A), i.e., if f were also a G-
module homomorphism, then g; f (g; 'py= 8i& Yf(p) = f(p).forl <i < m. Since
restriction is theinducedmap on cohomology of the natural inclusion of Homz (P,, A)
into Homgzy (P, A), for such an f we obtain

Homzg (Pa, A) -5 Homgzp (P, A) —5 Homgzg(P,, A)
fr— fr— mf.

It follows that Res o Cor is multiplication by m on the cohomology groups as well.

Corollary 27. Suppose the finite group G has order m. Then m H"(G, A) = O for all
n > 1 and any G-module A.

Proof: Let H = 1, so that [G : H] = m, in Proposition 26. Then for any class
¢ € H"(G, A) we have mc = Cor(Res(c)). Since Res(c) € H"(H, A) = H"(1, A),
we have Res(¢) = O for all n > 1 by the second example preceding Proposition 20.
Hence mc = O for all n > 1, which is the corollary.

Corollary 28. If G is a finite group then H"(G, A) is a torsion abelian group for all
n > 1 and all G-modules A.

Proof: This is immediate from the previous corollary.

Corollary 29. Suppose G is a finite group whose order is relatively prime to the
exponent of the G-module A. Then H"(G, A) = Ofor all n > 1. In particular, if A is
a finite abelian group with (|G|, |A]) = 1 then H"(G, A) =0 foralln > 1.

Proof: This follows since the abelian group H" (G, A) is annihilatedby |G| by the
previous corollary and is annihilated by the exponent of A by Proposition 20.

Note that the statements in the preceding corollaries are not in general true for
n = 0, since then H°(G, A) = A®, which need not even be torsion.

We mention without proof the following result. Suppose that H is a normal sub-
group of G and A is a G-module. The cohomology groups H"”(H, A) can be given
the structure of G/H-modules (cf. Exercise 17). It can be shown that there is an exact
sequence
0 H\G/H, A" S HYG, 4)"S HYH, 1)°/7 T8 H2(G/H, A¥) I H2(G, A)
where H(H, A)®/¥ denotes the fixed points of H'(H, A) under the action of G/H
and Tra is the so-called transgression homomorphism. This exact sequence relates the
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cohomology groups for G to the cohomology groups for the normal subgroup H and
for the quotient group G/ H. Put another way, the cohomology for G is related to the
cohomology for the factors in the filtration 1 < H < G for G. More generally, one
could try to relate the cohomology for G to the cohomology for the factors in a longer
filtration for G. This is the theory of spectral sequences and is an important tool in
homological algebra.

Galois Cohomology and Profinite Groups

One important application of group cohomology occurs when the group G is the Galois
group of a field extension K/ F. In this case there are many groups of interest on which
G acts, for example the additive group of K, the multiplicative group K>, etc. The
Galois group G = Gal(K/F) is the inverse limit ljm Gal(L/F) of the Galois groups
of the finite extensions L of F contained in K and is a compact topological group
with respect to its Krull topology (i.e., the group operations on G are continuous with
respect to the topology defined by the subgroups Gal(K /L) of G of finite index), cf.
Section 14.9. In this situation it is useful (and often essential) to take advantage of the
additional topological structure of G. For example the subfields of K containing F
correspond bijectively with the closed subgroups of G = Gal(K/F), and the example
of the composite of the quadratic extensions of Q discussed in Section 14.9 shows
that in general there are many subgroups of G that are not closed. Fortunately, the
modifications necessary to define the cohomology groups in this context are relatively
minor and apply to arbitrary inverse limits of finite groups (the profinite groups). If G
is a profinite group then G = 1jm G/N where the inverse limit is taken over the open
normal subgroups N of G (cf. Exercise 23).

Definition. If G is a profinite group then a discrete G-module A is a G-module A
with the discrete topology such that the action of G on A is continuous, i.e., the map
G x A — A mapping (g, a) to g-a is continuous.

Since A is given the discrete topology, every subset of A is open, and in particular
every elementa € A is open. The continuity of the action of G on A is then equivalent
to the statement that the stabilizer G, of a in G is an open subgroup of G, hence is
of finite index since G is compact (cf. Exercise 22). This in turn is equivalent to the
statement that A = UA¥ where the union is over the open subgroups H of G.

Some care must be taken in defining the cohomology groups H" (G, A) of a profi-
nite group G acting on a discrete G-module A since there are not enough projectives
in this category. For example, when G is infinite, the free G-module ZG is not a
discrete G-module (G does not act continuously, cf. Exercise 25). Nevertheless, the
explicit description of H" (G, A) given in this section (occasionally referred to as the
discrete cohomology groups) can be easily modified — it is only necessary to require
the cochains C"(G, A) to be continuous maps from G” to A. The definition of the
coboundary maps d,, in equation (18) is precisely the same, as is the definition of the
groups of cocycles, coboundaries, and the corresponding cohomology groups. It is
customary not to introduce a separate notation for these cohomology groups, but to
specify which cohomology is meant in the terminology.
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Definition. If G is a profinite group and A is a discrete G-module, the cohomol-
ogy groups H"(G, A) computed using continuous cochains are called the profinite or
continuous cohomology groups. When G = Gal(K/ F) is the Galois group of a field
extension K /F then the Galois cohomology groups H" (G, A) will always mean the
cohomology groups computed using continuous cochains.

When G is a finite group, every G-module is a discrete G-module so the discrete
and continuous cohomology groups of G are the same. When G is infinite, this need
not be the case as shown by the example mentioned previously of the free G-module
ZG when G is an infinite profinite group. All the major results in this section remain
valid for the continuous cohomology“ groups when “G-module” is replaced by “discrete
G-module” and “subgroup” is replaced by “closed subgroup.” For example, the Long
Exact Sequence in Group Cohomology remains true as stated, the restriction homomor-
phism requires the subgroup H of G to be a closed subgroup (so that the restriction of
a continuous map on G" to H" remains continuous), Proposition 26 requires H to be
closed, etc.

We can write G = im(G/N) and A = UAY where N runs over the open normal
subgroups of G (necessarily of finite index in G since G is compact). Then A" is a
discrete G/N-module and it is not difficult to show that

H"(G, A) =lip H"(G/N, A") (17.19)
N

where the cohomology groups are continuous cohomology and the direct limit is taken
over the collection of all open normal subgroups N of G (cf. Exercise 24). Since
G/N is afinite group, the continuous cohomology groups H"(G/N, A") in this direct
limit are just the (discrete) cohomology groups considered earlier in this section. The
computation of the continuous cohomology for a profinite group G can therefore always
be reduced to the consideration of finite group cohomology where there is no distinction
between the continuous and discrete theories.

EXERCISES

1. Let F, = ZG ®7 ZG ®z - - - ®7z ZG (n + 1 factors) for n > 0 with G-action defined on

simple tensors by g-(go ® g1 ® - - ® 8,) =(820) ® 81 @ - - - ® gn-
(a) Provethat F,, is afree ZG-module of rank |G|"” with ZG basis 1 ® g1 ® 82 ® - - gn
with g; € G.

Denote the basis element 1 ® g1 ® g2 ® - - - ® g, in (a) by (g1, g2, - - -, g») and define the
G-module homomorphisms d,, for n > 1 on these basis elements by dj (g1) = g1 — 1 and

n—1

dn(gl, .- 8n) = 81-(82 -, 8n) + I (1) (g1, .., 8i—1, 8igi+1, 8it2:s -+ -» &n)

i=1
+(=D"(g1,---, gn—1)s
for n > 2. Define the Z-module contracting homomorphisms
Z:F()ﬁ)f'li)Fz&)---

ona Zbasisby s_j(1) =1and s,(g0® - - ®g.) =108 ® ... ® gn-
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(b) Prove that
es_1 =1, diso + s—1€ =1, dyt+15n + sp—1dp =1, foralln > 1

where the map aug : Fo — Z is the augmentation map aug(}_,c @8 = > ;eG %-
(c) Prove that the maps s, are a chain homotopy (cf. Exercise 4 in Section 1) between
the identity (chain) map and the zero (chain) map from the chain

dn-
-—»Fni>Fn_1—l>---i>F01g)Z—>0 (*)
of Z-modules to itself.
(d) Deduce from (c) that all Z-module homology groups of (x) are zero, i.e., (*) is an
exact sequence of Z-modules. Conclude that (x) is a projective G-module resolution
of Z.

2. Let P, denote the free Z-module with basis (go, g1, g2, - - -» &) With g; € G and define
an action of G on P, by g-(go, &1, - - - » 1) = (880, 881, - - -, 88n)- Forn > 1 define

n
dn(80: 81,82 8n) = I (—1)'(80,- .-, &is -+ 8n).
par

where (go, - .., §i, - - - » 8n) denotes the term (go, g1, &2, - - - » &) With g; deleted.

(a) Prove that P, is a free ZG-module with basis (1, g1, g2, -- -, g») where g; € G.

(b) Prove thatd,_) od,, = 0forn > 1. [Show that the term (go, . .., £j,-... 8k, ---» &n)
missing the entries g; and gi occurs twice in dy—1 o dn(go, g1, 82, - - - » gn), With
opposite signs.]

(c) Prove thatg : P, - F, defined by

9((80, 81, 82.---. &) = 80 ® (85" 81) ® (87 '82) ... ® (8, 18n)
is a G-module isomorphism with inverse { : P, — F, given by

V(g ®g1®...® gn) = (80, 8081, 808182 - - - » 80182 " * * &n)-
(d) Prove that if €(go) = 1 forall go € G then

SN T SURLING N SN (3
is a free G-module resolution of Z. [Show that the isomorphisms in (c) take the
G-module resolutions (%) and (x) of the previous exercise into each other.]

3. Let F,, and B, be as in the previous two exercises and let A be a G-module.

(a) Prove that Homzg (F,, A) can be identified with the collection C"(G, A) of maps
fromG x G x - - - X G (n copies) to A and that under this identification the associated
coboundary maps from C"(G, A) to C"*1(G, A) are given by equation (18).

(b) Prove that Homz (P,, A) can be identified with the collection of maps f fromn + 1
copies G X G X - - - x G to A that satisfy f(ggo, gg1,---,88n) = 8f(80. &81.---, &n)-

The group C"(G, A) is sometimes called the group of inhomogeneous n-cochains of G in A,
and the group in (b) of the previous exercise is called the group of homogeneous n-cochains
of G in A. The inhomogeneous cochains are easier to describe since there is no restriction
on the maps from G” to A, but the coboundary map d,, on homogeneous cochains is less
complicated (and more naturally suggested in topological contexts) than the coboundary map
on inhomogeneous cochains. The results of the previous exercises show that the cohomology
groups H" (G, A) defined using either homogeneous or inhomogeneous cochains are the same
and indicate the origin of the coboundary maps d,, used in the text. Historically, H" (G, A) was
originally defined using homogeneous cochains.
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4. Suppose H is a normal subgroup of the group G and A is a G-module. For every g € G
prove that the map f (a) = ga fora € A" defines an automorphism of the subgroup A .

5. Suppose the G-module A decomposes as a direct sum A = Aj & Az of G-submodules.
Prove that for alln > 0, H"(G, A) = H"(G, A1) & H"(G, Aj).

6. Suppose 0 > A > My -> M; - --- - My - C — 0isan exact sequence of G-
modules where My, M, ..., My are cohomologically trivial. Prove that H ntk(G, A) =
H"(G, C) forall n > 1. [Decompose the exact sequence into a succession of short exact

sequences and use Corollary 22. For example, if 0 - A 5 M f» Mj Xec50is
exact, show that0 > A - M; > B - 0and 0 > B - M; —» C — 0 are both exact,
where B = M /imagea = M, /ker 8 = image 8 = ker y.]

7. (Adjoint Associativity) Let R, S and T be rings with 1, let P be a left S-module, let N be
a (T, S)-bimodule, and let A be a left T-module. Prove that

& : Homg(P, Hom7 (N, A)) — Hom7 (N ®s P, A)

defined by @(f)(n ® p) = f(p)(n) is an isomorphism of abelian groups. (See also
Theorem 43 in Section 10.5).

Suppose G is cyclic of order m with generatoro andlet N = 140402+ - -+0™ ! € ZG.
(a) Prove that the augmentation map aug(Z?l:_ol aiot) = Z?:ol a; is a G-module homo-
morphism from ZG to Z.

(b) Prove that multiplication by N andby o — 1 in ZG define a free G-module resolution

ofz: .. 326 5262 .. . Nrclzc Xz o

9. Suppose G is an infinite cyclic group with generator 0.
(a) Prove that multiplication by ¢ — 1 € ZG defines a free G-module resolution of

Z:0—>ZGU—_;ZG—>Z—>O.

(b) Show that HO(G, A) = AC, that H(G, A) = A/(c —1)A, and that H"(G, A) = Ofor
alln > 2. Deduce that H'(G, ZG) = Z (so free modules need not be cohomologically
trivial).

8

10. Suppose H is a subgroup of finite index m in the group G and A is an H-module. Let
x1, -..,Xm be aset of left coset representativesfor Hin G: G=x HU---Ux,, H.

(a) Prove that ZG = D[, xZH = @}, ZHxi_1 and ZG @z A = P11 (xi ® A) as
abelian groups.

(b) Let f;, be the function from ZG to A defined by

ha ifx =hJc,._l withh € H

0  otherwise.

fi,a (x) = [

Prove that fi . € MG(A) = Homzy (ZG, A), ie., fio(H'x) = I f; o(x) for ' € H.
(c) Prove that the map ¢(f) = > /-, xi ® f(xi"l) from MS(A) to ZG ®@zy Ais a G-
module homomorphism. [Write x;” 1 g = hix; Vfori=1,... ,m and observe that
X ® fO;'e) =x @hif(x;") = xihi ® FO;) = gxir ® F(x;1)]
(d) Prove that ¢ gives a G-module isomorphism ¢ : Mg (A) = ZG ®zy A. [For the
injectivity observe that an H-module homomorphism is O if and only if f(x;” h=0
fori =1, ..., m. For the surjectivity prove that ¢( fi ) = X ® a.]
11. Prove that the isomorphism M g (A) = ZG ®zy A in (d) of the previous exercise need not
hold if H is not of finite index in G. [If G is an infinite cyclic group show that Shapiro’s
Lemma implies HY(G, MIG (Z)) = 0 while H(G, ZG) = Z by Exercise 9.]
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12.

13.

14.

15.

16.

17.

18.

19.

If H is a subgroup of G and A is an abelian group let M, g (A) denote the abelian group

of all maps from the left cosets gH of H in G to A.

(a) Prove that M IG A =M 1” (Mg (A)) as H-modules. [If (g;}iez is a choice of left
coset representatives of H in G define the correspondence between f € MIG (A) and
F:H — Mg u(A) by F(h)(gi H) = f(gih), and check that this is an isomorphism
of H-modules.]

(b) A G-module A such that H"(H, A) = 0 for alln > 1 and all subgroups H of G is
called cohomologically trivial. Prove that M f; (A) is acohomologically trivial for any
abelian group A.

(c) If G is finite, prove that ZG ®z A is cohomologically trivial for all abelian groups A.

Suppose A is a G-module and H is a subgroup of G. Prove that the group homomorphism
from H"(G, A) to H"(G, Mg(A)) for all n > 0 induced from the G-module homo-

morphism from A to Mg(A) in Example 3 following Corollary 22 composed with the
isomorphism H"(G, Mg (A)) = H"(H, A) of Shapiro’s Lemma is the restriction homo-
morphism from H"(G, A) to H"(H, A).

Suppose ¢ : H — G is the inclusion map of the subgroup H of G into G. If A is an H-
module and M,(_; (A) the associated induced G-module, define the group homomorphism
¥ Mg(A) — A by mapping f toits value at 1: ¥ (f) = f(1).

(a) Prove that ¢ and ¢ are compatible homomorphisms.

(b) Provethat the induced group homomorphism from H"(G, Mg(A)) to H"(H, A) for
n > 0 is the isomorphism in Shapiro’s Lemma.

Suppose H is anormalsubgroup of G and A is aG-module. Forfixed g € G, lety (a) = ga

and p(h) = g 'hgforh € H.

(a) Prove that ¢ and ¢ are compatible homomorphisms.

(b) For each n > 0, prove that the homomorphism 6, from H"(H, A) to H"(H, A)
induced by the compatible homomorphisms ¢ and v is an automorphismof H" (H, A).
[Observe that both ¢ and i have inverses.]

(c) Show that 6, acting on H 0(H, A) is the automorphism in Exercise 4.

Let A be a G-module and for g € G let 6, denote the automorphism of H" (G, A) defined

in the previous exercise.

(a) Prove that 6, acting on H%(G, A) = AC is the identity map.

(b) Prove that 6; actingon H" (G, A) isthe identity map forn > 1. [By inductiononn and
dimension shifting. Forn = 1, use the exact sequence in Corollary 22, together with
(a) applied to 6, on C G. For n > 2 use the isomorphism H (G, A) = H"(G, C)
in Corollary 22.]

Suppose that H is a normal subgroup of G and A is a G-module. For n > 0 prove

that H"(H, A) is a G/H-module where gH acts by the automorphism 6, induced by

conjugation by g on H and the natural action of g on A as in Exercise 15. [Use the

previous exercise to show this action of a coset is well defined.]

Suppose that G is cyclic of order m, that H is a subgroup of G of index d, and that Z is a

trivial G-module. Use the projective G-module resolution in Exercise 8 to prove

(a) thatCor : H"(H,Z) - H"(G, Z) is multiplication by d from Z to Z for n = 0, from
Z/(m/d)Z to Z/mZif n is odd, and from O to O if n is even, n > 2, and

(b) thatRes : H"(G,Z) - H"(H,Z) is the identity map from Z to Z for n = 0, and
is the natural projection map from Z/mZ to Z/(m/d)Z or from O to 0, depending on
‘the parity of n > 1.

Let p be a prime and let P be a Sylow p-subgroup of the finite group G. Show that for
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20.

21.

22

23.

24.

25.

any G-module A and all n > O the map Res : H"(G, A) - H"(P, A) is injective on the

p-primary component of H1(G, A). Deduce that if |A| = p? then the restriction map is

injective on H" (G, A). [Use Proposition 26.]

Let p be a prime, let G = (o) be cyclic of order p™ and let W be a vector space of

dimension d > 0 over F, on which o acts as a linear transformation. Assume W has a

basis such that the matrix of ¢ is a d x d elementary Jordan block with eigenvalue 1.

(a) Prove thatd < p™. [Use facts about the minimal polynomial ofan elementary Jordan
block.]

(b) Prove that dimp, WC = 1.

(¢) Prove that dime (c-DW=d-1.

d) IfN =140 +---+0P"~1is the usual norm element, prove that NW is of dimension
1if d = p™ (respectively, of dimension 0 if d < p™) and that the dimension of
~NW is d — 1 (respectively, d). [Let R be the group ring F,G, and show that every
nonzero R-submodule of R contains N. Note that W is a cyclic R-module and let
¢ : R - W be a surjective homomorphism. Conclude that if ¢ is not an isomorphism
then N € ker¢.]

(e) Deduce thatif d = p™ then H" (G, W) = 0, and if d < p™ then H" (G, W) has order
p, for all n > 1 (i.e., these cohomology groups are zero if and only if W is a free
F,G-module).

Let p be aprime, let G = (o ) be cyclic of order p™ and let V be a G-module of exponent

p-LetV=Vi® VWV ®--- & Vi be a decomposition of V giving the Jordan Canonical

Form of o, where each V; is o-invariant and a matrix of ¢ on V; is an d; x d; elementary

Jordan block with eigenvalue 1, d; > 1 (cf. Section 12.3). Prove that |VC| = p" and

|[H"(G, V)| = p* where s is the number of V; of dimension less than p™ over Fp, for all

n > 1. [Use the preceding exercise and Exercise 5.]

Suppose G is a topological group, i.e., there is a topology on G such that the maps

G xG — G defined by (g1, g2) — g1g2and G — G defined by g — g_1 are continuous.

(a) If H is an open subgroup of G and g € G, prove that the cosets gH and Hg and the
subgroup g~! Hg are also open.

(b) Prove that any open subgroup is also closed. [The complement is the union of cosets
as in (a).]

(c) Prove that a closed subgroup of finite index is open.

(d) If G is compact prove that every open subgroup H is of finite index.

Suppose G is a compact topological group. Prove the following are equivalent:

() G is profinite, i.e., G = ljm G; is the inverse limit of finite groups G;.

(ii) There exists a family {N;} (i € ) of open normal subgroups N; in G such that

N; N; = 1 and in this case G = [im(G/N;).

(iii) There exists a family {H;) (j € J) of open subgroups H; in G such that N; H; = 1.
[To show (iii) implies (ii), let H be open in G and use (d) of the previous exercise to show
that N = ﬂgecg"lH g is a finite intersection and conclude that N € H € G and N is
open and normal in G.]
Suppose N and N’ are open normal subgroups of the profinite group G and N’ € N. Prove
that the projection homomorphism ¢ : G/N’ — G/N and the injection ¢ : AN — AV '
are compatible homomorphisms and deduce there is an induced homomorphism from
H"(G/N, A¥)to H"(G/N', AM").
If G is an infinite profinite group show that G does not act continuously on A = ZG.
[Show that the stabilizer of a € A is not always of finite index in G.]
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17.3 CROSSED HOMOMORPHISMS AND H(G,A)

In this section we consider in greater detail the cohomology group H!(G, A) where
G is a group and A is a G-module. From the definition of the coboundary map d; in
equation (18), if f € C!(G, A) then

di(f)(g1, 82) = g1- f(g2) — f(g182) + f(g1)-

Thus any function f : G — Aisa l-cocycleif and only ifit satisfies the identity

f(gh) = f(g)+gf(h) forall g, h € G. (17.20)

Equivalently, a 1-cocycle is determined by a collection {ag}.<c of elements in A satis-
fying agn = a, + gay, for g, h € G (and then the 1-cocycle f is the function sending g
to a,). Note that if 1 denotes the identity of G, then f(1) = fAH=fO)+1-fQ) =
2£(1), so f(1) = Ois the identity in A. Thus 1-cocycles are necessarily “normalized”
at the identity. It then follows from the cocycle condition that f(g=!) = —g~! f(g) for
allg € G.

If A is a G-module on which G acts trivially, then the cocycle condition (20) is
simply f(gh) = f(g)+ f(h),i.e., f is simply a homomorphism from the multiplicative
group G to the additive group A. Because of this the functions from G to A satisfying
(20) are called crossed homomorphisms.

A 1-cochain f is a 1-coboundary if there is some a € A such that

fl@)=g-a—a forallg € G, (17.21)

(equivalently, a, = ga—a in the notation above). Note that since —a € A, the cobound-
ary condition in (21) can also be phrased as f(g) = a — g - a for some fixeda € A and
all g € G. The 1-coboundaries are called principal crossed homomorphisms. With this
terminology the cohomology group H'(G, A) is the group of crossed homomorphisms
modulo the subgroup of principal crossed homomorphisms.

Example: (Hilbert’s Theorem 90)

Suppose G = Gal(K/F) is the Galois group of a finite Galois extension K /F of fields.
Then the multiplicative group K * is a G-module and H1(G, K*) = 0. To see this, let
{as) be the values f(o) of a 1-cocycle f, so that ¢y € K™ and ay; = ay0(ay) (the
cocycle condition written multiplicatively for the group K*). By the linear independence
of automorphisms (Corollary 8 in Section 14.2), there is an element ¥ € K such that

B=) at(y)
teG
is nonzero, i.e., 8§ € K*. Then forany o € G we have
of)=) oot =e;' Y aecor(y) =c;'B
teG 1eG

where the second equality comes from the cocycle condition. Hence o, = B/o(8), which
is the multiplicative form of the coboundary condition (21) (for the element a = g~1).
Since every 1-cocycle is a 1-coboundary, we have H 1(G, K*) = 0. The same result holds
for infinite Galois extensions by equation (19) in the previous section since H LG, K*) is
the direct limit of trivial groups.
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As a special case, suppose K /F is a Galois extension with cyclic Galois group G
having generator 0. The cohomology groups for G were computed explicitly in the pre-
vious section, and in particular, H (G, A) = yA/(c — 1A for any G-module A (written
additively). Since this group is trivial in the present context, we see that an element « in
K is in the kernel of the norm map, i.e., Ng,r (@) = 1 if and only if & = o () /B for some
B € K. (For a direct proof of this result in the cyclic case, cf. Exercise 23 in Section 14.2.)

This famous result for cyclic extensions was first proved by Hilbert and appears as
“Theorem 90” in his book (known as the “Zahlbericht”) on number theory in 1897. As a
result, the more general result H 1(G, K*) = 0 is referred to in the literature as “Hilbert’s
Theorem 90.” In general, the higher dimensional cohomology groups H" (G, K*) for
n > 2 can be nontrivial (cf. Exercise 13).

Example

Suppose G = Gal(K /F) is the Galois group of a finite Galois extension K /F of fields as
in the previous example. Then the additive group X is also a G-module and H" (G, K) =0
foralln > 2. The proof of this in general uses the factthatthere is a normal basis for K over
F, i.e., there is an element & € K whose Galois conjugates give a basis for K as a vector
space over F, or, equivalently, K = ZG ®z F as G-modules. The latter isomorphism
shows that K is induced as a G-module, and then H" (G, K) = 0 follows from Corollary
24 in Section 2. For a direct proof in the case where G is cyclic, cf. Exercise 26 in Section
14.2.

If G acts trivially on A, then g - a — a = 0, so 0 is the only principal crossed
homomorphism, i.e., B(G, A) = 0. This proves the following result:

Proposition 30. If A is a G-module on which G acts trivially then H!(G, A) =
Hom(G, A), the group of all group homomorphisms from G to H.

If G is a profinite group, then the same result holds for the continuous cohomology
group H'(G, A) provided one takes the group of continuous homomorphisms from G
into A.

Examples

(1) If G acts trivially on A then H!(G, A) = H'(G/[G, G], A) since any group homo-
morphism from G to the abelian group A factors through the commutator subgroup
[G, G] (cf. Proposition 7(5) in Section 5.4), so computing H! for trivial G-action
reduces to computing H'! for some abelian group.

(2) If G is a finite group acting trivially on Z, then H!(G, Z) = 0 because Z has no
nonzero elements of finite order so there is no nonzero group homomorphism from G
to Z.

(3) If A is cyclic of prime order p and G is a p-group then G must act trivially on A
(since the automorphism group of A has order p — 1), so in this case one always has
HY(G, A) = Hom(G, A).

(4) IfGisafinitegroupthat actstrivially on Q/Zthen H'(G, Q/Z) = Hom(G, Q/Z) = G
is the dual group of G (cf. Exercise 14in Section5.2.). Since Q/Z is abelian, any homo-
morphism of G into Q/Z factors through the commutator quotient G*® = G/[G, G]
of G, so Hom(G, Q/Z) = Hom(G?°, Q/Z). 1t follows that Hom(G, Q/Z) = G?
(which by cf. Exercise 14 again is noncanonically isomorphic to G?).
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If0 > A - B — C — 0is a short exact sequence of G-modules then the long
exact sequence in group cohomology in Theorem 21 of the previous section begins with
terms

0— AS — B® — ¢% 2 HY (G, A) — ---,

The connecting homomorphism & is given explicitly as follows: if c € C© then there is
an element b € B mapping to ¢ and then y(c) is the class in H!(G, A) of the 1-cocycle
given by

So(0):G— A
g+——g-b—b.

Note that g - b — b is (the image in B of) an element of A for all g € G since ¢ € C¢
To verify directly that f = 8y(c) satisfies the cocycle condition in (20), we compute

f(gh)y=gh-b—b=(g-b—-b)+g-(h-b—b) = f(g) +gf(h).

From the explicit expression f = g - b — b it is also clear that 8o(c) € H!(G, A)
maps to 0in the next term H!(G, B) of the long exact sequence above since f is the
coboundary for the element b € B.

Example: (Kummer Theory)

Suppose that F is a field of characteristic 0 containing the group u, of all n® roots of
unity for some n > 1. Let K be an algebraic closure of F and let G = Gal(K/F).
The group G acts trivially on u, Since p, C F by assumption, i.e., u, = Z/nZ as G-
modules. Hence the Galois cohomology group H (G, wp) is the group Hom.(G, Z/nZ)
of continuous homomorphisms of G into Z/nZ. If x is such a continuous homomorphism,
then ker x C G is a closed normal subgroup of G, hence corresponds by Galois theory to
a Galois extension L, /F. Then Gal(L, /F) = image x, so L, is a cyclic extension of F
of degree dividing n. Conversely, every such cyclic extension of F defines an element in
Hom.(G, Z/nZ), so there is a bijection between the elements of the Galois cohomology
group H(G, p,) and the cyclic extensions of F of degree dividing n.

The homomorphism of raising to the n™ power is surjective on K (since we can
always extract ' roots in K) and has kernel y,,. Hence the sequence

1— pp — KX -5 KX — 1

is an exact sequence of discrete G-modules. The associated long exact sequence in Galois
cohomology gives

1— ufl — K¢ 5 (k%)% — HY (G, pn) — HY(G, K*) — ---

We have u,? = u, and (K *)¢ = F* by Galois theory, and H!(G, K*) = 0 by Hilbert’s
Theorem 90, so this exact sequence becomes

1— pp — F* 5 F* — H' (G, pn) — 0,
which in turn is equivalent to the isomorphism

HY(G, pn) = F*/F*"
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where F*” denotes the group of n™ powers of elements of F*. This isomorphism is made
explicit using the explicit form for the connecting homomorphism given above: for every
a € F* and o € G, the element %/a in K> maps to ¢ in the exact sequence and

o ()
o

defines an element in H!(G, w,) (cf. Exercise 11). The kernel of this homomorphism x
is the field F(%/a). By the results of the previous paragraph, when F contains the n™
roots of unity an extension L/ F is Galois with cyclic Galois group of order dividing » if
andonly if L = F(%/a) for some a € F*. Furthermore, the class of @ in F*/F*" is
unique, i.e., a is unique up to an n™ power of an element in F. Such an extension is called
a Kummer extension, cf. Section 14.7 and Exercise 12.

If the characteristic of F is a prime p, the same argument applies when n is not
divisible by p, replacing the algebraic closure of F with the separable closure of F (the
largest separable algebraic extension of F).

x(o) =

Example: (The Transfer Homomorphism)

Supposc G is afinite group and H is a subgroup. The corestriction defines a homomorphism
from H(H, Q/Z) to H!(G, Q/Z), which by Example 4 above gives a homomorphism

from H# to G®. This gives a homomorphism
Ver: G*® — H®™

called the transfer (or Verlagerungen) homomorphism (cf. Exercise 14). To make this
homomorphism explicit, consider the exact sequence

0 — Q/Z — MP(Q/Z) — C — 0 (17.22)

defined by the homomorphism mapping a € Q/Z to f, € MIG (Q/2Z) in Example 4
preceding Proposition 23 in the previous section (so f,(g) = g - a for g € G). This
is a short exact sequence of G-modules and hence also of H-modules. The first portions
of the associated long exact sequences for the cohomology with respect to H and then G
give the rows in the commutative diagram

8o .
-—> CcH — HY(H,Q/Z) —> 0

l Cor l Cor

P )
-—> 6 — HY(G,Q/Z) —> 0

since H'(H, M{ (Q/Z)) = H'(G, MF(Q/Z)) = O (cf. Exercise 12 in Section 2). Let
x € HY(H, Q/Z) and suppose that ¢ € C*' is an element mapping to x by the surjective
connecting homomorphism & in the first row of the diagram above. By the commutativity,
x' = Cor () is the image under the connecting homomorphism &y of ¢’ = Cor(c) € C G
in the second row of the diagram. By our explicit formula for the coboundary map &, if
F € MIG (Q/Z) is any element mapping to ¢’ in (22) then g - F — F = f for a unique
a’ € Q/Z, and we have x'(g) = o(c')(g) = a’ for g € G. Since fy(x) = x -a’ = a’ for
any x € G because G acts trivially on Q/Z, the function g - F — F in fact has the constant
value a’, and so can be evaluated at any x € G to determine the value of x'(g).
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Since ¢’ = Y7, gi - ¢ € CY where g1, .. ., gm are representatives of the left cosets
of H in G (cf. Example 4 preceding Proposition 26), such an element F is given by

m
F=Y g-f
i=1

where f € M IG (Q/Z) is any element mapping to ¢ in (22). This f can be used to compute
the explicit coboundary of ¢ as before: h- f — f = f,forauniquea € Q/Z and x(h) =a
for h € H. Asbefore, the function h - f — f = f, has the constant value a and so can be
evaluated at any element x of G to determine the value of x (h).

Computing g - F — F on the element 1 € G it follows that

X@ =) fleg)—Y_ fe)
i=1 i=]

Fori =1,...,m, write
ggi = gjh(g. &)  withh(g, g) € H, (17.23)
noting that the resulting set of g; is some permutation of {g1, ..., gn}. Then

Y e = flg) =Y [f(gih(g. 8 — F&I =Y _ x(h(g. &)
i=1 i=1 i=1 i=1

since as noted above, x (h) = f(xh) — f(x) for any x € G. Hence

x'@ = x([[re. &)
i=1

and so the transfer homomorphism is given by the formula

m
Ver(g) = [ | (e, &) (17.24)
i=1

with the elements h(g, g;) € H defined by equation (23). Note that this proves in particular
that the map defined in (24) is a homomorphism from G2° to H# that is independent of the
choice of representatives g; for H in G in (23). Proving that this map is a homomorphism
directly is not completely trivial. The same formula also defines thetransferhomomorphism
when G is infinite and H is a subgroup of finite index in G.

Asan example of the transfer, suppose H = nZand G = Z and choose0, 1, 2, ...,n—1
as coset representatives for H in G. If g = 1, then all the elements h(g, g;) are O for
i=1,2,...,n—1and h(1,n — 1) = n. Hence the transfer map from Z to nZ maps 1

to n, so is simply multiplication by the index. Similarly, the transfer map from any cyclic
group G to a subgroup H of index # is the n™ power map. See also Exercise 8.

For the cyclic group I for an odd prime p and subgroup {+1}, it follows that the
transfer map is the homomorphism Ver : F; — {1} given by

Ver(a) = aP~ /2 = (f) _ { +1 if a is a square

p —1 ifaisnot asquare
(the symbol (ﬁ) is called the Legendre symbol or the quadratic residue symbol). If instead
p
we take the elements 1, 2, ..., (p — 1)/2 as coset representatives for {£1} in ]F,’,‘ we see
that

(ﬁ) — (—l)m(“)
p
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where m(a) is the number of elements among a, 2a, ..., (p — 1)a/2 whose least positive
remainder modulo p is greater than (p — 1) /2 (in which case the element differs by —1 from
one of our chosen coset representatives and contributes one factor of —1 to the product in
(24)). This result is known as Gauss’ Lemma in elementary number theory and can be used
to prove Gauss’ celebrated Quadratic Reciprocity Law (cf. also Exercise 15).

Next we give two important interpretations of H!(G, A) in terms of semidirect
products. If A is a G-module, let E be the semidirect product E = A X G, where A
is normal in E and the action of G (viewed as a subgroup of E) on A by conjugation
is the same as its G-module action: gag™! = g - a. In the notation of Section 5.5,
E = A %, G, where ¢ is the homomorphism of G into Aut(A) given by the G-module
action. In particular, E will be the direct product of A and G if and only if G acts
trivially on A. As in Section 5.5, we shall write the elements of E as (a, g) where
a € A and g € G, with group operation

(a1, 81) (a2, &2) = (a1 + g1 - a2, 8182)-
Note that A is written additively, while G and E are written multiplicatively.

Definition. Let X be any group and let Y be a normal subgroup of X. The stability
group of the series 1 < Y < X is the group of all automorphisms of X that map Y to
itself and act as the identity on both of the factors Y and X/ 7Y, i.e.,

Stab(1 Y 9X)={0 € Aut(X) |o(y) =y forally € Y,
and o0(x) = xmod Y for all x € X}.

In the special case where Y is an abelian normal subgroup of X, conjugation by
elements of Y induce (inner) automorphisms of X that stabilize the series 1 <Y < X,
and in this case Y/Cy(X) is isomorphic to a subgroup of Stab(1 JY < X) (where
Cy(X) is the elements of Y in the center of X).

Proposition 31. Let A be a G-module and let E be the semidirect product A x G. For
each cocycle f € Z!(G, A) define oy : E — E by

or((a,8) =@+ f(g), 8)-

Then the map f — oy is a group isomorphism from Z!(G, A) onto Stab(1 < A < E).
Under this isomorphism the subgroup B!(G, A) of coboundaries maps onto the sub-
group A/Ca(E) of the stability group.

Proof: It is an exercise to see that the cocycle condition implies oy is an automor-
phism of E that stabilizes the chain 1 < A < E. Likewise one checks directly that
Of,+f, = Of, © 0f,, so the map f > oy is a group homomorphism. By definition of o
this map is injective. Conversely, let o € Stab(1 < A < E). Since o acts trivially on
E /A, each element (0, g) in this semidirect product maps under o to another element
(a, g) in the same coset of A; define f, : G — A by letting f,(g) = a. If we identify
A with the elements of the form (a, 1) in E, then the group operation in E shows that

fo(8) = ((0, 8))(0, ).
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Because o is a stability automorphism of E, it is easy to check that f, satisfies the
cocycle condition. It follows immediately from the definitions that f,;, = f, so the
map f > oy is an isomorphism.

Now f is a coboundary if and only if there is some x € A suchthat f(g) =x—g-x
forall g € G. Thus f is a coboundary if and only if o ((a, g)) = (a+x—g-x, g). But
conjugation in E by the element (x, 1) maps (a, g) to the same element (a+x—g-x, g),
so the automorphism oy is conjugation by (x, 1). This proves the remaining assertion
of the proposition.

Corollary 32. In the notation of Proposition 31 let ¢, denote the automorphism of E
given by conjugation by a for any a € A. Then the cocycles f; and f, are in the same
cohomology class in H'(G, A) if and only if o5, = ¢, o oy,, for some a € A.

The proposition and corollary show that 1-cocycles may be computed by finding
automorphisms of E that stabilize the series 1 < A < E, and vice versa. The first
cohomology group is then given by taking these automorphisms modulo inner auto-
morphisms, i.e., is the group of “outer stability automorphisms” of this series.

Example

Let G = Z; act by inversion on A = Z/4Z. The corresponding semidirect product
E = A x G is the dihedral group of order 8, which has automorphism group isomorphic
to Dg; viewing E as a normal (index 2) subgroup of D¢, conjugation in the latter group
restricted to E exhibits 8 distinct automorphisms of E (cf. Proposition 17 in Section 4.4).
The subgroup A of E is characteristic in E, hence every automorphism of E sends A to
itself, and therefore also acts on E/A (necessarily trivially since |E/A| = 2). Half the
automorphisms of E invert A and half centralize A; in fact, the cyclic subgroup of order 8
in D16 (Which contains A) maps to a cyclic group of order 4 of automorphisms centralizing
A. Thus Stab(1 < A < E) = Z4 = Z1(G, A). Since the center of E is a subgroup of A of
order 2, |A/Z(E)| = 2 = |BY(G, A)|. This proves |H!(G, A)| = 2.

In the semidirect product E the subgroup G is a complement to A, i.e., E = AG
and A N G = 1; moreover, every E-conjugate of G is also a complement to A. But A
may have complements in E that are not conjugate to G in E. Our second interpretation
of H1(G, A) shows that this cohomology group characterizes the E-conjugacy classes
of complements of A in E.

Proposition 33. Let A be a G-module and let E be the semidirect product A x G. For
each 1-cocycle f let
Gr=1{(f(g).8 |8 €G}.

Then Gy is a subgroup complement to A in E. The map f + Gy is a bijection from
Z(G, A) to the set of complements to A in E. Two complements are conjugate in
E if and only if their corresponding 1-cocycles are in the same cohomology class in
HY(G, A), sothereisa bijection between H 1(G, A) and the setof E -conjugacy classes
of complements to A.

Proof: By the cocycle condition,

(f(8), &)(f(h), h) = (f(®)+&f (g™, gh) = (f()+g- f(h), gh) = (f (gh), gh),
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and it follows that G ¢ is closed under the group operationin E. As observed earlier, each
cocycle necessarily has f(1) = 0, so G contains the identity (0, 1) of E. The inverse
to (f(g), @ in Eis (f(g™!), g71),s0 Gy is closed under inverses. This proves Gy is a
subgroup of E. Since the distinct elements of G represent the distinct cosets of A in
E, Gyisacomplementto Ain E. Distinct cocycles give different coset representatives,
hence they determine different complements.

Conversely, if C is any complement to A in G, then C contains a unique coset
representative a,g of Ag for each g € G. Since C is closed under the group operation
the element (agg)(arh) = (a,gan g‘l)gh represents the coset Agh, and so agy, is
agga;,g"l = ag(g-ay) (written additively in A this becomes ag, = a, + (g-ap)). This
shows thatthe map f : G — A given by f(g) = a, is a cocycle, and so C = Gy.
Hence there is a bijection between 1-cocycles and complements to A in E.

Since Stab(l < A < F) normalizes A it permutes the complements to A in E.
In the notation of Proposition 31, for 1-cocycles f; and f;, it follows immediately
from the definition that o7, (Gf,) = Gy,4,. This shows that the permutation action of
Stab(1 < A < E) onthe set of complements to A in E is the (left) regular representation
of this group. Furthermore, if a € A and ¢, is the stability automorphism conjugation
by a, then

aGra™' = ¢,(Gy) = Gyyp, (17.25)

where £, is the 1-coboundary B, : g — a — g - a. Since Gy is acomplement to A, any
e € E may be written as ag forsome a € A and g € G;. Then eGre™! = aGra™!,
i.e., the E-conjugates of G are the just the A-conjugates of Gs. Now the complements
G, and Gy, are conjugate in E if and only if Gy, = aGpa™! = Gy,4p, for some
a € A by (25). This shows two complements are conjugate in E if and only if their
corresponding cocycles differ by a coboundary, i.e., represent the same cohomology
class in H!(G, A), which completes the proof.

Corollary 34. Under the notation of Proposition 33, all complementsto A are conjugate
in E if and only if H!(G, A) = 0.

Corollary 35. If A is a finite abelian group whose order is relatively prime to |G| then
all complements to A in any semidirect product £ = A x G are conjugate in E.

Examples

(1) Let A= (a)and G = (g) both be cyclic of order 2. The group G must act trivially
on A, hence A x G = A x G is a Klein 4-group. Here A x G is abelian, so every
subgroup is conjugate only to itself, and since H(G, A) = Hom(Z3, Z/2Z) has order
2, there are precisely two complements to A in E, namely (g) and ( ag ).

(2) If A = (a) iscyclic of order 2 and G = (x ) x (y) is a Klein 4-group, then as before
G must act trivially on A, so H!(G, A) = Hom(Z, x Z3, Z/27) has order 4. The
four complements to Ain A x G are G, (ax,y), (x,ay) and (ax,ay).

(3) Proposition 33 can also be used to compute H!(G, A). Let A = (r) be cyclic of
order 4 and let G = (s ) be cyclic of order 2 acting on A by inversion: srs~1 = r~1
as in the Example following Corollary 32. Then A x G is the dihedral group Dg of
order 8. The subgroup A has four complements in Dg, namely the groups generated
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by each of the four elements of order 2 not in A: (s ), (r2s), (rs) and (r3s). The
former pair and the latter pair are conjugate in Dg (in both cases via r), but (s) is
not conjugate to (rs). Thus A has 2 conjugacy classes of complements in A x G
and hence H!(Z,, Z/4Z) has order 2. This also follows from the computation of the
cohomology of cyclic groups in Section 2.

EXERCISES

1. Let G be the cyclic group of order 2 and let A be a G-module. Compute the isomorphism
types of Z 1 (G, A), BI(G, A) and H1(G, A) for each of the following:
(@) A = Z/A4Z (trivial action),
(b) A =7Z/27 x Z/27Z (trivial action),
(¢) A=2Z/27 x Z/2Z (any nontrivial action).
2. Let p be a prime and let P be a p-group.
(a) Show that H 1(P, Fp) = P/®(P), where @ (P) is the Frattini subgroup of P (cf. the
exercises in Section 6.1).
(b) Deducethatthedimensionof H1(P, IFp,) as avector space over I, equals the minimum
number of generators of P. [Use Exercise 26(c), Section 6.1.]

3. If G is the cyclic group of order 2 acting by inversion on Z show that |H1(G, Z)| = 2.
[Show thatin E = Z x G every element of E — Z has order 2, and there are two conjugacy
classes in this coset.]

Let A be the Klein4-groupand let G = Aut(A) = S3 acton A in the natural fashion. Prove
that H!(G, A) = 0. [Show that in the semidirect product E = A x G, G is the normalizer
of a Sylow 3-subgroup of E. Apply Sylow’s Theorem to show all complements to A in E
are conjugate.]

4

5. Let G be the cyclic group of order 2 acting on an elementary abelian 2-group A of order
2". Show that H!(G, A) = 0 if and only if n = 2k and |AC| = 2%. [In E = A x G show
that (a, x) is an element of order 2 if and only if a € AC, where G = (x). Then compare
the number of complements to A with the number of E-conjugates of x.]

6. (Thompson Transfer Lemma) Let G be a finite group of even order, let 7 be a Sylow
2-subgroup of G, let M < T with |T : M| = 2, and let x be an element of order 2 in
G. Show thatif G has no subgroup of index 2 then M contains some G-conjugate of x as
follows:

(a) LetVer: G/[G, G] > T/[T, T] be the transfer homomorphism. Show that

Ver(x) = [ [ ¢~ xg mod [T, 7]
8

where the product is over representatives of the cosets g7 that are fixed under left
multiplication by x.
(b) Show that under left multiplication x fixes an odd number of left cosets of T in G.
(c) Show that if G hasno subgroup of index 2 then Ver(x) € M /[T, T]. Deduce that for
some g € G we must have g~1xg € M. [Consider the product Ver(x) in the group
T /M of order 2.]

7. Let H be a subgroup of G andlet x € G. The transfer Ver : G/[G, G] > H/[H, H]
may be computed as follows: let Oy, O, ..., Ok be the distinct orbits of x acting by
left multiplication on the left cosets of H in G, let O; have length n; and let g; H be any
representative of O;.
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(a) Show that O; = (g; H, xg; H,x?g;H, ..., x"1g; H} and that g‘.‘lx"'gf € H.
(b) Show that Ver(x) = ]'[f.‘zl 8 1yni gimod[H, H].
8. Assume the center, Z(G), of G is of index m. Prove that Ver(x) = x™, for all x € G,

where Ver is the transfer homomorphism from G/[G, G] to Z(G). [Use the preceding
exercise.]

9. Let p be aprime, let n > 3, and let V be an n-dimensional vector space over F,, with
basis vy, vz, ..., v,. Let V be a module for the symmetric group S,,, where each r € S,
permutes the basis in the natural way: 7 (v;) = v ().

1 0’ if p # 2 LS
(a) Show that |H'(S,, V)| = { 2 ifp=2 . [Use Shapiro’s Lemma.]
(b) Show that H!(A,, V) = 0 for all primes p.

10. Let V be the natural permutation module for S, over F2, n > 3, as described in the
preceding exercise, and let W = {aqjv1 + - - - + apv, | a1 + - - - + ap = 0} (the “trace
zero” submodule of V). Show that if n is even then H!(A,, W) # 0. [Show that in the
semidirect product V x A, the element v; induces a nontrivial outer automorphism on
E = W x A, that stabilizes the series 1 < W < E.]

11. Let F be a field of characteristic not dividing n and let « be any nonzero element in F.

Let K be a Galois extension of F containing the splitting field of x" — a, and let %/a be

a fixed n' root of & in K.

(a) Prove that o (%/a)/ 2/ is an n'™ root of unity.

(b) Prove that the function f(o) = o(%/a)/%/a is a 1-cocycle of G with values in the
group p,, of n roots of unity in K (note u,, is not assumed to be contained in F).

(c) Prove that the 1-cocycle obtained by a different choice of n'™ root of @ in K differs
from the 1-cocycle in (b) by a 1-coboundary.

12. Let F be a field of characteristic not dividing n that contains the n'h roots of unity, and
suppose L/ F is a Galois extension with abelian Galois group of exponent dividing n.
Prove that L is the composite of cyclic extensions of F whose degrees are divisors of n
and use this to prove that there is a bijection between the subgroups of the multiplicative
group F* /F*" and such extensions L.

13. The Galois group of the extension C/R is the cyclic group G = {7 ) of order 2 generated
by complex conjugation 7. Prove that H2(G, C*) = R* /Rt = Z/2Z where R* denotes
the positive real numbers.

14. For any group G let G = Hom(G, Q/Z) denote its dual group.

@) If ¢ : G; > G is a group homomorphism prove that composition with ¢ induces a
homomorphism ¢ : G2 — G on their dual groups.

(b) For any fixed g in G, show that evaluation at g gives a homomorphism ¢, from G to
Q/Z.

(c) Prove that the map taking g € G to ¢, in (b) defines a homomorphism from G to its
double dual (G).

(d) Prove that if G is a finite abelian group then the homomorphism in (c) is an iso-
morphism of G with its double dual. (By Exercise 14 in Section 5.2 the group G is
(noncanonically) isomorphic to its dual G. This shows that G is canonically isomor-
phic to its double dual — the isomorphism is independent of any choice of generators
forG.)

(e) If ¢y : Gz - Gl is a homomorphism where G; and G, are finite abelian groups,
then by (a) and (d) there is an induced homomorphism ¢ : G; — G32. Prove that

Sec. 17.3  Grossed Homomorphisms and H'(GA) 823



v(g1) = g2 if x(g2) = x'(g1) for x’ = Y (x).
15. Use Gauss’ Lemma in the computation of the transfer map for F to {1} to prove that
2 is a square modulo the odd prime p if and only if p = £1mod8. [Count how many
elements in 2, 4, ..., p — 1 are greater than (p — 1)/2.]

17.4 GROUP EXTENSIONS, FACTOR SETS AND H2(G,A)

If A is a G-module then from the definition of the coboundary map d, in equation (18)
a function f from G x G to A is a 2-cocycle if it satisfies the identity

f(g,h)+ f(gh.k) =g - f(h, k) + f(g, hk) forallg,h, ke G. (17.26)

Equivalently, a 2-cocycle is determined by a collection of elements {a, 1}¢ rec Of €l-
ements in A satisfying ag, + agnx = g - anx + ag pk for g, h, k € G (and then the
2-cocycle f is the function sending (g, h) to ag ).

A 2-cochain f is a coboundary if there is a function f; : G — A such that

f(& k) =gfith) — fi(gh) + fi(®), forallg,h € G (17.27)

i.e., f is the image under d; of the 1-cochain f;.

One of the main results of this section is to make a connection between the 2-
cocycles Z2(G, A) and the factor sets associated to a group extension of G by A, which
arise when considering the effect of choosing different coset representatives in defining
the multiplication in the extension. In particular, we shall show that there is a bijection
between equivalence classes of group extensions of G by A (with the action of G on A
fixed) and the elements of H%(G, A).

We first observe some basic facts about extensions. Let E be any group extension
of Gby A,

1—-A5SESHG—1. (17.28)

The extension (28) determines an action of G on A, as follows. For each g € G let e,
be an element of £ mapping onto g by 7 (the choice of such a set of representatives
for G in E is called a set-theoretic section of ). The element e, acts by conjugation
on the normal subgroup ¢(A) of E, mapping t(a) to egl(a)egl. Any other element in
E that maps to g is of the form e,t(a;) for some a; € A, and since t(A) is abelian,
conjugation by this element on ¢(A) is the same as conjugation by e,, so is independent
of the choice of representative for g. Hence G acts on ¢(A), and so also on A since ¢
is injective. Since conjugation is an automorphism, the extension (28) defines A as a
G-module.

Recall from Section 10.5 that two extensions 1 — A —> E; 3G > 1and
1> A3 E 3G lare equivalent if there is a group isomorphism g : E; — E;
such that the following diagram commutes:

1—->A;>E1i-»G——>l

w e s (17.29)

1l — A 25 E 235G —> 1.
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In this case we simply say B is the equivalence between the two extensions. As noted
in Section 10.5, equivalence of extensions is reflexive, symmetric and transitive. We
also observe that

equivalent extensions define the same G-module structure on A.

To see this assume (29) is an equivalence, let g be any element of G and let e, be any
element of E; mapping onto g by ;. The action of g on A given by conjugation in
E; maps each a to tl_l(egtl(a)e;l). Let e, = B(eg). Since the diagram commutes,
m2(e;) = g, so the action of g on A in the second extension is given by conjugation
by e;,. This conjugation maps a to ¢, l(e;tz(a)e;_l). Since ¢, ¢, and B are injective,
the two actions of g on a are equal if and only if they result in the same image in E>,
ie,Bon (t,‘l(egtl(a)egl)) = e;tz(a)e;_l. This equality is now immediate from the
definition of e;, and the commutativity of the diagram.

We next see how an extension as in (28) defines a 2-cocycle in Z2(G, A). For
simplicity we identify A as a subgroup of E via ¢ and we identify G as E/A viam.

Definition. A map i : G - E with w o u(g) = g and (1) = 0, i.e., so that for
each g € G, u(g) is a representative of the coset Ag of E and the identity of E (which
is the zero of A) represents the identity coset, is called a normalized section of .

Fix a section p of 7 in (28). Each element of E may be written uniquely in the
form ap(g), wherea € A and g € G. For g, h € G the product . (g)(h) in E lies in
the coset Agh, so there is a unique element f (g, h) in A such that

n(g)u(h) = f(g, hyu(gh)  forallg,h €G. (17.30)
If in addition p is normalized at the identity we also have
fD=0= 11,8 forall g € G. (17.31)

Definition. The function f defined by equation (30) is called the factor set for the
extension E associated to the section i. If f also satisfies (31) then f is called a
normalized factor set.

We shall see in the examples following that it is possible for different sections y to
give the same factor set f.
We now verify that the factor set f isin fact a 2-cocycle. First note that the group
operation in E may be written
(@ (@) azu(h)) = (a1 + u(®)azu(g) I (g)u(h)
= (a1 + g - @) (u(g)n(h)) (17.32)
= (a1 +g-a+ f(g, h))u(gh)

where g - a; denotes the G-module action of g on a; given by conjugation in E. Now
use (32) and the associative law in E to compute the product p(g)u(h)u (k) in two
different ways:

(m@um)uk) = (f (g, h) + f(gh, k) (ghk)

17.
(@ u®) = &f b k) + f g kkpughty. , 72
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It follows that the factors in A of the two right hand sides in (33) are equal for every
g, h,k € G, and this is precisely the 2-cocycle condition (26) for f. This shows that
the factor set associated to the extension E and any choice of section w is an element
in Z%(G, A).

We next see how the factor set f depends on the choice of section p. Suppose u' is
another section for the same extension E in (28), and let f’ be its associated factor set.
Then for all g € G both 11(g) and 1'(g) lie in the same coset Ag, so there is a function
f1: G — Asuchthat i'(g) = fi(g)u(g) for all g. Then

w@Qu'h) = f'(g, ' (gh) = (f' (g, h) + fi(gh))u(gh).
We also have

1@ (h) = (fi@u@)(fithuh) = (fi(g) + & - fi(h)(u(@u(h))
= (fi(g) +g- fith)+ f(g, h))u(gh).

Equating the factors in A in these two expressions for u’(g)u’(h) shows that

f'(g, n) = f(g, h)+ (gfith) — fi(gh) + fi(g) forallg, h € G,

in other words f and f’ differ by the 2-coboundary of f; as in (27).

We have shown that the factor sets associated to the extension E corresponding to
different choices of sections give 2-cocycles in Z%(G, A) that differ by a coboundary
in B%(G, A). Hence associated to the extension E is a well defined cohomology class
in H2(G, A) determined by the factor set in (30) for any choice of section .

If the extension E of G by A is a split extension (whichistosaythat E = A 4 G
is the semidirect product of G by A with the given conjugation action of G on A), then
there is a section y of G that is a homomorphism from G to E. In this case the factor
set f in (30) is identically 0: f(g,h) = Oforall g, h € G. Hence the cohomology
class in H2(G, A) defined by a split extension is the trivial class.

Suppose now that £ is an equivalence between the extensionin (28) and an extension
E’

t b4

1 > A > E > G > 1

bl

l—)A—‘,>E’L>G—>l.

If 1 is a section of 7, then i’ = B o is a section of 7', so what we have just proved can
be used to determine the cohomology class in H2(G, A) corresponding to E’. Applying
the homomorphism 8 to equation (30) gives

Bu(@)B(u(h)) = B(f(g. M)B(u(gh))  forallg h € G.
Since B restricts to the identity map on A, this is
W@u'kh) = f(g, hu'(gh)  forallg h e G,

which shows that the factor set for E’ associated to u’ is the same as the factor set for
E associated to u. This proves that equivalent extensions define the same cohomology
class in Hz'(G, A).
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We next show how this procedure may be reversed: Given a class in H*(G, A)
we construct an extension E; whose corresponding factor set is in the given class in
H?(G, A). The process generalizes the semidirect product construction of Section 5.5
(which is the special case when f is the zero cocycle representing the trivial class).

Note first that any 2-cocycle arising from the factor set of an extension as above
where the section u is normalized satisfies the condition in (31).

Definition. A 2-cocycle f such that f(g,1) =0 = f(1, g) forall g € G is called a
normalized 2-cocycle.

The construction of E is a little simpler when f is a normalized cocycle and for
simplicity we indicate the construction in this case (the minor modifications necessary
when f is not normalized are indicated in Exercise 4).

We first see that any 2-cocycle f lies in the same cohomology class as a normalized
2-cocycle. Letd, f; be the 2-coboundary of the constant function f; on G whose value is
f@,1). Then f(1, 1) = d; fi(1, 1), and one easily checks from the 2-cocycle condition
that f — d fi is normalized.

We may therefore assume that our cohomology class in H?(G, A) is represented
by the normalized 2-cocycle f. Let E; be the set A x G, and define a binary operation
on E; by

(a1, 8)(az, h) = (a1 + g - a2 + f(g, h), gh) (17.34)

where, as usual, g - a; denotes the module action of G on A. It is straightforward to
check that the group axioms hold: Since f is normalized, the identity element is (0,1)
and inverses are given by

(@8 '=(g -a-fg g g™ (17.35)

The cocycle condition implies the associative law by calculations similar to (32) and
(33) earlier — the details are left as exercises.

Since f is a normalized 2-cocycle, A* = {(a, 1) | a € A} is a subgroup of E, and
the map * : a > (a, 1) is an isomorphism from A to A*. Moreover, from (34) and
(35) it follows that

O, g)(a, 1)(O, g)'1 =(g-al) forallg e Gandalla € A. (17.36)

Since Ey is generated by A* together with the set of elements (0, g) for g € G, (36)
implies that A* is a normal subgroup of E;. Furthermore, it is immediate from (34)
that the map * : (a, g) +> g is a surjective homomorphism from E s to G with kernel
A*ie, Ef/A* = G. Thus

1— A5 E 26— 1 (17.37)

is a specific extension of G by A, where (36) ensures also that the action of G on
A by conjugation in this extension is the module action specified in determining the
2-cocycle f in H*(G, A). The extension sequence (37) shows that this extension has
the normalized section 1(g) = (0, g) whose corresponding normalized factor set is f.
Note that this proves not only that every cohomology class in H?(G, A) arises from
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some extension E, but that every normalized 2-cocycle arises as the normalized factor
set of some extension.

Finally, suppose f’ is another normalized 2-cocycle in the same cohomology class
in H%(G, A) as f and let E ' be the corresponding extension. If f and f’ differ by the
coboundary of f; : G — A then f(g,h) — f'(g, h) = gfi(h) — fi(gh) + fi(g) for
all g, h € G. Setting g = h = 1 shows that f1(1) = 0. Define

B:Ef — Ep by  B((a g) = (a+ fi(s), 8.
It is immediate that 8 is a bijection, and

B((a1, g)(az, h)) = B((a1 + g - a2 + f(g, h), gh))
=(a+g-ax+ f(g, h)+ fi(gh), gh)
= (a1 + fi(g) +g- (@ + fi(h) + f'(g h), gh)
= (a1 + f1(g). &)(az + f1(h), h) = B((a1, 8))B((az, h))

shows that B is an isomorphism from Ef to Ef.

The restriction of g to A is given by B((a, 1)) = (@ + f1(1),1) = (a,1),s0 B is
the identity map on A. Similarly B is the identity map on the second component of
(a, 8), so B induces the identity map on the quotient G. It follows that 8 defines an
equivalence between the extensions E¢ and E. This shows that the equivalence class
of the extension E ; depends only on the cohomology class of f in H%(G, A).

We summarize this discussion in the following theorem.

Theorem 36. Let A be a G-modale. Then

(1) A function f : G x G — A is a normalized factor set of some extension E of
G by A (with conjugation given by the G-module action on A) if and only if f
is a normalized 2-cocycle in Z%(G, A).

(2) There is a bijection between the equivalence classes of extensions E asin (1)
and the cohomology classes in H2(G, A). The bijection takes an extension E
into the class of a normalized factor set f for E associated to any normalized
section i of G into E, and takes a cohomology class ¢ in H 2(G, A) to the
extension E defined by the extension (37) for any normalized cocycle f in the
class c.

(3 Under the bijection in (2), split extensions correspond to the trivial cohomology
class.

Corollary 37. Every extension of G by the abelian group A splits if and only if
H*(G, A) =0.

Corollary 38. If A is a finite abelian group and (|A|, |G|) = 1 then every extension of
G by A splits.

Proof: This follows immediately from Corollary 29 in Section 2.

We can use Corollary 38 to prove the same result without the restriction that A be
an abelian group.
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Theorem 39. (Schur’s Theorem) If E is any finite group containing a normal subgroup
N whose order and index are relatively prime, then N has a complement in E.

Remark: Recall that a subgroup whose order and index are relatively prime is called
a Hall subgroup, so Schur’s Theorem says that every normal Hall subgroup has a
complement that splits the group as a semidirect product.

Proof: We use induction on the order of E. Since we may assume N # 1, let p be
aprime dividing | N| and let P be a Sylow p-subgroup of N. Let Eg be the normalizer
in E of P and let No = N N Ey. By Frattini’s Argument (Proposition 6 in Section 6.1)
E = EyN. It follows from the Second Isomorphism Theorem that Ny is a (normal)
Hall subgroup of Ey and |Eg : No| = |E : N| (cf. Exercise 10 of Section 3.3).

If Eq < E, then by induction applied to Ny in Ey we obtain that E( contains a
complement K to Ny. Since |K| = |Ep : Ng|, K is also a complement to N in E, as
needed. Thus we may assume Ey = E, i.e., P isnormalin E.

Since the center of P, Z(P), is characteristic in P, it is normal in E (cf. Section
44). If Z(P) = N, then N is abelian and the theorem follows from Corollary 38. Thus
we may assume Z(P) # N. Let bars denote passage to the quotient group E/Z(P).
Then N is a normal Hall subgroup of E. By induction it has a complement K in E.
Let E; be the complete preimage of K in E. Then |E;| = |K||Z(P)| = |E/N||Z(P)|,
so Z(P) is a normal Hall subgroup of E,. By induction Z(P) has a complement in
E; which is seen by order considerations to also.be a complement to N in E. This
completes the proof.

Examples

@) If G = Z; and A = Z/27Z then G acts trivially on A and so H2(G, A) = AG/NA =
Z/2Z by the computation of the cohomology of cyclic groups in Section 2, so by
Theorem 36 there are precisely two inequivalent extensions of G by A. These are
the cyclic group of order 4 and the Klein 4-group, the latter being split and hence
corresponding to the trivial class in HZ.

@) IfG =(g)=2Z;and A = (a) = Z/4Z is a group of order 4 on which G acts
trivially, then H2(G, A) = A/2A = Z/2Z by the computation of the cohomology
of cyclic groups. As in the previous example there are two inequivalent extensions
of G by A; evidently these are the groups Zg and Z4 x Zj, the latter split extension
corresponding to the trivial cohomology class.

If E = (r) x (s) denotes the split extension of G by A, where |r| = 4 and
|s| =2, then ui(g) =r'sfori =0,...,3 give the four normalized sections of G in
E. The sections pq, 12 both give the zero factor set f. The sections 11, 13 both give
the factor set f’ with f/(g, g) = a® € A. Both f and f’ give normalized 2-cocycles
lying in the trivial cohomology class of H2(G, A). The extension E ¢ corresponding
to the zero 2-cocycle f is the group with the elements (a, 1) and (1, g) as the usual
generators (of orders 4 and 2, respectively) for Z4 x Z;. In Ey/, however, (a, 1) has
order 4 but so does (1, g) since (1, g)? = (f'(g. g), g%) = (@?, 1). The 2-cocycles f
and f’ differ by the coboundary f; with f1(1) = 1 and f;(g) = r. The isomorphism
B(a, g) = (a + f1(g), g) from Ef to Ey maps the generators (a, 1) and (1, g) of Ey
to the generators (a, 1) and (a, g) of Ey and gives the explicit equivalence of these
two extensions.

The situation where G acts on A by inversion is handled in Exercise 3.

Sec. 17.4  Group Extensions, Factor Setsand H2(GA) 829



(3) Suppose G = Z; and A is the Klein 4-group. If G acts nontrivially on A then G
interchanges two of the nonidentity elements, say a and b, of A and fixes the third
nonidentity element c¢. Then AG = NA = {1, ¢} and so H%(G, A) = 0, and so every
extension E of G by A splits. This can be seen directly, as follows. Since the action
is nontrivial, such a group must be nonabelian, hence must be Dg. From the lattice of
Dg in Section 2.5 one sees that for each Klein 4-group there is a subgroup of order 2
in Dg not contained in the 4-group and that subgroup splits the extension.

If G acts trivially on A then H%(G, A) = A/2A = A, so there are 4 inequivalent
extensions of G by A in this case. These are considered in Exercise 1.

Example: (Groups of Order 8 and H*(Z, x Z5, Z/27))

Let G = {1, a, b, ¢} be the Klein 4-group and let A = Z/2Z. The 2-group G must act
trivially on A. The elements of H%(G, A) classify extensions E of order 8 which has a
quotient group by some Z; subgroup that is isomorphic to the Klein 4-group. Although
there are, up to group isomorphism, only four such groups, we shall see that there are eight
inequivalent extensions.

Since G x G has 16 elements, we have |C2(G, A)| = 216. The cocycle condition (26)
here reduces to

f(g.h)+ f(gh.k) = f(h.k)+ f(g.hk)  forallg, h, k € G. (17.38)

The following relations hold for the subgroup Z2(G, A) of cocycles:

A fg =11, =rf1A,1),forallg e G

2@ fE&. D+ fga+f(gb+[f(gc)=01forallgeG

@A) rA,h)+ fla,h)+ fb,h)+ f(c,h) =0, forallh € G.

The first of these come from (38) by setting h = k = 1 and by setting g = h = 1. The other
two relations come from (38) by setting g = h and h = k, respectively, using relations (1)
and (2). It follows that every 2-cocycle f can be represented by a vector (e, B, ¥, 6, €) in
[F, where

a=f,8=f(g1, forallg € G,
B=flaa), v=fab), §=f(ba), €= f(bb)

because the relations above then determine the remaining values of f:

fla=a+B+y fh.oo=a+é+e flca)=a+p+8
feb=a+y+e  flc,d=a+p+y+e

It follows that | Z2(G, A)| < 2°. Although one could eventually show that every function
satisfying these relations is a 2-cocycle (hence the order is exactly 32), this will follow
from other considerations below.

A cocycle f is a coboundary if there is a function fi : G — A such that

f(g. h) = fi(h) — fi(gh) + f1(g). forall g, h € G.
This coboundary condition is easily seen to be equivalent to the conditions:

() fg.1)=f(1,8) = f(g g forallg € G, and
(i) f(g.h) = f(g',h’) whenever g, h are distinct nonidentity elements and so are g, '.

These relations are equivalenttoa = B = € and ¥ = &. Thus B2(G. A) consists of the
vectors (@, @, ¥, ¥, @), andso H2(G, A) hasdimension at most 3 (i.e., order at most23 = 8).
It is easy to see that {(0, B, ¥, 0. €)} with B, y, and € in [, gives a set of representatives
for Z2(G, A)/BZ(G, A), and each of these representative cocycles is normalized. We
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now prove |H2(G, A)| = 8 (and also that | Z2(G, A)| = 2°) by explicitly exhibiting eight
inequivalent group extensions,

Suppose E is an extension of G by A, where for simplicity we assume A < E. If
u : G — E is asection, the factor setfor E associated to p satisfies

n(@uh) = f(g, hu(gh).

The group E is generated by 1(a), 1 (b) and A, and A is contained in the center of E since
G acts trivially on A. Hence E is abelian if and only if p(a) u(b) = n(d)p(a), which by
the relation above occurs if and only if f(a, b) = f (b, a). If g is a nonidentity element in
G, we also see from the relation above that p£(g) is an element of order 2 in E if and only if
f(g, g) = 0. Because A is contained in the center of E, both elements in any nonidentity
coset Au(g) have the same order (either 2 or 4).

There are four groups of order 8 containing a normal subgroup of order 2 with quotient
group isomorphic to the Klein 4-group: Z; x Z; x Z3, Z4 x Zj, Dg, and Qs.

The group E = Z5 x Z3 x Z3 is the split extension of G by A and has f = 0 as factor
set.

When E = Qg, in the usual notation for the quaternion group A = {( —1). In this (non-
abelian) group every nonidentity coset consists of elements of order 4, and this property is
unique to QOsg, so the resulting factor set f satisfies f (g, g) # 0for all nonidentity elements
in G.

When E = Z4 x Z = (x) x {y) we must have A = {x2). The cosets Ax and Axy
both consist of elements of order 4, and the coset Ay consists of elements of order 2, so
exactly one of u(a), 1(b) or u(c) is an element of order 2 and the other two must be of
order 4. This suggests three homomorphisms from E to G, defined on generators by

m(y)=a mx)=>b
() =b mkx)=a.
() =c m@x)=a

Each of these homomorphisms maps surjectively onto G, has A as kernel, and has p(a)
(respectively, w1 (b), pt(c)) anelement of order 2 in E. Any isomorphismof E with itself that
is the identity on A must take the unique nonidentity coset Ay of A consisting of elements
of order 2 to itself. Hence any extension equivalent to the extension E; defined by m; also
maps y to a (since the equivalence is the identity on G). It follows that the three extensions
defined by 71, 2 and 3 are inequivalent.

The situation when E = Dg = (r, s ) is similar. In this case A = {r? ), the cosets As
and Asr consist of elements of order 2, and the coset Ar consists of elements of order 4.
In this case exactly one of w(a), p(b) or p(c) is an element of order 4 and the other two
are of order 2, suggesting the three homomorphisms defined on generators by

m{r)=a m(s)=>b
@) =b m(s)=a.
m3(r) =c m3(s) =a

As before, the corresponding extensions are inequivalent.

The existence of 8 inequivalent extensions of G by A proves that |H 2(G, A)| = 8,
and hence that these are a complete list of all the inequivalent extensions. In particular,
the extension E] = Z,; x Z; defined by the homomorphism 7; mapping y toa and x to ¢
must be equivalent to the extension E; above (and similarly for the other two extensions
isomorphic to Z4 x Z; and the three extensions for Dg). This proves the existence of
certain outer automorphisms for these groups, cf. Exercise 9.
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Remark: For any prime p the cohomology groups of the elementary abelian group E,~ with
coefficients in the finite field IF, may be determined by relating them to the cohomology
groups of the factors in the direct product as mentioned at the end of Section 2. In general,

H%(E pm, [Fp) is a vector space over [, of dimension %m(m +1). Whenp=2andm =2
this is the result H2(Z, x Z,, Z/27) = (Z/27)3 above.

Crossed Product Algebras and the Brauer Group

Suppose F is a field. Recall that an F-algebra B is a ring containing the field F in its
center and the identity of B is the identity of F, cf. Section 10.1.

Definition. An F-algebra A is said to be simple if A contains no nontrivial proper
(two sided) ideals. A central simple F-algebra A is a simple F-algebra whose center
is F.

Among the easiest central simple F-algebras are the matrix algebras M, (F) of
n x n matrices with coefficients in F.

If K/F is a finite Galois extension of fields with Galois group G = Gal(K/F),
then we can use the normalized 2-cocycles in Z2(G, K*) to construct certain central
simple K-algebras. The construction of these algebras from 2-cocycles and their clas-
sification in terms of H%(G, K*) (cf. Theorem 42 below) are important applications
of cohomological methods in number theory. Their construction in the case when G is
cyclic was one of the precursors leading to the development of abstract cohomology.

Suppose f = {ay.1}s.7eG is a normalized 2-cocycle in Z%(G, K*). Let B r be the
vector space over L having basis u, foro € G:

By = [ Y ausla, eK}. (17.39)

ceG

Define a multiplication on B by
Uy 00 = o(a) U, Ug Uy = Qg 1 Ugy (17.40)

for« € L and 0,7t € G. The second equation shows that the a, . give a “factor
set” for the elements u, in By and is one reason this terminology is used. Using this
multiplication we find

(uaur)up =0Q5,:05v,pUc1p and Ug (Ur up) = o'(ar,p)arr.r,o Usrp-

Sincea,.; a,r,p = 0(ay,,) A, 1, is the multiplicative form of the cocycle condition (26),
it follows that the multiplication defined in (40) is associative.

Since the cocycle is normalized we have a; , = a,; = 1 forallo € G and it
follows from (40) that the element u; is an identity in B,. Identifying K with the
elements au; in By, we see that By is an F-algebra containing the field K and having
dimension n? over F if n = [K : F] = |G]|.
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Proposition 40. The F-algebra By with K-vector space basis u, in (39) and multipli-
cation defined by (40) is a central simple F-algebra.

Proof: It remains to show that the center of By is F and that By contains no
nonzero proper ideals. Suppose x = ) _;QcUo is an element in the center of By.
Then xB = Bx for B € K shows that o (B) = B if @, # 0. Since there is an element
B € K not fixed by o forany o # 1, this shows thata, = Oforallo # 1, sox = oju;.
Then xu, = u.x if and only if 7(a;) = e, so if this is true for all 7 then we must have
a; =a € K. Hence x = au, and the center of By is F.

To show that By is simple, suppose I is a nonzero ideal in By and let

X = Qg Ug, + -+ 0, Ug,

be a nonzero element of I with the minimal number m of nonzero terms. If m > 1 there
isanelement 8 € K> witho,,(B) # 0,,—1(8). Thenthe element x —a,, (8) x ﬂ‘l would
be an element of the ideal I with the nonzero element (1 — 6,,(8) 0,—1(8)~1) O, _, as
coefficient of u,__,, and would have fewer nonzero terms than x since the coefficient
of u,_ is 0. It follows thatm = 1 and x = o u, for some a € K and some o. This
element is a unit, with inverse o ~!(¢~!) u, 1, so I = By, completing the proof.

Definition. The central simple F-algebra By defined by (39) and (40) is called the
crossed product algebra for the factor set {a,, .}

If f' = a/, _ is a normalized cocycle in the same cohomology class in H*(G, K*)
asa, ; then there are elements b, € K* with

a . = a5, (0(b:)b} by)

(the multiplicative form of the coboundary condition (27)). If By is the F-algebra
with K-basis v, defined from this cocycle as in (39) and (40), then the K -vector space
homomorphism ¢ defined by mapping u, to b, u, satisfies

w(u;u;) = go(a:]'tu:jr) = a:-;’tbot Ugr = bcr U(br) UsUr

= (boUo)(bru,) = fp(ui,)w(u',)-

It follows that ¢ is an F-algebra isomorphism from By to By.

We have shown that every cohomology class ¢ in H*(G, K*) defines an isomor-
phism class of central simple F-algebras, namely the isomorphism class of any crossed
product algebra for a normalized cocycle {a, .} representing the class c. The next
result shows that the trivial cohomology class corresponds to the isomorphism class
containing M,,(F).

Proposition 41. The crossed product algebra for the trivial cohomology class in
H?(G, K*) is isomorphic to the matrix algebra M,,(F) where n = [K : F).

Proof: If @ € K then multiplication by « defines a linear transformation 7,, of
K viewed as an n-dimensional vector space over F. Similarly, every automorphism

o € G defines an F-linear transformation 7, of K, and we may view both 7, and 7, as
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elements of M,,(F) by choosing a basis for K over F. If By denotes the crossed product
algebra for the trivial factor set (a,,; = 1 forall o, T € G), consider the additive map
¢ : By &> M, (F) defined by ¢(au,) = 7,7,. Since T,, = aT, fora € F, the map ¢
is an F-vector space homomorphism. If x € K, we have

I, T,(x) = Ty (ax) =o(ax) =o(a)o(x) = Ta(a)Tav

s0 Ty T, = Ty ()T as linear transformations on K. It then follows from usu, = ug-:
that

p(aus)(Bur)) = p(@o (B) us:) = Taop)Tor = ToTopToT:
= TaTa TﬂTr = ‘P(Olua) ‘p(ﬁut)

which shows that ¢ is an F-algebra homomorphism from By to M, (F). Since ker ¢
is an ideal in By and ¢ # 0, it follows from Proposition 40 that ker¢p = 0 and ¢ is
an injection. Since both By and M, (F) have dimension n? as vector spaces over F, it
follows that ¢ is an F-algebra isomorphism, proving the proposition.

Example
If K = Cand F = R, then G = Gal(C/R) is of order 2 and generated by complex
conjugation . Wehave | H2(G, C*)| = 2. The central simple R-algebra By corresponding
to the trivial class is Cu; @ Cu, with u,(a + bi) = (a — bi)u, and u% = uy. This is
isomorphic to the matrix algebra M>(R) under the map
a+c —-b+d )
b+d a—-c )’
A normalized cocycle f representing the nontrivial cohomology class is defined by the
valuesaj,; = a1,r = a;,1 = 1 and a;; = —1. The corresponding central simple R-algebra
By is given by Cv; @ Cv;. The element v is the identity of By, and we have the relations
vr(a + bi) = (a — bi)v; and v% = —vy. Letting vj = 1 and v; = j we see that By is
isomorphic as an R-algebra to the real Hamilton Quaternions R + Ri + Rj + Rk.

¢((a + bi)uy + (c + di)u;) = al + bT; + cT; +dT;T; = (

There is arich theory of simple algebras and we mention without proof the following
results. Let A be a central simple F-algebra of finite dimension over F.

I. If F € B C A where Bisasimple F-algebra define the centralizer B¢ of Bin A to
be the elements of A that commute with all the elements of B. Define the opposite
algebra B°PP to be the set B with opposite multiplication, i.e., the product b; b, in
B°PP is given by the product b,b; in B. Both B¢ and B°PP are simple F-algebras
and we have

a. (dim gB)(dim B¢) = dim A
b. A ® r B°PP = M, (B¢) as F-algebras, where r = dim B
¢. B®fF B° = Aif Bis a central simple F-algebra.
IL. If A’ is an Artinian (satisfies D.C.C. on left ideals) simple F-algebra, then A @ p A’
is an Artinian simple F-algebra with center (A’)¢.
III. We have A = M, (A) for some division ring A whose center is F and some integer
r > 1. The division ring A and r are uniquely determined by A. The same
statement holds for any Artinian simple F-algebra.

The last result is part of Wedderburn’s Theorem described in greater detail in the
following chapter.
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Definition. If A is a central simple F-algebra then a field L containing F is said to
split Aif A ®r L = M,,(L) forsome m > 1.

It follows from (II) that every maximal commutative subalgebra of A is a field E
with E = E€ = E°PP; if [E : F] = m we obtain dim rA = m?. Applying (II) to
A = A and B = E we also see that A ®r E = M,,(E). It can also be shown that a
maximal subfield E of the central simple F-algebra A also satisfies E = E° = E°PP
and so again by (II) it follows that A ® r E = M, (E) (r* = dim rA).

If A = M,(A) then the field L splits A if and only if L splits A, as follows. If
A ®r L = M, (L) then

A®r L= M,(A) ®r L= M,(A®F L) = M,(Mo(L)) = Mya(L).
Conversely if A ®¢ L = M, (L) then
By (II) and (II), A ® L = M,(A’) for some division ring A’. Together with the
previous isomorphism, the uniqueness statement in (III) shows that A’ = L and then
the isomorphism A @ p L = M (L) shows that L splits A.

We see from the discussion above that a maximal commutative subfield of A splits
both A and A = M, (A) for any r > 1. It is not too difficult to show from this that

every central simple F-algebra of finite dimension over F can be split by a finite Galois
extension of F.

Applying (I) by taking A to be the crossed product algebra By and taking B = K
showsthat K = K = K and By ® K = M,(K). In particular, the crossed product
algebras By are always split by K.

Example

In the example of the Hamilton Quaternions above we have By @r C = M3(C). Wehave
By ®r C = C+ Ci + Cj + Ck and an explicit isomorphism ¢ to M(C) is given by

= (Yo" _=) eo=( )

and extending C-linearly.

By (III) every central simple F-algebra A is isomorphic as an F-algebra to M, (A)
for some division ring A uniquely determined up to F-isomorphism, called the division
ring part of A.

Definition. Two central simple F-algebras A and B are similar if A = M, (A) and
B = M, (A) for the same division ring A, i.e., if A and B have the same division ring
parts.

Let [A] denote the similarity class of A. By (Il), if A and B are central simple
F-algebras then A ®f B is again a central simple F-algebra, so we may define a
multiplication on similarity classes by [A][B] = [A ®f B]. The class [F] is an
identity for this multiplication and associativity of the tensor product shows that the
multiplication is associative. By (Ib) applied with B = A (so then B¢ = F since A is
central) we have [A][A°PP] = [F], so inverses exist with this multiplication.
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Definition. The group of similarity classes of central simple F-algebras with multi-
plication [A][B] = [A ®; B] is called the Brauer group of F and is denoted Br (F).

If L is any extension field of F then by (II) the algebra A ® L is a central
simple L-algebra. It is easy to check that the map [A] — [A ®F L] is a well defined
homomorphism from Br(F) to Br(L). The kemel of this homomorphism consists of
the classes of the algebras A with A ® L = M,,(L) for some m > 1, i.e., the algebras
A that are split by L.

Definition. If L/F is afield extension then the relative Brauer group Br(L/F) is the
group of similarity classes of central simple F-algebras thatare splitby L. Equivalently,
Br(L/F) is the kernel of the homomorphism [A] - [A ®¢ L] from Br(F) to Br(L).

The following theorem summarizes some major results in this area and shows
the fundamental connection between Brauer groups and the crossed product algebras
constructed above.

Theorem 42. Suppose K /F is a Galois extension of degree n with G = Gal(K/F).

(1) The central simple F-algebra A with dim rA = »? is split by K if and only if
A ®fr K = M,(K) if and only if A is isomorphic to a crossed product algebra
By as in (39) and (40).

(2) There is a bijection between the F-isomorphism classes of central simple F-
algebras A with A ® r K = M, (K) and the elements of H 2(G, K*). Under
this bijection the class ¢ € H*(G, K*) containing the normalized cocycle f
corresponds to the isomorphism class of the crossed product algebra B defined
in (39) and (40), and the trivial cohomology class corresponds to M, (F).

(3) Every central simple F-algebra of finite dimension over F and split by K is
similar to one of dimension n? split by K. The bijection in (2) also establishes
a bijection between Br(K /F) and H*(G, K*) which is also an isomorphism
of groups.

(4) There is a bijection between the collection of F-isomorphism classes of central
simple division algebras over F that are split by K and H?(G, K*).

As previously mentioned, every central simple F-algebra of finite dimension over
F can be split by some finite Galois extension of F, and it follows that

Br(F) = Br(K/F)
K

where the union is over all finite Galois extensions of F. It follows that there is a
bijection between Br(F) and H?(Gal(F*/F), (F*)*) where F* denotes a separable
algebraic closure of F. Here Gal(F*/F) is considered as a profinite group and the
cohomology group refers to continuous Galois cohomology.

One consequence of this result and Theorem 42 is that a full set of representatives
for the F-isomorphism classes of central simple division algebras A over F can be
obtained from the division algebra parts of the crossed product algebras for finite Galois
extensions of F. Those division algebras that are split over K occur for the crossed
product algebras for K/ F.
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Example

Since H? (Gal(Iqu /Fq), ]F:I‘d) = 0 (cf. Exercise 10), we have Br(]qu /Fg) = 0 and hence
also Br(F;) = 0. As a consequence, every finite division algebra is a field (cf. Exercise

13 in Section 13.6 for a direct proof), and every finite central simple algebra [F,-algebra is
isomorphic to a full matrix ring M, (F;).

EXERCISES

1. Let A = ({1, a, b, ¢} be the Klein 4-group and let G = ( g ) be the cyclic group of order 2
acting trivially on A.
(a) Prove that |C%(G, A)| = 28.
(b) Show that coboundaries are constant functions, and deduce that |Bz( G, A)| =4.
(c) Use the cocycle condition to show that |Z2(G. A < 24,

d) If E=2Z4 x Zp = (x) x (y), prove that the extensions 1 - A LES G
defined by w(x) = g, m(y) = 1 and ¢y (@) = 2,0 (b) = y (respectively, ©2(b) = x2,
t2(a) = y,and ;3(c) = x2, 13(a) = y), together with the split extension Z; x Z3 x Z;
give 4 inequivalent extensions of Z by the Klein 4-group. Deduce that H%(G, A)
has order 4 by explicitly exhibiting the corresponding cocycles.

2. Let A = Z/4Z and let G be the cyclic group of order 2 acting trivially on A.
(a) Prove that |C%(G, A)| = 28.
(b) Use the coboundary condition to show that |B2 (G, A)|= 23,
(c) Use the cocycle condition to show that 1Z2(G, A)| < 24.
(d) Show that |[H%(G, A)| = 2 by exhibiting two inequivalent extensions of G by A and
their corresponding cocycles.

3. Let A = Z/4Z and let G be the cyclic group of order 2 acting by inversion on A.

(a) Show that there are fourcoboundaries and that only the zero coboundary isnormalized.

(b) Proveby adirectcomputation of cocycle and coboundary groupsthat | H2(G, A)| = 2.

(c) Exhibit two distinct cohomology classes and their corresponding extension groups.

(d) Show that for a given extension of G by A with extension group isomorphic to Dg
there are four normalized sections, all of which have the zero 2-cocycle as their factor
set.

(e) Show that for a given extension of G by A with extension group isomorphic to Qg
there are sixteen sections, four of which are normalized, and-all of the latter have the
same factor set.

4. For a non-normalized 2-cocycle f one defines the extension group Ef on the set A x G
by the same binary operation in equation (34). Verify two of the group axioms in this case
by showing that identity is now (— f(1, 1), 1) and inverses are given by

@) '=(=xTa—f&lx-f1,1,x ).

(Verification of the associative law is essentially the same as for normalized 2-cocycles.)
Prove also that the set A** = {(@ — f(1, 1), 1) | a € A} is a subgroup of Ey and the map
™ 1a > (a— f(1,1), 1) is an isomorphism from A to A**. Show that this extension E,
with the injection ¢** and the usual projection map 7* onto G, is equivalent toan extension
derived from a normalized cocycle in the same class as f.

5. Show that the set of equivalences of a given extension 1 — A 5 E5 G > 1withitself
form a group under composition, and that this group is isomorphic to the stability group

Sec. 174  Group Extensions, Factor Sets and H4(GA) 837



Stab(1 < ¢(A) < E). (Thus Proposition 31 implies Z 1(G, A) is the group of equivalences
of the extension with itself).

6. (Gaschiitz’s Theorem) Let p be a prime, let A be an abelian normal p-subgroup of a finite
group G, and let P be a Sylow p-subgroup of G. Prove that G is a split extension of G/ A
by A if and only if P is a split extension of P/A by A. (Note that A < P by Exercise
37 in Section 4.5). [Use Sylow’s Theorem to show if G splits over A then so too does P.
Conversely, show that a normalized 2-cocycle associated to the extensionof P/A by A via
Theorem 36 is the image of a normalized 2-cocycle in H 2(G /A, A) under the restriction
homomorphism Res : H2(G/A, A) - H%(P/A, A). Then use Proposition 26 and the
fact that multiplication by |G : P| is an automorphism of A.]

7. (a) Prove that H2(Aa, Z/2Z) # 0 by exhibiting a nonsplit extension of A4 by a cyclic

group of order 2. [See Exercise 11, Section 4.5.]
(b) Provethat H2(As, Z/2Z) # 0by showing that SL, (Fs) is a nonsplit extension of As
by a cyclic group of order 2. [Use Propositions 21 and 23 in Section 4.5.]

8. The Schur multiplier of a finite group G is defined as the group H2(G, C*), where the
multiplicative group C* of complex numbers is a trivial G-module. Prove that the Schur
multiplier is a finite group. [Show that every cohomology class contains a cocycle whose
values lie in the n™ roots of unity, where n = |G|, as follows: If f is any cocycle then
by Corollary 27, " € B%(G,C*). Define k € C2(G,C>) by k(g1, g2) = f(g1,82)V/"
(take any n' roots). Show that k € B2(G, C*) and fk~! takes values in the group of n'®
roots of 1.]

9. Use the classification of the extensions of the Klein 4-group by Z; in the example following
Theorem 39 to prove the following (in the notation of that example):

(a) There is an (outer) automorphism of Z4 x Z; which interchanges the cosets Ax and
Axy and fixes the coset Ay.

(b) There is an outer automorphism of Dg which interchanges the cosets As and Asr and
fixes the coset Ar.

10. Suppose F is a finite field with G = Gal(F,«/F;) = (o0, ) where o is the Frobenius

automorphism, and let N be the usual norm element for the cyclic group G.

(a) Use Hilbert’s Theorem 90 to prove that | N(]F;‘d)| = (qd —1)/(g — 1), and deduce that
the norm map from F 4 to I, is surjective.

(b) Prove that H*(G, ]Ff)/(") =O0foralln > 1.
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Part VI

INTRODUCTION TO
THE REPRESENTATION THEORY
OF FINITE GROUPS

The final two chapters are an introduction to the representation theory of finite
groups together with some applications. We have already seen in Part I how actions of
groups on sets, namely permutation representations, are a fundamental tool for unrav-
elling the structure of groups. Cayley’s Theorem and Sylow’s Theorem as well as many
of the results and applications in Sections 6.1 and 6.2 are based on groups acting on sets.
The chapter on Galois Theory developed one of the most beautiful correspondences in
mathematics where the action of a group as automorphisms of a field gives rise to a
correspondence between the lattice of subgroups of the Galois group and the lattice of
subfields of a Galois extension of fields. In these final two chapters we study groups
acting as linear transformations on vector spaces. We shall be primarily interested in
utilizing these linear actions to provide information about the groups themselves.

In Part III we saw that modules are the “representation objects” for rings in the
sense that the axioms for an R-module specify a “ring action” of R on some abelian
group M -which preserves the abelian group structure of M. In the case where M
was an F[x]-module, x acted as a linear transformation from the vector space M to
itself. In Chapter 12 the classification of finitely generated modules over Principal Ideal
Domains gave us a great deal of information about these linear transformations of M
(e.g., canonical forms). In Chapter 16 we used the ideal structure in Dedekind Domains
to generalize the results of Chapter 12 to the classification of finitely generated modules
over suchdomains. Inthis part we follow a process similar tothe study of F[x]-modules,
replacing the polynomial ring with the group ring F G of G and classifying all finitely
generated F G-modules for certain fields ' (Wedderburn’s Theorem). We then use this
classification to derive some results about finite groups such as Burnside’s Theorem on
the solvability of groups of order p®q® in Chapter 19.



CHAPTER 18

Representation Theory
and Character Theory

18.1 LINEAR ACTIONS AND MODULES OVER GROUP RINGS

For the remainder of the book the groups we consider will be finite groups, unless
explicitly mentioned otherwise. Throughout this section F is a field and G is a finite
group. We first introduce the basic terminology. Recall that if V is a vector space
over F, then GL(V) is the group of nonsingular linear transformations from V to itself
(under composition), and if n € Z*, then GL,(F) is the group of invertible n x n
matrices with entries from F (under matrix multiplication).

Definition. Let G be afinite group, let F be a field and let V be a vectorspace over F.
(1) A linear representation of G is any homomorphism from G into GL(V). The
degree of the representation is the dimension of V.
(2) Letn € Z*. A matrix representation of G is any homomorphism from G into
GL,(F).
(3) A linear or matcix representation is faithful if it is injective.
(4) The group ring of G over F is the set of all formal sums of the form

Zagg, oy €F
geG

with componentwise addition and multiplication (eg)(8h) = (aB)(g h) (where
« and B are multiplied in F and gh is the product in G) extended to sums via
the distributive law (cf. Section 7.2).

Unless we are specifically discussing permutation representations the term “repre-
sentation” will always mean “linear representation.” When we wish to emphasize the
field F we shall say F-representation, or representation of G on V over F.

Recall thatif V is a finite dimensional vector space of dimension n, then by fixing
a basis of V we obtain an isomorphism GL(V) = GL,(F). In this way any linear
representation of G on a finite dimensional vector space gives a matrix representation
and vice versa. Forthe most part our linear representations will be of finite degree and we
shall pass freely between linear representations and matrix representations (specifying a
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basis when we wish to give an explicit correspondence between the two). Furthermore,
given a linear representation ¢ : G — GL(V) of finite degree, a corresponding matrix
representation provides numerical invariants (such as the determinant of ¢(g) for g €
G) which are independent of the choice of basis giving the isomorphism between
GL(V) and GL,(F). The exploitation of such invariants will be fundamental to our
development.

Before giving examples of representations we recall the group ring F G in greater
detail (group rings were introduced in Section 7.2, and some notation and examples
were discussed in that section). Suppose the elements of G are g;, g2, - .., g,- Each
element of F G is of the form

n
Zaigiy a;eF.
i=1

Two formal sums! are equal if and only if all corresponding coefficients of group
elements are equal. Addition and multiplication in F G are defined as follows:

ngi + Zﬂigi = Z(Oli + Bsi
i=1 i=1

i=1

(,-Z:,:aigi)(gﬂigi) =i( > aiﬂj)gk

k=1 i,j
8i8j =8k

where addition and multiplication of the coefficients a; and B; is performed in F. Note
that by definition of multiplication,

FG is a commutative ring if and only if G is an abelian group.

The group G appears in FG (identifying g; with 1g;) and the field F appears in
FG (identifying B with Sg1, where g; is the identity of G). Under these identifications

ﬁ(Zaig,-) = Z(,Ba,-)g;, for all ﬂ eF.
i=1 i=1

In this way
F G is a vector space over F with the elements of G as a basis.

In particular, FG is a vector space over F of dimension equal to |G|. The elements of
F commute with all elements of FG, i.e., F is in the center of FG. When we wish to
emphasize the latter two properties we shall say that F G is an F-algebra (in general, an
F-algebrais aring R which contains F in its center, so R is both aring and an F-vector
space).

Note thatthe operations in F'G are similar to those in the F-algebra F[x] (although
F[x]is infinite dimensional over F). In some works FG is denoted by F[G], although
the latter notation is currently less prevalent.

The formal sum displayed above is a way of writing the function from G to F which takes the

value «; on the group element g;. This same “formality” was used in the construction of free modules
(see Theorem 6 in Section 10.3).
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Examples
(1) If G = (g) is cyclic of order n € Z*, then the elements of FG are of the form

n—1 )
Za,—g’.
i=0

The map F[x] - F(g) which sends xX to gk for all k > 0 extends by F-linearity to
a surjective ring homomorphism with kemel equal to the ideal generated by x" — 1.
Thus

F(g) = Flx]/(x" = D).

This is an isomorphism of F-algebras, i.e., is a ring isomorphism which is F-linear.

(2) Under the notation of the preceding exampleletr = 1+ g+ g2 +---+g" L, sor
is a nonzero element of F(g). Notethat rg = g + g2+ ---+ g"~1 4+ 1 = r, hence
r(1 — g) = 0. Thus the ring F(g) contains zero divisors (provided n > 1). More
generally, if G is any group of order > 1, then for any nonidentity element g € G,
F(g) is a subring of FG, so FG also contains zero divisors.

(3) Let G = S3and F = Q. The elements r = 5(12) — 7(123) and s = —4(123) +
12(1 3 2) are typical members of @S3. Their sum and product are seen to be

r+s=512)-11123)+12(132)
rs = —20(2 3) +28(132) +60(1 3) — 84

(recall that products (compositions) of permutations are computed from right to left).
An explicit example of a sum and product of two elements in the group ring QDg
appears in Section 7.2.

Before giving specific examples of representations we discuss the correspondence
between representations of G and F G-modules (after which we can simultaneously give
examples of both). This discussion closely parallels the treatment of F[x}-modules in
Section 10.1.

Suppose first that ¢ : G — GL(V) is a representation of G on the vector space V
over F. As above, write G = {g;,..., g}, soforeachi € {1, ..., n}, ¢(g;) is a linear
transformation from V to itself. Make V into an F G-module by defining the action of
aring element on an element of V as follows:

n n n
(Zaigi) U= Zaiqp(gi)(v), for all Zaig,- eFG, ve V.
i=1 i=1

i=l

We verify a special case of axiom 2(b) of a module (see Section 10.1) which shows
precisely where the fact that ¢ is a group homomorphism is needed:

(gigj) - v =op(gigj)(v) (by definition of the action)
= (¢(gi) o p(gj)(v) (since g is a group homomorphism)
= ¢(gi)(p(gj)(v)) (by definition of a composition of linear
transformations)
=gi-(g-v) (by definition of the action).
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This argument extends by linearity to arbitrary elements of F G to prove that axiom 2(b)
of amoduleholdsin general. Itis an exercise to check thattheremaining module axioms
hold.

Note that F is a subring of F G and the action of the field element o on a vector is
the same as the action of the ring element o1 on a vector i.e., the FG-module action
extends the F actionon V.

Suppose now that conversely we are given an F G-module V. We obtain an associ-
ated vector space over F and representation of G as follows. Since V is an FG-module,
it is an F-module, i.e., it is a vector space over F. Also, for each g € G we obtain a
map from V to V, denoted by ¢(g), defined by

o(@W)=¢g- v forallv e V,

where g - v is the given action of the ring element g on the element v of V. Since the
elements of F commute with each g € G it follows by the axioms for a module that for
all v, w € Vand all @, B € F we have

(@) (av + pw) = g - (av + pw)
=g-(av)+g- (Bw)
=a(g-v)+ p(g-w)
= ap(g)(v) + Bo(g)(w),

that is, for each g € G, ¢(g) is a linear transformation. Furthermore, it follows by
axiom 2(b) of a module that

0(gigj)(v) = (p(gi) o v(g))(v)

(this is essentially the calculation above with the steps reversed). This proves that ¢ is
a group homomorphism (in particular, ¢(g~') = ¢(g) !, so every element of G maps
to a nonsingular linear transformation, i.e., ¢ : G - GL(V)).

This discussion shows there is a bijection between F G-modules and pairs (V, ¢):

V a vector space over F
{ V an F G-module ] «—> { and }
¢ : G > GL(V) arepresentation

Giving a representation ¢ : G — GL(V) on a vector space V over F is therefore
equivalent to giving an FG-module V. Under this correspondence we shall say that
the module V affords the representation ¢ of G.

Recall from Section 10.1 that if a vector space M is made into an F[x]-module
via the linear transformation 7', then the F[x]-submodules of M are precisely the 7-
stable subspaces of M. In the current situation if V is an FG-module affording the
representation ¢, then a subspace U of V is called G-invariant or G-stable if g -u € U
forallg € Gand allu € U (i.e., if p(g)(u) € Uforallg € Gandallu € U). It
follows easily that

the F G-submodules of V are precisely the G-stable subspaces of V.

Sec. 18.1  Linear Actions and Modules over Group Rings 843



Examples

@

Let V be a 1-dimensional vector space over F and make V into an FG-module by
letting gv = vforall g € G and v € V. This module affords the representation
¢ : G > GL(V) defined by ¢(g) = I = the identity linear transformation, for all
g € G. The corresponding matrix representation (with respect to any basis of V) is
the homomorphism of G into GL{(F) which sends every group element to the 1 x 1
identity matrix. We shall henceforth refer to this as the zrivial representation of G.
The trivial representation has degree 1 andif |G| > 1, itis not faithful.

(2) Let V = FG and consider this ring as a left module over itself. Then V affords a

representation of G of degree equal to |G|. If we take the elements of G as a basis of
V, then each g € G permutes these basis elements under the left regular permutation
representation:
8-8i = 88i-

With respect to this basis of V the matrix of the group element g has a 1 in row i
and column j if gg; = g;, and has O’s in all other positions. This (linear or matrix)
representation is called the regular representation of G. Note that each nonidentity
element of G induces a nonidentity permutation on the basis of V so the regular
representation is always faithful.

(3) Letn € Z*, let G = S, andlet V be an n-dimensional vector space over F with basis

@

ey, e, ...,e,. Let S, acton V by defining foreacho € S,
o - € = €s(i), 1<i=<n

i.e., o acts by permuting the subscripts of the basis elements. This provides an (injec-
tive) homomorphism of S, into GL(V) (i.e., a faithful representation of S, of degree
n), hence makes V into an FS,-module. As in the preceding example, the matrix of
o withrespectto the basis ey, ..., e, hasa 1 inrowi and column j if o -e; = ¢; (and
has 0 in all other entries). Thus ¢ has a 1 in row i and column j if o (j) = i.

For an example of the ring action, consider the action of F S3 on the 3-dimensional
vector space over F with basis e), €2, e3. Let o be the transposition (1 2), let T be the
3-cycle (123) andlet r =20 — 3t € FS3. Then

r - (ae; + Bez + ve3) = 2(aes(1) + Bes2) + Ves(3)) — 3(aerq)y + Ber) +ver3)
= 2(ccez + Pey + ye3) — 3(aez + Bes + yey)
= (28 ~3y)e1 —aez + (2y —3B)es.

If ¥y : H > GL(V) is any representation of H and ¢ : G — H is any group
homomorphism, then the composition ¥ o ¢ is a representation of G. For example,
let V be the FS,-module of dimension n described in the preceding example. If

"7 : G > S, is any permutation representation of G, the composition of 7 with the

©)

844

representation above gives a linear representation of G. In other words, V becomes
an FG-module under the action

g-ei =exp), forallgeG.

Note that the regular representation, (2), is just the special case of this where n = |G|
and 7 is the left regular permutation representation of G.

Any homomorphism of G into the multiplicative group F* = GL(F) is a degree
1 (matrix) representation. For example, suppose G = (g) = Z, is the cyclic group
of order n and ¢ is a fixed n' root of 1in F. Let g8 — ¢!, foralli € Z. This
representation of ( g ) is a faithful representation if and only if ¢ is a primitive n™™ root
of 1.
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Sec. 18.1

In many situations it is easier to specify an explicit matrix representation of a group
G rather than to exhibit an FG-module. For example, recall that the dihedral group
Dy, has the presentation

Dz,,=(r,s|r"=s2=1, rs=sr‘1),

If R and S are any matrices satisfying the relations R” = S2 = J and RS = SR™!
thenthemapr > Rands > S extends uniquely to a homomorphism from D5, to the
matrix group generated by R and S, hence gives a representation of D;,. An explicit
example of matrices R, S € M>(R) may be obtained as follows. If a regular n-gon is
drawn on the x, y plane centered at the origin with the line y = x as one of its lines
of symmetry then the matrix R that rotates the plane through 2sr/n radians and the
matrix S that reflects the plane about the line y = x both send this n-gon onto itself.
It follows that these matrices act as symmetries of the n-gon and so satisfy the above
relations. These matrices are readily computed (cf. Exercise 25, Section 1.6) and so
the maps

_(cos2m/n  —sin2w/n _ (0 1
rHR_(sinZJr/n cos271/n) and SHS_(I 0

extend uniquely to a (degree 2) representation of D,, into GL3(R). Since the matrices
R and $ have orders n and 2 respectively, it follows that they generate a subgroup of
G L, (R) of order 2n and hence this representation is faithful.

By using the usual generators and relations for the quaternion group

Qg=(i,jli*=j%=1,i2=j2 ilji=j")

one may similarly obtain (cf. Exercise 26, Section 1.6) a representation ¢ from Qg to
GL7(C) defined by

= (YT _g) wma o= 7).

This representation of Qg is faithful.

A 4-dimensional representation of the quaternion group Qg may be obtained from
the real Hamilton quaternions, H (cf. Section 7.1). The group Qg is a subgroup of
the multiplicative group of units of H and each of the elements of Qg acts by left
multiplication on the 4-dimensional real vector space H. Since the real numbers are in
the center of H (i.e., since H is an R-algebra), left multiplication is R-linear. This linear
action thus gives a homomorphism from Qg into G L4(R). One can easily write out
the explicit matrices of each of the elements of Qg with respect to the basis 1, i, j, k of
H. For example, left multiplication by i actsby 1 + i, i > —1, j+> kandk > —j
and left multiplication by j acts by 1 > j, i+ —k, j+> —land k +— i so

0 -1 0 O 0 0 -1 0
i 1 00 O and i 0 0 01
0 0 0 -1 1 0 00
0O 01 O 0O -1 00

This representation of Qg is also faithful.

Suppose that H is a normal subgroup of the group G and suppose that H is an ele-
mentary abelian p-group for some prime p. Then V = H is a vector space over F,,
where the scalar a acts on the vector v by av = v? (see Section 10.1). The action
of each element of G by conjugation on V is Fp-linear because gv* g 1 = (gug™ 1
and this action of G on V makes V into an F,G-module (the automorphisms of el-

ementary abelian p-groups were discussed in Sections 4.4 and 10.1). The kernel of
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this representation is the set of elements of G that commute with every element of
H, Cc(H) (which always contains the abelian group H itself). Thus the action of a
group on subsets of itself often affords linear representations over finite fields. Rep-
resentations of groups over finite fields are called modular representations and these
are fundamental to the study of the internal structure of groups.

(10) For an example of an FG-submodule, let G = S, and let V be the FS,-module
described in Example 3. Let N be the subspace of V consisting of vectors all of whose
coordinates are equal, i.e.,

N=laiey +ozer+---+onen a1 =2 =+ =}

(thisisa 1-dimensional S,,-stable subspace). Eacho € S, fixes each vectorin N so the
submodule N affords the trivial representation of S,,. As an exercise, one may show
that if n > 3 then N is the unique 1-dimensional subspace of V which is S, -stable,
i.e., N is the unique 1-dimensional FS,-submodule (N is called the frace submodule
of FSy,).

Another FS,-submodule of V is the subspace I of all vectors whose coordinates
sum to zero:

I={ajey +azer+---+anen lay+o2+ -+ +an =0}

Again [ is an S,-stable subspace (since each o € S, permutes the coordinates of each
vector in V, each o leaves the sum of the coefficients unchanged). Since I is the
kernel of the linear transformation from V onto F which sends a vector to the sum
of its coefficients (called the augmentation map — cf. Section 7.3), I has dimension
n—1.

(11) If V = FQG is the regular representation of G described in Example 2 above, then V
has F G-submodules of dimensions 1 and |G| — 1 as in the preceding example:

N={a1g1+mgr+ - +angn a1 =a2 =--- = ay}
I={a181+a282+"'+angn lar+a2+---+a, =0}.

In fact N and I are 2-sided ideals of FG (not just left ideals — note that N is in the
center of FG). The ideal / is called the augmentation ideal of FG and N is called the
trace ideal of FG.

Recall thatin the study of a linear transformation T of a vector space V to itself we
made V into an F[x]-module (where x acted as T on V'); our goal was to decompose V
into a direct sum of cyclic submodules. In this way we were able to find a basis of V for
which the matrix of T with respect to this basis was in some canonical form. Changing
the basis of V did not change the module V but changed the matrix representation of
T by similarity (i.e., changed the isomorphism between GL(V) and GL,(F)). We
introduce the analogous terminology to describe when two FG-modules are the same
up to a change of basis.

Definition. Two representations of G are equivalent (or similar) if the F G-modules
affording them are isomorphic modules. Representations which are not equivalent are

called inequivalent.

Suppose ¢ : G - GL(V) and ¥ : G — GL(W) are equivalent representations
(here V and W must be vector spaces over the same field F). Let T : V — W be
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an F G-module isomorphism between them. Since T is, in particular, an F-module
isomorphism, 7 is a vector space isomorphism, so V and W must have the same
dimension. Furthermore, for all g € G, v € V we have T (g - v) = g - (T'(v)), since
T is an isomorphism of F G-modules. By definition of the action of ring elements this

means 7 (¢(g)v) = ¥ (g)(T (v)), that is
Top)=yY(@oT forallg € G.

In particular, if we identify V and W as vector spaces, then two representations ¢ and
¥ of G on a vector space V are equivalent if and only if there is some T € GL(V) such
that T o p(g) o T~! = ¥ (g) for all g € G. This T is a simultaneous change of basis
for all p(g), g € G.

In matrix terminology, two representations ¢ and v are equivalentif there is a fixed
invertible matrix P such that

Po(g)P' =y(g) forallg e G.

The linear transformation 7" or the matrix P above is said to intertwine the representa-
tions ¢ and ¢ (it gives the “rule” for changing ¢ into ).

In order to study the decomposition of an FG-module into (direct sums of) sub-
modules we shall need some terminology. We state these definitions for arbitrary rings
since we shall be discussing direct sum decompositions in greater generality in the next
section.

Definition. Let R be aring and let M be a nonzero R-module.

(1) The module M is said to be irreducible (or simple) if its only submodules are 0
and M; otherwise M is called reducible.

(2) Themodule M is said to be indecomposable if M cannot be written as M; & M,
for any nonzero submodules M; and M;; otherwise M is called decomposable.

(3) Themodule M is said tobe completely reducible if it is a direct sum of irreducible
submodules.

(4) A representation is called irreducible, reducible, indecomposable, decompos-
able or completely reducible according to whether the F G-module affording it
has the corresponding property.

(5) If M is a completely reducible R-module, any direct summand of M is called
a constituent of M (i.e., N is a constituent of M if there is a submodule N’ of
M suchthat M = N @ N').

An irreducible module is, by definition, both indecomposable and completely re-
ducible. We shall shortly give examples of indecomposable modules that are not irre-
ducible.

If R = FG, anirreducible F G-module V is a nonzero F-vector space with no non-
trivial, proper G-invariant subspaces. For example, if dimgV = 1 then V is necessarily
irreducible (its only subspaces are 0 and V).

Suppose V is a finite dimensional FG-module and V is reducible. Let U be a
G-invariant subspace. Form a basis of V by taking a basis of U and enlarging it to a
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basis of V. Then for each g € G the matrix, ¢(g), of g acting on V with respect to this

basis is of the form
_[(¢@®) v
vig) = ( 0 (02(8))

where ¢ = ¢|y (with respect to the chosen basis of U) and ¢, is the representation
of G on V/U (and ¢ is not necessarily a homomorphism — (g) need not be a
square matrix). So reducible representations are those with a corresponding matrix
representation whose matrices are in block upper triangular form.

Assume further that the F G-module V is decomposable, V = U & U’. Take for
a basis of V the union of a basis of U and a basis of U’. With this choice of basis the
matrix for each g € G is of the form

_(e1(g) 0
“’(g)‘( 0 (02(8))

(ie, ¥(g) = O for all g € G). Thus decomposable representations are those with a
corresponding matrix representation whose matrices are in block diagonal form.

Examples

(1) As noted above, all degree 1 representations are irreducible, indecomposable and
completely reducible. In particular, this applies to the trivial representation and to the
representations described in Example 5 above.

(2) If|G| > 1, the regular representation of G is reducible (the augmentation ideal and the
trace ideal are proper nonzero submodules). We shall later determine the conditions
under which this representation is completely reducible and how it decomposes into
a direct sum.

(3) Forn > 1 the FS,,-module described in Example 10 above is reducible since N and I
are proper, nonzero submodules. The module N is irreducible (being 1-dimensional)
and if the characteristic of the field F does not divide n, then I is also irreducible.

(4) The degree 2 representation of the dihedral group D;, = G described in Example
6 above is irreducible for n > 3. There are no G-invariant 1-dimensional subspaces
since a rotation by 27 /n radians sends no line in R? to itself. Similarly, the degree 2
complex representation of Qg described in Example 7 is irreducible since the given
matrix (i) has exactly two 1-dimensional eigenspaces (corresponding to its distinct
eigenvalues ++/—1) and these are not invariant under the matrix ¢(j). The degree 4
representation ¢ : Qg — GL4(R) described in Example 8 can also be shown to be
irreducible (see the exercises). We shall see, however, that if we view ¢ as a complex
representation ¢ : Qg — GL4(C) (just by considering the real entries of the matrices
tobe complex entries) then there is a complex matrix P suchthat P~1¢(g) P is adirect
sum of 2 x 2 block matrices for all g € Qg. Thus an irreducible representation over a
field F may become reducible when the field is extended.

(5) Let G = (g) be cyclic of order n and assume F contains all the n' roots of 1. As
noted in Example 1 in the set of examples of group algebras, F(g) = F[x]/(x" — 1).
Thus the FG-modules are precisely the F[x]-modules annihilated by x” — 1. The
latter (finite dimensional) modules are described, up to equivalence, by the Jordan
Canonical Form Theorem.

If the minimal polynomial of g acting on an F({ g }-module V has distinct roots in
F, there is a basis of V such that g (hence all its powers) is represented by a diagonal
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matrix (cf. Corollary 25, Section 12.3). In this case, V is acompletely reducible F( g )-
module (being a direct sum of 1-dimensional ( g )-invariant subspaces). In general,
the minimal polynomial of g acting on V divides x" — 1 so if x" — 1 has distinct roots
in F, then V is a completely reducible F (g )-module. The polynomial x” — 1 has
distinct roots in F if and only if the characteristic of F does not divide n. This gives
a sufficient condition for every F( g }-module to be completely reducible.

If the minimal polynomial of g acting on V does not have distinct roots (so
the characteristic of F does divide n), the Jordan canonical form of g must have an
elementary Jordan block of size > 1. Since every linear transformation has a unique
Jordan canonical form, g cannot be represented by a diagonal matrix, i.e., V is not
completely reducible. It follows from results on cyclic modules in Section 12.3 that
the (1-dimensional) eigenspace of g in any Jordan block of size > 1 admits no (g )-
invariant complement, i.e., V is reducible but not completely reducible.

Specifically, let p be a prime, let F = ), and let g be of order p. Let V be the
2-dimensional space over I, with basis v, w and define an action of g on V by

gv=v and grw=v+w.

This endomorphism of V does have order p (in GL(V)) and the matrix of g with
respect to this basis is the elementary Jordan block

(11

Now V is reducible (span{v} is a ( g )-invariant subspace) but V is indecomposable
(the above 2 x 2 elementary Jordan matrix is not similar to a diagonal matrix).

The first fundamental result in the representation theory of finite groups shows how
Example 5 generalizes to noncyclic groups.

Theorem 1. (Maschke’s Theorem) Let G be a finite group and let F be a field whose
characteristic does not divide |G|. If V is any FG-module and U is any submodule of
V, then V has a submodule W such that V = U @& W (i.e., every submodule is a direct
summand).

Remark: The hypothesis of Maschke’s Theorem applies to any finite group when F has
characteristic 0.

Proof: The idea of the proof of Maschke’s Theorem is to produce an F G-module
homomorphism
n:V->U

which is a projection onto U, i.e., which satisfies the following two properties:

() mw)=u foralluelU

(i) 7(m()) =7 () forallveV (ie,n?=m)
(in fact (ii) is implied by (i) and the fact that 7 (V) € U).

Suppose first that we can produce such an FG-module homomorphism and let
W = ker . Since 7 is a module homomorphism, W is a submodule. We see that W is

a direct sum complement to U as follows. If v € U N W then by (i), v = 7 (v) whereas
by definition of W, (v) = 0. This shows U N W = 0. Toshow V = U + W let v be
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an arbitrary element of V and write v = w(v) + (v — 7 (v)). By definition, 7 (v) € U.
By property (ii) of =,

a(v—n@)=n@)—a@QW)) =) —n7(@) =0,

ie.,v—m(v) € W. Thisshows V = U + W and hence V = U @& W. To establish
Maschke’s Theorem it therefore suffices to find such an FG-module projection 7.

Since U is a subspace it has a vector space direct sum complement Wy in V (take
a basis B; of U, build it up to a basis B of V and let W, be the span of B — B;). Thus
V = U & W, as vector spaces but W need not be G-stable (i.e., need not be an FG-
submodule). Let g : V — U be the vector space projection of V onto U associated
to this direct sum decomposition, i.e., 77 is defined by

Tolu+w) =u forallu e U, w € W,.

Thekey idea of the proofis to “average” g over G to form an F G-module projection
7. Foreach g € G define

gﬂog_1 VU by gmog ') =g -mo(g™' -v), forallveV

(here - denotes the action of elements of the ring F' G). Since rp maps V into U and U is
stable under the action of g we have that gmrog~! maps V into U. Both g and g~ ! actas
F-linear transformations, so gmog~! is a linear transformation. Furthermore, if u is in
the G-stable space U thensois g~!u, and by definition of mo we have mo(g ~lu) = g7 'u.
From this we obtain that for all g € G,

gn'og_l(u) =u forallu e U

(i.e., gmog™! is also a vector space projection of V onto U).
Let n = |G| and view n as anelementof F (n = 1+ --- + 1, n times). By
hypothesis # is not zero in F and so has an inverse in F. Define

. 1 B
T = — .
n E 8708
geG

Since 7 is a scalar multiple of a sum of linear transformations from V to U, it is also
a linear transformation from V to U. Furthermore, each term in the sum defining =
restricts to the identity map on the subspace U and so 7|y is 1/n times the sum of n
copies of the identity. These observations prove the following:

7 : V — U is a linear transformation

n(u)=u forallu e U

m?(w)=n() forallveV.
It remains to show that 7 is an F G-module homomorphism (i.e., is F G-linear). It
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suffices to prove that for all h € G, w(hv) = hw(v), for v € V. In this case

1
w(hv) = ” Z gno(g_lhv)
geG

1
= =~ k™ gmo((g ™ hyv)

geG

_1 Y hlkmo(k™ v) = hr (v)
" k=h"lg
geG
(as g runs over all elements of G, so does k = h~!g and the module element # may
be brought outside the summation by the distributive law in modules). This establishes
the existence of the F G-module projection v and so completes the proof.

The applications of Maschke’s Theorem will be to finitely generated F G-modules.
Unlike the situation of F[x]-modules, however, finitely generated F G-modules are
automatically finite dimensional vector spaces (the difference being that FG itself is
finite dimensional, whereas F[x] is not). Let V be an FG-module. If V is a finite
dimensional vector space over F, then a fortiori V is finitely generated as an FG-
module (any F basis gives a set of generators over FG). Conversely, if V is finitely
generated as an F G-module, say by vy, . .., v, then one easily sees that V is spanned
as a vector space by the finite set {g - v; | g € G, 1 <i < k}. Thus

an FG-module is finitely generated if and only if it is finite dimensional.

Corollary 2. If G is a finite group and F is a field whose characteristic does not divide
|G|, then every finitely generated F G-module is completely reducible (equivalently,
every F-representation of G of finite degree is completely reducible).

Proof: Let V be a finitely generated F G-module. As noted above, V is finite
dimensional over F, so we may proceed by induction on its dimension. If V is irre-
ducible, it is completely reducible and the result holds. Suppose therefore that V has a
proper, nonzero F G-submodule U. By Maschke’s Theorem U has an F G-submodule
complement W, i.e., V = U & W. By induction, each of U and W are direct sums of
irreducible submodules, hence so is V. This completes the induction.

Corollary 3. Let G be a finite group, let F be a field whose characteristic does not
divide |G| and let ¢ : G —> GL(V) be a representation of G of finite degree. Then
there is a basis of V such that for each g € G the matrix of ¢(g) with respect to this
basis is block diagonal:

o (g)
»2(8)

¥m(8)
where ¢; is an irreducible matrix representation of G, 1 <i < m.
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Proof: By Corollary 2 we may write V = U, @ U, & - - - @ U,,, where U; is an
irreducible F G-submodule of V. Let B; be a basis of U; and let B be the union of the
B;’s. For each g € G, the matrix of ¢(g) with respect to the basis B is of the form in
the corollary, where ¢; (g) is the matrix of ¢ (g)|y, with respect to the basis B;.

The converse of Maschke’s Theorem is also true. Namely, if the characteristic
of F does divide |G|, then G possesses (finitely generated) F G-modules which are
not completely reducible. Specifically, the regular representation (i.e., the module FG
itself) is not completely reducible.

In Section 18.2 we shall discuss the question of uniqueness of the constituents in
direct sum decompositions of F G-modules into irreducible submodules.

EXERCISES

Let F be a field, let G be a finite group and let n € Z*.

1. Provethatif ¢ : G — GL(V) is any representation, then ¢ gives a faithful representation
of G/ker ¢.

2. Let ¢ : G —> GL,(F) be a matrix representation. Prove that the map g > det(¢(g)) is a
degree 1 representation.

3. Provethatthe degree I representations of G are in bijective correspondence with the degree
1 representations of the abelian group G/ G’ (where G’ is the commutator subgroup of G).

Let V be a (possibly infinite dimensional) FG-module (G is a finite group). Prove that
for each v € V there is an FG-submodule containing v of dimension < |G].

5. Prove thatif |G| > 1 then every irreducible FG-module has dimension < |G|.

6. Write out the matrices ¢(g) for every g € G for each of the following representations that
were described in the second set of examples:
(a) therepresentation of S3 described in Example 3-(let » = 3 in that example)
(b) the representation of Dg described in Example 6 (i.e., let » = 4 in that example and
write out the values of all the sines and cosines, for all group elements)
(c) the representation of Qg described in Example 7
(d) the representation of Qg described in Example 8.

7. Let V be the 4-dimensional permutation module for S4 described in Example 3 of the
second set of examples. Let w : Dg —> 84 be the permutation representation of Dg
obtained from the action of Dg by left multiplication on the set of left cosets of its subgroup
(s ). Make V into an F Dg-module via 7r as described in Example 4 and write out the 4 x 4
matrices for r and s given by this representation with respect to the basis ey, .. ., e3.

8. Let V bethe FS,-module described in Examples 3 and 10 in the second set of examples.
(a) Prove that if v is any element of V such that o - v = v forall 0 € S, then v is an
F-multiple of ¢; + €2 + - - - + €.
(b) Prove that if n > 3, then V has a unique 1-dimensional submodule, namely the
submodule N consisting of all F-multiples of ¢, + €2 + - - - + ep.
9. Prove that the 4-dimensional representation of Qg on H described in Example 8 in the
second set of examples is irreducible. [Show that any Qg-stable subspace is a left ideal.]

10. Prove that GL2(R) has no subgroup isomorphic to Qg. [This may be done by direct
computation using generators and relations for Og. Simplify these calculations by putting
one generator in rational canonical form.]

4
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11. Let ¢ : S, &> GL,(F) be the matrix representation given by the permutation module
described in Example 3 in the second set of examples, where the matrices are computed
withrespect tothe basis ey, . . ., e,. Prove that det ¢ (o) = e(o) forall o € S, where €(0)
is the sign of the permutation ¢. [Check this on transpositions.]

12. Assume the characteristic of F is not 2. Let H be the set of T € M,(F) such that T
has exactly one nonzero entry in each row and each column and zeros elsewhere, and the
nonzero entries are 1. Prove that H is a subgroup of GL,(F) and that H is isomorphic
to E» x S, (semidirect product), where Eo» is the elementary abelian group of order 2".

The next few exercises explore an important result known as Schur’s Lemma and some of its
consequences.

13. Let R be aring and let M and N be simple (i.e., irreducible) R-modules.
(a) Prove that every nonzero R-module homomorphism from M to N is an isomorphism.
[Consider its kemnel and image.)
(b) Prove Schur’s Lemma: if M is a simple R-module then Homg (M, M) is a division
ring (recall that Homg (M, M) is the ring of all R-module homomorphisms from M
to M, where multiplication in this ring is composition).

14. Lety : G & GL(V)be arepresentation of G. The centralizer of ¢ is defined to be the set
of all linear transformations, A, from V to itself such that Ap(g) = ¢(g)A forallg € G
(i.e., the linear transformations of V which commute with all ¢(g)’s).

(a) Prove that alinear transformation A from V to V is in the centralizer of ¢ if and only
if it is an FG-module homomorphism from V to itself (so the centralizer of ¢ is the
same as the ring Hompgg(V, V)).

(b) Show that if z is in the center of G then ¢(2) is in the centralizer of ¢.

(c) Assume ¢ is an irreducible representation (so V is a simple FG-module). Prove
that if H is any finite abelian subgroup of GL(V) such that Ap(g) = ¢(g)A for
all A € H then H is cyclic (in other words, any finite abelian subgroup of the
multiplicative group of units in the ring Homgg(V, V) is cyclic). [By the preceding
exercise, Hompg(V, V) is a division ring, so this reduces to proving that a finite
abelian subgroup of the multiplicative group of nonzero elements in a division ring
is cyclic. Show that the division subring generated by an abelian subgroup of any
division ring is a field and use Proposition 18, Section 9.5.]

(d) Show that if ¢ is a faithful irreducible representation then the center of G is cyclic.

(e) Deduce from (d) that if G is abelian and ¢ is any irreducible representation then
G/ker g is cyclic.

15. Exhibit all 1-dimensional complex representations of a finite cyclic group; make sure to
decide which are inequivalent.

16. Exhibit all 1-dimensional complex representations of a finite abelian group. Deduce that
the number of inequivalent degree 1 complex representations of a finite abelian group
equals the order of the group. [First decompose the abelian group into a direct product of
cyclic groups, then use the preceding exercise.]

17

Prove the following variant of Schur’s Lemma for complex representations of abelian
groups: if G is abelian, any irreducible complex representation, ¢, of G is of degree 1
and G/kerg is cyclic. [This can be done without recourse to Exercise 14 by using the
observation that for any g € G the eigenspaces of ¢(g) are G-stable. Your proof that ¢
has degree 1 should also work for infinite abelian groups.]

18. Prove the following general form of Schur’s Lemma for complex representations: if
¢ : G > GL,(C) is an irreducible matrix representation and A is an n x n matrix com-
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muting with ¢(g) for all g € G, then A is a scalar matrix. Deduce that if ¢ is a faithful,
irreducible, complex representation then the center of G is cyclic and ¢(z) is a scalar
matrix for all elements z in the center of G. [As in the preceding exercise, the eigenspaces
of A are G-stable.]

19. Provethatif G is an abelian group then any finite dimensional complex representation of G
isequivalent to a representation into diagonal matrices (i.e., any finite group of commuting
matrices over C can be simultaneously diagonalized). [This can be done without recourse
to Maschke’s Theorem by looking at eigenspaces.]

20. Prove that the number of degree 1 complex representations of any finite group G equals
|G : G’|, where G’ is the commutator subgroup of G. [Use Exercises 3 and 16.]

21. Let G beanoncyclic abelian group acting by conjugationon an elementary abelian p-group
V, where p is a prime not dividing the order of G.

(a) Prove thatif W is anirreducible F,G-submodule of V then there is some nonidentity
element g € G such that W < Cy(g) (here Cy (g) is the subgroup of elements of V
that are fixed by g under conjugation).

(b) Prove that V is generated by the subgroups Cy(g) as g runs over all nonidentity
elements of G.

22. Let p bea prime, let P be a p-group and let F be a field of characteristic p. Prove that
the only irreducible representation of P over F is the trivial representation. [Do this for a
group of order p first using the fact that F contains all p® roots of 1 (namely 1 itself). If
P is not of order p, let z be an element of order p in the center of P, prove that z is in the
kernel of the irreducible representation and apply induction to P/(z).]

23. Let p beaprime, let P be anontrivial p-group and let F be a field of characteristic p. Prove
that the regular representation is not completely reducible. [Use the preceding exercise.]

24. Let p be a prime, let P be a nontrivial p-group and let F be a field of characteristic p.
Prove that the regular representation is indecomposable.

18.2 WEDDERBURN’S THEOREM AND SOME CONSEQUENCES

In this section we give a famous classification theorem due to Wedderburn which de-
scribes, in particular, the structure of the group algebra FG when the characteristic
of F does not divide the order of G. From this classification theorem we shall derive
various consequences, including the fact that for each finite group G there are only a
finite number of nonisomorphic irreducible F G-modules. This result, together with
Maschke’s Theorem, in some sense completes the Holder Program for representation
theory of finite groups over such fields. The remainder of the book is concerned with
developing techniques for determining and working with the irreducible representations
as well as applying this knowledge to obtain group-theoretic information.

Theorem 4. (Wedderburn’s Theorem) Let R be a nonzero ring with 1 (not necessarily
commutative). Then the following are equivalent:

(1) every R-module is projective

(2) every R-module is injective

(3) every R-module is completely reducible

(4) the ring R considered as a left R-module is a direct sum:

R=L1®L2®"'®Lna
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where each L; is a simple module (i.e., a simple left ideal) with L; = Re;, for
some ¢; € R with
() ee; =0ifi #j
(i) 2 = ¢; foralli
i) Y e =1
(5) asrings, R is isomorphic to a direct product of matrix rings over division rings,

ie, R = R X Ry x - -+ x R, where R; is a two-sided ideal of R and R; is
isomorphic to the ring of all n; x n; matrices with entries in a divisionring A;,
Jj=1,2,...,r. Theinteger r, the integers n;, and the division rings A; (up to
isomorphism) are uniquely determined by R.

Proof: A proof of Wedderburn’s Theorem is outlined in Exercises 1 to 10

Definition. A ring R satisfying any of the (equivalent) properties in Theorem 4 is
called semisimple with minimum condition.

Rings R satisfying any of the equivalent conditions of Theorem 4 also satisfy the
minimum condition or descending chain condition (D.C.C) on left ideals:

iflh 2L 2 .- isadescending chain of left ideals of R
then thereis an N € Z* such that I, = Iy forallk > N

(which explains the use of this term in the definition above). The rings we deal with
will all have this minimum condition. For example, group algebras always have this
property since in any strictly descending chain of ideals the vector space dimensions of
the ideals (which are F-subspaces of F G) are strictly decreasing, hence the length of a
strictly descending chain is at most the dimension of F G (= |G|). We shall therefore use
the term “semisimple” to mean “semisimple with minimum condition.” Therings R; in
conclusion (5) of Wedderbum’s Theorem are called the Wedderburn components of R
and the direct product decomposition of R is called its Wedderburn decomposition. Note
that Wedderburn’s Theorem for commutative rings is a consequence of the classification
of Artinian rings in Section 16.1. A commutative semisimple ring with minimum
condition is an Artinian ring with Jacobson radical equal to zero and so is a direct
product of fields (which are its Wedderburn components).

One should note that condition (5) is a two-sided condition which describes the
overall structure of R completely (the ring operations in this direct product of rings are
componentwise addition and multiplication). In particular it implies that a semisimple
ring also has the minimum condition on right ideals. A useful way of thinking of the
elements of the direct product R; X --- X R, in conclusion (5) is as n x n (block diagonal)
matrices of the form A

1

Ay

A,

where A; is an arbitrary n; x n; matrix with entries from A; (here n = 2,' —1 hi)-
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Recall from Section 10.5 that an R-module Q is injective if whenever Q is a
submodule of any R-module M, then M has a submodule N suchthat M = Q & N.
Maschke’s Theorem therefore implies:

Corollary S. If G is a finite group and F is a field whose characteristic does not divide
|G|, then the group algebra F G is a semisimple ring.

Before obtaining more precise information about how the invariants n, r, A;, etc.,
relate to invariants in group rings F' G for certain fields F, we first study the structure
of matrix rings (i.e., the rings described in conclusions (4) and (5) of Wedderbum’s
Theorem). We introduce some terminology which is used extensively in ring theory.
Recall that the center of the ring R is the subring of elements commuting with all
elements in R; it will be denoted by Z(R) (the center will contain 1 if the ring has a 1).

Definition.
(1) A nonzero element e in aring R is called an idempotent if > = e.
(2) Idempotents e; and e; are said to be orthogonal if e;e; = e;e; = 0.
(3) Anidempotent e is said to be primitive if it cannot be written as a sum of two
(commuting) orthogonal idempotents.
(4) The idempotent e is called a primitive central idempotent if e € Z(R) and e
cannot be written as a sum of two orthogonal idempotents in the ring Z(R).

Proposition 6 describes the ideal structure of amatrix ring and Proposition 8 extends
these results to direct products of matrix rings.

Proposition 6. Let A be a division ring, let n € Z*, let R be the ring of all n x n
matrices with entries from A and let I be the identity matrix (= the 1 of R).

(1) The only two-sided ideals of R are 0 and R.

(2) The centerof R consists of the scalar matrices o/, where « is in the center of A:
Z(R) = {al | @ € Z(A)}, and this is a field isomorphic to Z(A). In particular,
if A is a field, the center of R is the subring of all scalar matrices. The only
central idempotent in R is I (in particular, / is primitive).

(3) Lete; be the matrix with a 1 in position i, i and zeros elsewhere. Thene;, ..., e,
are orthogonal primitive idempotents and ) ;_, ¢; = 1.

(4) L; = Re; is the left ideal consisting of arbitrary entries in column i and zeros
in all other columns. L; is a simple left R-module. Every simple left R-module
is isomorphic to L; (in particular, all L; are isomorphic R-modules) and as a
left R-module we have R=L®---&® L,.

Before proving this proposition it will be useful to have the following result.

Lemma 7. Let R be an arbitrary nonzero ring.
(1) If M and N are simple R-modules and ¢ : M — N is a nonzero R-module
homomorphism, then ¢ is an isomorphism.
(2) (Schur’s Lemma) If M is a simple R-module, then Homg (M, M) is a division
ring.
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Proof of Lemma 7: To prove (1) note that since ¢ is nonzero, ker ¢ is a proper
submodule of M. By simplicity of M we have ker ¢ = 0. Similarly, the image of ¢
is a nonzero submodule of the simple module N, hence ¢(M) = N. This proves ¢ is
bijective, so (1) holds.

By part (1), every nonzero element of the ring Homg (M, M) is an isomorphism,
hence has an inverse. This gives (2).

Proof of Proposition 6 Let A be an arbitrary matrix in R whose i, j entry is a;;.
Let E;; be the matrix with a 1 in position i, j and zeros elsewhere. The following
straightforward computations are left as exercises:

% row equals the j® row of A and all other rows are

(i) E;;A is the matrix whose i
Zero.

(ii) AE;; is the matrix whose 7 column equals the i column of A and all other
columns are zero.

(iii) E,,AE,, is the matrix whose p, s entry is a,- and all other entries are zero.

To prove (1) suppose J is any nonzero 2-sided ideal of R and let A be an element
of J with a nonzero entry in position g, r. Givenany p, s € {1, ..., n} we obtain from
(iii) that

Ey = iquAE” e J.
agr
Since the A-linear combinations of {E,; | 1 < p < n, 1 <s < n} give all of R, it
follows that J = R. This proves (1).

To prove (2) assume A € Z(R). Thus for all i, j we have E;;A = AE;;. From
(1) and (ii) above it follows immediately that all off-diagonal entries of A are zero and
all diagonal entries of A are equal. Thus A = «l for some ¢ € A. Furthermore, A
must also commute with the set of all scalar matrices 81, 8 € A, i.e., @ must commute
with all elements of A. Finally, since Z(R) is a field, it is immediate that it contains a
unique idempotent (namely 7). This establishes all parts of (2).

In part (3) it is clear that ey, . . ., e, are orthogonal idempotents whose sum is /.
We defer proving that they are primitive until we have established (4).

Next we prove (4). From (ii) above it follows that Re; = RE;; is the set of matrices
with arbitrary entries in the i column and zeros in all other columns. Furthermore,
if A is any nonzero element of Re;, then certainly RA € Re;. The reverse inclusion
holds because if a; is a nonzero entry of A, then by (i) above

e, =E; = LE,',,A € RA.
Qpi

This proves Re; = RA for any nonzeroelement A € Re;, and so Re; must be a simple
R-module.

Let M be any simple R-module. Since Im = m for allm € M and since I =
Y i_, i, there exists some i and some m € M such that e;m 3 0. For this i and m the
map re; —> re;m is a nonzero R-module homomorphism from the simple R-module
Re; to the simple module M. By Lemma 7(1) it is an isomorphism. By (ii), the map
r — rE; gives Re; = Re,. Finally, every matrix is the direct sum of its columns so
R=L;®---® L,. This completes the proof of (4).
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It remains to prove that the idempotents in part (3) are primitive. If e; = a + b, for
some orthogonal idempotents a and b, then we shall see that

L,' = Re,- = Ra @Rb

This will contradict the fact that L; is a simple R-module. To establish the above direct
sum note first that since ab = ba = 0, we have ae; = a € Re; and be; = b € Re;. For
all » € R we have re; = ra + rb, hence Re; = Ra + Rb. Moreover, RaN Rb =0
because if ra = sb for some r, s € R, then ra = raa = sba = 0 (recall a = a? and
ba = 0). This completes all parts of the proof.

Proposition 8. Let R = Ry x R; x - - - X R,, where R; is the ring of n; x n; matrices
over the division ring A;, fori = 1,2,...,r.
(1) Identify R; with the i component of the direct product. Let z; be the r-tuple
with the identity of R; in position i and zero in all other positions. Then
R; =ziRandforanya € R;, zia = aand zja = O for all j # i. The elements
21, - . . , Zr are all of the primitive central idempotents of R. They are pairwise
orthogonaland ) ;_, zi = 1.
(2) Let N be any left R-module and let z;N = {z;x | x € N},1 <i <r. Then
z; N is a left R-submodule of N, each z; N is an R;-module on which R; acts
trivially for all j # i, and

N=zuNOuN&---&zN.

(3) The simple R-modules are the simple R;-modules on which R; acts trivially
for j # i in the following sense. Let M; be the unique simple R;-module (cf.
Proposition 6). We may consider M; as an R-module by letting R; act trivially
forall j #i. Then M,, ..., M, are pairwise nonisomorphic simple R-modules
and any simple R-module is isomorphic to one of M, ..., M,. Explicitly, the
R-module M; is isomorphic to the simple left ideal (0, ..., 0, L%, 0, ..., 0) of
all elements of R whose i component, L%, consists of matrices with arbitrary
entries in the first column and zeros elsewhere.

(4) Forany R-module N the R-submodule z; N is adirect sum of simple R-modules,
each of which is isomorphic to the module M; in (3). In particular, if M is a
simple R-module, then there is a unique i such that z; M = M andfor this index
i we have M = M;; forall j #1i,z;M = 0.

(5) If each A; equals the field F, then R is a vector space over F of dimension
Y ;_;n?and dimgZ(R) =r.

Proof: In part (1) since multiplication in the direct product of rings is componen-

twise it is clear that z; times the element (ai, ...,a,) of R is the r-tuple with a; in
position i and zeros elsewhere. Thus R; = z; R, z; is the identity in R; and z;a = 0 if
a € R; forany j # i. Itis also clear that z1, ..., z, are pairwise orthogonal central

idempotents whose sum is the identity of R. The central idempotents of R are, by
definition, the idempotents in Z(R) = F; x F; x --- x F,, where F; is the center of R;.
By Proposition 6, F; is the field Z(A;). If w = (w, ..., w,) is any central idempotent
then w; € F; foralli, and since w?> = w we have w,.2 = wj; in the field F;. Since Oand 1

are the only solutions to x?> = x in a field, the only central idempotents in R are r-tuples
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whose entries are 0’s and 1’s. Thus zy, ..., z, are primitive central idempotents and
since every central idempotent is a sum of these, they are the complete set of primitive
central idempotents of R. This proves (1).

To prove (2) let N be any left R-module. First note that for any z € Z(R) the
set {zx | x € N} is an R-submodule of N. In particular, z; N is an R-submodule.
Let z;x € z;N and let a € R; for some j # i. By (1) we have that a = az; and
so azix = (az;j)(zix) = azizjx = 0 because z;z; = 0. Thus the R-submodule
ziN is acted on trivially by R; for all j # i. For eachx € N we have by (1) that
x=1lx=zix+---+zx,hence N =z;N + --- + z,N. Finally, this sum is direct
because if, for instance, x € z;N N (zaN + - - -+ z, N), then x = z;x whereas z; times
any element of z;N + - - - + z, N is zero. This proves (2).

In part (3) first note that an R;-module M becomes an R-module when R; is defined
to act trivially on M for all j # i. For such amodule M the R-submodules are the same
as the R;-submodules. Thus M; is a simple R-module for each i since it is a simple
R;-module.

Next, let M be a simple R-module. By 2), M = zzM & --- @ z, M. Since M
has no nontrivial proper R-submodules, there must be a unique i such that M = z; M
and z;M = Oforall j # i. Thus the simple R-module M is annihilated by R; for all
J # i. This implies that the R-submodules of M are the same as the R;-submodules
of M, so M is therefore a simple R;-module. By Proposition 6, M is isomorphic as an
R;-module to M;. Since R; acts trivially on both M and M; for all j # i, it follows
that the R;-module isomorphism may be viewed as an R-module isomorphism as well.

Supposei # j and suppose ¢ : M; — M; is an R-module isomorphism. If's; € M;
then s; = z;s; so

©(si) = ¢(zisi) = zip(s;) =0,

since ¢(s;) € M; and z; acts trivially on M;. This contradicts the fact that ¢ is an iso-
morphism and proves that My, ..., M, are pairwise nonisomorphic simple R-modules.

Finally, the left ideal of R described in (3) is acted on trivially by R; for all j # i
and, by Proposition 6, it is up to isomorphism the unique simple R;-module. This left
ideal is therefore a simple R-module which is isomorphic to M;. This proves (3).

For part (4) we have already proved that if M is any simple R-module then there is
aunique i suchthatz; M = M and z; M = Oforall j # i. Furthermore, we have shown
that for this index i the simple R-module M is isomorphic to M;. Now let N be any
R-module. Then z; N is amodule over R; which is acted on trivially by R; forall j # i.
By Wedderburn’s Theorem z; N is a direct sum of simple R-modules. Since each of
these simple summands is acted on trivially by R; for all j # i, each is isomorphic to
M;. This proves (4).

In part (5) if each A; equals the field F, then as an F-vector space

R f=v Mnl(F)ean(F)eB"' @Mn,(F)

2 over F, hence R hasdimension ) ;_, n? over

Each matrix ring M,, (F) has dimension n; i1 1
F. Furthermore, the center of each M, (F) is 1-dimensional (since by Proposition 6(2)
it is isomorphic to F), hence Z(R) has dimension r over F. This completes the proof

of the proposition.
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We now apply Wedderburn’s Theorem (and the above ring-theoretic calculations)
to the group algebra FG. First of all, in order to apply Wedderburn’s Theorem we
need the characteristic of F not to divide |G|. In fact, since we shall be dealing with
numerical data in the sections to come it will be convenient to have the characteristic of
F equal to 0. Secondly, it will simplify matters if we force all the division rings which
will appear in the Wedderburn decomposition of F G to equal the field F — we shall
prove that imposing the condition that F be algebraically closed is sufficient to ensure
this. To simplify notation we shall therefore take F = C for most of the remainder of
the text. The reader can easily check that any algebraically closed field of characteristic
0 (e.g., the field of all algebraic numbers) can be used throughout in place of C.

By Corollary 5 the ring CG is semisimple so by Wedderburn’s Theorem

CG=ZR xRy x--- xR,

where R; is the ring of n; x n; matrices over some division ring A;. Thinking of the
elements of this direct product as n x n block matrices (n = ) ;_, n;) where the i
block has entries from A;, the field C appears in this direct product as scalar matrices
and is contained in the center of CG. Note that each A; is a vector space over C of
dimension < n. The next result shows that this implies each A; = C.

Proposition 9. If A is a division ring that is a finite dimensional vector space over an
algebraically closed field F and F C Z(A), then A = F.

Proof: Since F € Z(A), for each a € A the division ring generated by « and F
is a field. Also, since A is finite dimensional over F the field F () is a finite extension
of F. Because F is algebraically closed it has no nontrivial finite extensions, hence
F(a) = Fforalla € A,ie., A= F.

This proposition proves that each R; in the Wedderburn decomposition of CG is a

matrix ring over C:
Ri = M, (C).

Now Proposition 8(5) implies that
D n?=|Gl.
i=1
The final application in this section is to prove thatr (= the number of Wedderburn
components in CG) equals the number of conjugacy classes of G. To see this, first
note that Proposition 8(5) asserts that r = dim¢Z(CG). We compute this dimension
in another way.
Let Ky, ..., K, be the distinct conjugacy classes of G (recall that these partition
G). For each conjugacy class K; of G let

Xi=) g €CG. -
geK;

Note that X; and X ; have nocommonterms for i # j, hence they are linearly indepen-
dent elements of CG. Furthermore, since conjugation by a group element permutes the

860 Chap. 18  Representation Theory and Character Theory



elements of each class, h 1 X;h = X;, i.e., X; commutes with all group elements. This
proves that X; € Z(CG).

We show the X;’s form a basis of Z(CG), which will prove s = dim¢cZ(CG) =r.
Since the X;’s are linearly independent it remains to show they span Z(CG). Let
X = dec agg be an arbitrary element of Z(CG). Since h'Xh =X,

Z agh_‘gh = Z QL.

geG geG

Since the elements of G form a basis of CG the coefficients of g in the above two sums
are equal:

Cpgh—! = Qg.

Since h was arbitrary, every element in the same conjugacy class of a fixed group
element g has the same coefficient in X, hence X can be written as a linear combination
of the X;’s.

We summarize these results in the following theorem.

Theorem 10. Let G be a finite group.
@ CG =M, (C)x M, (C) x --- x M, (C).
(2) CG has exactly r distinct isomorphism types of irreducible modules and these

have complex dimensions n;, n, ..., n, (and so G has exactly r inequivalent
irreducible complex representations of the corresponding degrees).
@) 3iyni =IGl.

(4) r equals the number of conjugacy classes in G.

Corollary 11.

(1) Let A be a finite abelian group. Every irreducible complex representation
of A is 1-dimensional (i.e., is a homomorphism from A into C*) and A has
| A| inequivalent irreducible complex representations. Furthermore, every finite
dimensional complex matrix representation of A is equivalent to arepresentation
into a group of diagonal matrices.

(2) The number of inequivalent (irreducible) degree 1 complex representations of
any finite group G equals |G/G’|.

Proof: If A is abelian, CA is a commutative ring. Since a k x k matrix ring is not
commutative whenever k > 1 we must have each n; = 1. Thus r = | A| (= the number
of conjugacy classes of A). Since every CA-module is a direct sum of irreducible
submodules, there is a basis such that the matrices are diagonal with respect to this
basis. This establishes the first part of the corollary.

For a general group G, every degree 1 representation, ¢, is a homomorphism of G
into C*. Thus ¢ factors through G/G’. Conversely, every degree 1 representation of
G/ G’ gives, by composition with the natural projection G — G/G’, adegree 1 repre-
sentation of G. The degree 1 representations of G are therefore precisely the irreducible
representations of the abelian group G/G’. Part (2) is now immediate from (1).
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Examples

(1) The irreducible complex representations of a finite abelian group A (i.e., the homo-
morphisms from A into C*) can be explicitly described as follows: decompose A into
a direct product of cyclic groups

A=Ci x---xCy

where |C;| = |(x; )] = d;. Map each x; to a (not necessarily primitive) d;™ root of
1 and extend this to all powers of x; to give a homomorphism. Since there are d;
choices for the image of each x;, the number of distinct homomorphisms of A into
C* = GL(C) defined by this process equals |A|. By Corollary 11, these are all the
irreducible representations of A. Note that it is necessary that the field contain the
appropriate roots of 1 in order to realize these representations. An exercise below
explores the irreducible representations of cyclic groups over Q.

(2) Let G = S3. By Theorem 10 the number of irreducible complex representations of
G is three (= the number of conjugacy classes of S3). Since the sum of the squares
of the degrees is 6, the degrees must be 1, 1 and 2. The two degree 1 representations
are immediately evident: the trivial representation and the representation of S3 into
{%1} given by mapping a permutation to its sign (i.e., o — +1if o is an even permu-
tation and o > —1 if o is an odd permutation). The degree 2 representation can be
found by decomposing the permutation representation on 3 basis vectors (described
in Section 1) into irreducibles as follows: let S3 act on the basis vectors ey, ez, e3 of a
vector space V by permuting their indices. The vector ¢ = e) + e2 + e3 is a nonzero
fixed vector, so ¢ spans a 1-dimensional G-invariant subspace (which is a copy of the
trivial representation). By Maschke’s Theorem there is a 2-dimensional G-invariant
complement, I. Note that the permutation representation is not a sum of degree 1
representations: otherwise it could be represented by diagonal matrices and the per-
mutations would commute in their action — this is impossible since the representation
is faithful and G is non-abelian. Thus 7 cannot be decomposed further, so I affords the
irreducible 2-dimensional representation. Indeed, I is the “augmentation” submodule
described in Section 1:

I={weV|w=ae +a2e2 +a3e3 with «)+ a2 +a3 =0).

Clearly e; —e; and e2 —e3 are independent vectors in 1, hence they form a basis for this
2-dimensional space. With respect to this basis of I we obtain a matrix representation
of S3 and, for example, this matrix representation on two elements of S3 is

(12)»(‘(1) }) and (123).-»(‘]) :})

(3) We decompose the regular representation over C of an arbitrary finite group. Recall
that this is the representation afforded by the left CG-module CG itself. By Theorem
10, CG is first of all a direct product of two-sided ideals:

CG = M,,(C) x Mp,(C) x - - - x M, (C).

Now by Proposition 6(4) each M,,(C) decomposes further as a direct sum of n;
isomorphic simple left ideals. These left ideals give a complete set of isomorphism
classes of irreducible CG-modules. Thus the regular representation (over C) of G
decomposes as the direct sum of all irreducible representations of G, each appearing
with multiplicity equal to the degree of that irreducible representation.

Werecord one additional property of CG which we shall prove in Section 19.2.
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Theorem 12. The degree of each complex irreducible representation of a finite group
G divides the order of G, i.e., in the notation of Theorem 10, each n; divides |G| for
i=1,2,...,r.

In the next section we shall describe the primitive central idempotents of CG in
terms of the group elements.

EXERCISES

Let G be a finite group and let R be aring with 1.
1. Prove that conditions (1) and (2) of Wedderburm’s Theorem are equivalent.

2. Prove that (3) implies (2) in Wedderburm’s Theorem. [Let Q be a submodule of an R-
module N. Use Zom’s Lemma to show there is a submodule M maximal with respect to
ONM=0.If Q+ M = N, then (2) holds; otherwise let M; be the complete preimage
in N of some simple module in N/M not contained in (Q + M)/M, and argue that M
contradicts the maximality of M.]

3. Prove that (4) implies (3) in Wedderburn’s Theorem. [Let N be a nonzero R-module. First
show N contains simple submodules by considering a cyclic submodule. Then use Zorn’s
Lemma applied to the set of direct sums of simple submodules (appropriately ordered) to
show that N contains a maximal completely reducible submodule M. If M # N let M;
be the complete preimage in N of a simple module in N/M and contradict the maximality
of M.]

4. Prove that (5) implies (4) in Wedderburn’s Theorem. [Use the methods in the proofs of
Propositions 6 and 8 to decompose each R; as a left R-module.]

The next six exercises establish some general results about rings and modules that imply the
remaining implication of Wedderburn’s Theorem: (2) implies (5). In these exercises assume
R satisfies (2): every R-module is injective.

5. Show that R has the descending chain condition (D.C.C.) on left ideals. Deduce that R is
a finite direct sum of left ideals. [If not, then show that as a left R-module R is a direct
sum of an infinite number of nonzero submodules. Derive a contradiction by writing the
element 1 in this direct sum.]

6. Show that R = Ry x Ry x - - - x R, where R; is a 2-sided ideal and a simple ring (i.e.,
has no proper, nonzero 2-sided ideals). Show each R; has an identity and satisfies D.C.C.
on left ideals. [Use the preceding exercise to show R has a minimal 2-sided ideal R;. As
aleft R-module R = R; @ R’ for some leftideal R'. Show R’ is a right ideal and proceed
inductively using D.C.C.]

7. Let S be a simple ring with 1 satisfying D.C.C. on left ideals and let L be a minimal
left ideal in S. Show that S = L" as left S-modules, where L" = L @ --- @ L withn
factors. [Argue by simplicity that LS = Ssol = lys;1 + -+ - + I,s, forsome [; € L
and s; € S with n minimal. Show that the map (x1,...,x,) > X151 +-- -+ xpsp is a
surjective homomorphism of left S-modules; use the minimality of L and n to show it is
an injection.]

8. Let A be any ring with 1, let L be any left A-module and let L" be the direct sum of n
copies of L with itself.

(a) Prove the ring isomorphism Homga (L", L") = M, (D), where D = Homa(L, L)
(multiplication in the ring Homa (X, X) is function composition, cf. Proposition 2(4)
in Section 10.2).
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10.

11.
12.

13.

14.

15.

16.

17.

18.

(b) Deduce that if L is a simple A-module, then Homy4 (L", L") is isomorphic to a matrix
ring over a division ring. [Use Schur’s Lemma and (a).]

(c) Prove the ring isomorphism Homg (A, A) = A°PP, where A°PP is the opposite ring to
A (the elements and addition are the same as in A but the value of the product x - y
in APP is yx, computed in A), cf. the end of Section 17.4. [Any homomorphism is
determined by its value on 1.]

. Prove that if S is a simple ring with 1 satisfying D.C.C. on left ideals then S = M, (A) for

some division ring A. (This result together with Exercise 6 completes the existence part of

the proof that (2) implies (5) in Wedderburn’s Theorem). [Use Exercises 7 and 8 to show

§°PP = Homg(L", L") = M, (D) for some division ring D. Then show S = M,(A),

where A is the division ring DPP ]

Prove that A and n in the isomorphism S = M, (A) of the previous exercise are uniquely

determined by S (proving the uniqueness statement in Wedderburn’s Theorem), as follows.

Suppose S = M,,(A) = M,y(A’) as rings, where A and A’ are division rings.

(a) Prove that A = Homg(L, L) where L is a minimal left ideal in S. Deduce that
A = A’. [Use Proposition 6(4).]

(b) Prove that a finitely generated (left) module over a division ring A has a “basis” (a
linearly independent generating set), and that any two bases have the same cardinality.
Deduce that n = n’. [Mimic the proof of Corollary 4(2) of Section 11.1.]

Prove that if R is a ring with 1 such that every R-module is free then R is a division ring.

Let F be afield, let f(x) € F[x]andlet R = F[x]/(f(x)). Find necessary and sufficient
conditions on the factorization of f(x) in F[x] so that R is a semisimple ring. When R is
semisimple, describe its Wedderburn decomposition. [See Proposition 16 in Section 9.5.]

Let G be the cyclic group of order n and let R = QG. Describe the Wedderburn decom-
position of R and find the number and the degrees of the irreducible representations of
G over Q. In particular, show that if n = p is a prime then G has exactly one nontrivial
irreducible representation over Q and this representation has degree p — 1. [Recall from
the first example in Section 1 that QG = Q[x]/(x" — 1). Use Proposition 16 in Section
9.5 and results from Section 13.6.]

Let pbeaprimeandlet F = F, be the field of order p. Let G be the cyclic group of order
3 and let R = FG. For each of p =2 and p = 7 describe the Wedderburn decomposition
of R and find the number and the degrees of the irreducible representations of G over F.
Prove that if P is a p-group for some prime p, then P has a faithful irreducible complex
representation if and only if Z(P) is cyclic. [Use Exercise 18 in Section 1, Theorem 6.1(2)
and Example 3.]

Prove that if V is an irreducible FG-module and F is an algebraically closed field then
Hompgg(V, V) is isomorphic to F (as a ring).

Let F be afield, let R = M, (F) and let M be the unique irreducible R-module. Prove
that Homg (M, M) is isomorphic to F (as aring).

Find all 2-sided ideals of M,,(Z).

18.3 CHARACTER THEORY AND THE ORTHOGONALITY RELATIONS

In general, for groups of large order the representations are difficult to compute and
unwieldy if not impossible to write down. For example, a matrix representation of
degree 100 involves matrices with 10,000 entries, and a number of 100 x 100 matrices
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may be required to describe the representation, even on a set of generators for the
group. There are, however, some striking examples where large degree representations
have been computed and used effectively. One instance of this is a construction of
the simple group J; by Z. Janko in 1965 (the existence problem for simple groups
was discussed at the end of Section 6.2). Janko was investigating certain properties
of simple groups and he found that if any simple group possessed these properties,
then it would necessarily have order 175,560 and would be generated by two elements.
Furthermore, he proved that a hypothetical simple group with these properties must
have a 7-dimensional representation over the field [;; with two generators mapping to
the two matrices

01 0O0O0O0TPO -3 2 -1 -1 -3 -1 -3
001 00 00O -2 1 1 3 1 3 3
0 001 00O00DO -1 -1 -3 -1 -3 -3 2
oooo010©O0}ad) -1 3 -1 -3 -3 2 -1
00 O0O0O0OT10D0 -3 -1 -3 -3 2 -1 -1
00 00O O1 1 3 3 -2 1 1 3
1 000 0O0O 3 3 -2 1 1 3 1

(note that for any simple group S, every representation of S into GL, (F) which does
not map all group elements to the identity matrix is a faithful representation, so S is
isomorphic to its image in GL, (F)). In particular, Janko’s calculations showed that
the simple group satisfying his properties was unique, if it existed. M. Ward was able
to show that these two matrices do generate a subgroup of G L7 (F;) of order 175,560
and it follows that there does exist a simple group satisfying Janko’s properties.

In a similar vein, S. Norton, R. Parker and J. Thackray constructed the simple group
J4 of order 86,775,571,046,077,562,880 using a 112-dimensional representation over
[F,. This group was shown to be generated by two elements, and explicit matrices in
G L2 () for these two generators were computed in the course of their analysis.

In 1981, R. Griess constructed the largest of the sporadic groups, the so called
Monster, of order

246.320 .59 .76.112.13%.17.19-23.29-31-41-47-59-71.

His proof involves calculations of automorphisms of an algebra over C of dimension
196,884 and leads to a construction of the Monster by means of a representation of this
degree.

By analogy, in general it is difficult to write out the explicit permutations associated
to a permutation representation ¢ : G — S, for large degrees n. There are, however,
numerical invariants such as the signs and the cycle types of the permutations 77 (g) and
these numerical invariants might be easier to compute than the permutations themselves
(i.e., it may be possible to determine the cycle types of elements without actually having
to write out the permutations themselves, as in the computation of Galois groups over
Q in Section 14.8). These invariants alone may provide enough information in a given
situation to carry out some analysis, such as prove that a given group is not simple (as
illustrated in Section 6.2). Furthermore, the invariants just mentioned do not depend on
the labelling of the set {1, 2, ..., n} (i.e., they are independent of a “change of basis”
in S,)) and they are the same for elements that are conjugate in G.
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In this section we show how to attach numerical invariants to linear representations.
These invariants depend only on the equivalence class (isomorphism type) of the rep-
resentation. In other words, for each representation ¢ : G - GL, (F) we shall attach
an element of F' to each matrix ¢(g) and we shall see that this number can, in many
instances, be computed without knowing the matrix ¢(g). Moreover, we shall see that
these invariants are independent of the similarity class of ¢ (i.e., are the same for a fixed
g € G if the representation ¢ is replaced by an equivalent representation) and that they,
in some sense, characterize the similarity classes of representations of G.

Throughout this section G is a finite group and, for the moment, F is an arbitrary
field. All representations considered are assumed to be finite dimensional.

Definition.
(D) A class function is any function from G into F which is constant on the con-

jugacy classes of G, i.e., f : G — F such that f(g~'xg) = f(x) for all

g,x€aq.

(2) If ¢ is arepresentation of G afforded by the FG-module V, the character of ¢

is the function
x:G—> F defined by x(g) =tre(g),

where tr¢(g) is the trace of the matrix of ¢(g) with respect to some basis of
V (i.e., the sum of the diagonal entries of that matrix). The character is called
irreducible or reducible according to whether the representation is irreducible
or reducible, respectively. The degree of a character is the degree of any repre-
sentation affording it.

In the notation of the second part of this definition we shall also refer to x as the
character afforded by the F G-module V. In general, a character is not ahomomorphism
from a group into either the additive or multiplicative group of the field.

Examples
(1) The character of the trivial representation is the function x (g) = 1 for all g € G. This

character is called the principal character of G.

(2) Fordegree 1 representations, the character and the representation are usually identified

(by identifying a 1 x 1 matrix with its entry). Thus for abelian groups, irreducible
complex representations and their characters are the same (cf. Corollary 11).

(3) LetI1 : G — S, be a permutation representation and let ¢ be the resulting linear

866

representation on the basis ey, .. ., e, of the vector space V:

o(8)(ei) = en(e)i)

(cf. Example 4 of Section 1). With respect to this basis the matrix of ¢(g) hasa 1
in the diagonal entry i, i if I1(g) fixes i; otherwise, the matrix of ¢(g) has a zero in
position i, i. Thus if 7 is the character of ¢ then

7r(g) = the number of fixed points of g on {1, 2, ..., n}.

In particular, if IT is the permutation representation obtained from left multiplication
on the set of left cosets of some subgroup H of G then the resulting character is called
the permutation character of G on H.
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(4) The special case of Example 3 when [T is the regular permutation representation of
G is worth recording: if ¢ is the regular representation of G (afforded by the module
FG) and p is its character:

(@) [ 0 ifg#1

PE=1 161 ifg=1.

The character of the regular representation of G is called the regular character of G.
Note that this provides specific examples where a character takes on the value 0 and
is not a group homomorphism from G into either F or F*.

(5) Let ¢ : Dy, - GL2(R) be the explicit matrix representation described in Example 6
in the second set of examples of Section 1. If x is the character of ¢ then, by taking
traces of the given 2 x 2 matrices one sees that x (r) = 2 cos(2rr/n) and x(s) = O.
Since ¢ takes the identity of D;, to the 2 x 2 identity matrix, x (1) = 2.

(6) Let ¢ : Qg — GL;(C) be the explicit matrix representation described in Example 7
in the second set of examples of Section 1. If x is the character of ¢ then, by taking
traces of the given 2 x 2 matrices, x (i) = Oand x (j) = 0. Sincetheelement —1 € Qg
maps to minus the 2 x 2 identity matrix, x (—1) = —2. Since ¢ takes the identity of
Qs to the 2 x 2 identity matrix, x (1) = 2.

(7) Let ¢ : Qg — GL4(R) be the matrix representation described in Example 8 in the
second set of examples of Section 1. If yx is the character of ¢ then, by inspection of
the matrices exhibited, x (i) = x (j) = 0. Since ¢ takes the identity of Qg tothe 4 x 4
identity matrix, x (1) = 4.

Forn x n matrices A and B, direct computation shows thattr AB = tr BA. If A is
invertible, this implies that
trA'BA=uB.

Thus the character of arepresentation is independent of the choice of basis of the vector
space affording it, i.e.,

equivalent representations have the same character. (18.1)

Let ¢ be a representation of G of degree n with character x. Since (g~ !xg) is
0(8) o (x)p(g) for all g, x € G, taking traces shows that

the character of a representation is a class function. (18.2)

Since the trace of the n x n identity matrix is n and ¢ takes the identity of G to the
identity linear transformation (or matrix),

X (1) is the degree of ¢. (18.3)

If V is an F G-module whose corresponding representation has character y, then
each element of the group ring F G acts as a linear transformation from V to V. Thus
each ) . @8 € FG has atrace when itis considered as a linear transformation from
V to V. The trace of g € G acting on V is, by definition, x(g). Since the trace of
any linear combination of matrices is the linear combination of the traces, the trace of
2 gec @8 actingon V is 3, og x(g). Note that this trace function on FG is the
unique extension of the character x of G to an F-linear transformation from FG to F.
In this way we shall consider characters of G as also being defined on the group ring
FG.
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Notice in Example 3 above that if the field F has characteristic p > 0, the values of
the character mod p might be zero even though the number of fixed points is nonzero.
In order to circumvent such anomalies and to use the consequences of Wedderburn’s
Theorem obtained when F is algebraically closed we again specialize the field to be the
complex numbers (or any algebraically closed field of characteristic 0). By the results
of the previous section

CG = M, (C) x M,,(C) x - - - x M, (). (184)

For the remainder of this section fix the following notation:

My, M,, ..., M, are the inequivalent irreducible CG-modules, 185
Xi is the character afforded by M;, 1<i<r. (18.5)
Thus r is the number of conjugacy classes of G and we may relabel M, ..., M, if

necessary so that the degree of x; is n; for all 7 (which is also the dimension of M; over
O).

Now every (finite dimensional) CG-module M is isomorphic (equivalent) to a direct
sum of irreducible modules:

M=aM®a;M;®---DaM,, (18.6)
where g; is a nonnegative integer indicating the multiplicity of the irreducible module
M; in this direct sum decomposition, i.e.,

a; times
e e,
aiM,‘ =Mi$"'@Mi.

Note that if the representation ¢ is afforded by the module M and M = M; & M,, then
we may choose a basis of M consisting of a basis of M; together with a basis of M.
The matrix representation with respect to this basis is of the form

(¢ O
qa(g)_( 0 f/’z(g))

where ¢; is the representation afforded by M;, i = 1, 2. One sees immediately that if
3 is the character of ¢ and ; is the character of ¢;, then 1/ (g) = ¥, (g) + ¥2(g), i.e.,
Y = Y, + ¥,. By induction we obtain:

the character of a representation is the sum of the characters

. .. . .. 18.7
of the constituents appearing in a direct sum decomposition. (8.7

If ¢ is the character afforded by the module M in (6) above, this gives
Vv=axt+ax+---+ax. (18.8)

Thus every (complex) character is a nonnegative integral sum of irreducible (complex)
characters. Conversely, by taking direct sums of modules one sees that every such sum
of characters is the character of some complex representation of G.

We next prove that the correspondence between characters and equivalence classes
of complex representations is bijective. Let z;, z3, . . ., Z, be the primitive central idem-
potents of CG described in the preceding section. Since these are orthogonal (or equiv-
alently, since they are the r-tuples in the decomposition of CG into a direct product of r
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subrings which have a 1 in one position and zeros elsewhere), z,, . . ., z, are C-linearly
independent elements of CG. As above, each irreducible character x; is a function on
CG. By Proposition 8(3) we have

(@) if j # i then z; M; = 0, i.e., z; acts as the zero matrix on M;, hence x;(z;) = 0,
and
(b) z; acts as the identity on M;, hence x;(z;) = n;.

Thus x;, ..., x, are multiples of the dual basis to the independent set z, . .., z,, hence
are linearly independent functions. Now if the CG-module M described in (6) above
can be decomposed in a different fashion into irreducibles, say,

M=bM SbLM, @ ---®b.M,,
then we would obtain a relation
ayit+ax2+---+ax, =bixi+bixa+---+bx

By linear independence of the irreducible characters, b; = a; for alli € {1,...,r}.
Thus, in any decomposition of M into a direct sum of irreducibles, the multiplicity of
the irreducible M; is the same, 1 < i < r. In particular,

two representations are equivalent if and only if they have the same character.
(18.9)
This uniqueness can be seen in an alternate way. First, use Proposition 8(2) to
decompose an arbitrary finite dimensional CG-module M uniquely as

M=z M& M®--- &z, M.

By part (4) of the same proposition, z; M is a direct sum of simple modules, each of
which is isomorphic to M;. The multiplicity of M; ina direct sum decomposition of z; M
is, by counting dimensions, equal to d—dl% This proves that the multiplicity of M;
in any direct sum decomposition of M into si‘mple submodules is uniquely determined.

Note that, as with decompositions of F[x}-modules into cyclic submodules, a
CG-module may have many direct sum decompositions into irreducibles — only
the multiplicities are unique (see also the exercises). More precisely, comparing
with the Jordan canonical form of a single linear transformation, the direct summand
aM; = M; @ --- & M; (a; times) which equals the submodule z; M is the analogue of
the generalized eigenspace corresponding to a single eigenvalue. This submodule of
M is unique (as is a generalized eigenspace) and is called the x" isotypic component
of M. Within the x* isotypic component, the summands M; are analogous to the 1-
dimensional eigenspaces and, just as with the eigenspace of an endomorphism there is
no unique basis for the eigenspace. If G = (g ) is a finite cyclic group, the isotypic
components of G are the same as the generalized eigenspaces of g.

Observe that the vector space of all (complex valued) class functions on G has a
basis consisting of the functions which are 1 on a given class and zero on all other
classes. There are r of these, where r is the number of conjugacy classes of G, so the
dimension of the complex vector space of class functions is r. Since the number of
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(complex) irreducible characters of G equals the number of conjugacy classes and these
are linearly independent class functions, we see that

the irreducible characters are a basis for the space of all complex class functions.
(18.10)

The next step in the theory of characters is to put an Hermitian inner product
structure on the space of class functions and prove that the irreducible characters form
an orthonormal basis with respect to this inner product. For class functions 6 and
define q

0,y)=—
©, ¥ G|

Y 0@V

g€G

(where the bar denotes complex conjugation). One easily checks that (, ) is Hermitian:
fora, B € C

@) (@6, + B6, ¥) = a6y, ¥) + B(62, ¥),
(b) (6, ayn + ByYr) = @6, Y1) + (6, ¥2), and
© ©6,9)=W,0).

Our principal aim is to show that the irreducible characters form an orthonormal
basis for the space of complex class functions with respect to this Hermitian form (we
already know that they are a basis). This fact will follow from the orthogonality of
the primitive central idempotents, once we have explicitly determined these in the next
proposition.

Proposition 13. Let 73, . . ., z, be the orthogonal primitive central idempotents in CG
labelled in such a way that z; acts as the identity on the irreducible CG-module M;, and
let x; be the character afforded by M;. Then

xD)
a="Gr gezcx.(g )g.

Proof: Let z = z; and write
=Y oy
geG
Recall from Example 4 in this section that if p is the regular character of G then

0 ifg#1
= 18.11
p(g) [IGI ifo=1 (18.11)
and recall from the last example in Section 2 that
p=> xMx;. (18.12)
j=1

To find the coefficient e, apply p to zg~! and use linearity of p together with equation
(11) to obtain
p(zg™") = |Gl

870 Chap. 18  Representation 'Theory and Character Theory



Computing p(zg~!) using (12) then gives

Y xi(Dxi(eg™") = el Gl (18.13)

j=1

Let ¢; be the irreducible representation afforded by M;, 1 < j < r. Since we may
consider ; as analgebrahomomorphismfrom CG into End(M;), we obtain g, (zg™ ") =
¢ (2)9; (g71). Also, we have already observed that 0j(2) is 0if j # i and ¢;(z) is the
identity endomorphism on M;. Thus

gi(zg™") = [ 0 . lf] i

vi(g™) ifj=1i
This proves x;(zg~') = x;(g7")é;, where §;; is zero if i # j and is 1 ifi = j (called
the Kronecker delta). Substituting this into equation (13) gives ay = | Gl —xi(Dxi(e™M.

This is the coefficient of g in the statement of the proposition, completing the proof.

The orthonormality of the irreducible characters will follow directly from the or-
thogonality of the central primitive idempotents via the following calculation:

2ibij = zigj

xi (1) x;(1) -1 -1
A Al ; (h h
Gl IGI g;hecx @€ Ixjth™ g

_xi() x; (D P
= |G| |G| );[J;X:(xy )X_](x )]y

(to get the latter sum from the former substitute y for gh and x for k). Since the
elements of G are a basis of CG we may equate coefficients with those of z; found in
Proposition 13 to get (the coefficient of g)

xi) o xi(Dx;i(1) -1 -1
Sij=——xi(g ) =5 ) _xi(xg )x&x).
7G| IGI* Z; !
Simplifying (and replacing g by g1 gives
x,(g)
X (x@)xi(x™!) forallg € G. 18.14)
PRI Z )X g (
Taking g = 1 in (14) gives
5 = G LS wx G, (18.15)

xeG

The sum on the right side would be precisely the inner product (x;, x;) if x;(x~!) were
equal to x;(x); this is the content of the next proposition.
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Proposition 14. If v is any character of G then y/(x) is a sum of roots of 1 in C and
Y =y(x)forall x € G.

Proof: Let ¢ be a representation whose character is i, fix an element x € G and
let |x| = k. Since the minimal polynomial of ¢(x) divides X* — 1 (hence has distinct
roots), there is a basis of the underlying vector space such that the matrix of ¢(x) with
respect to this basis is a diagonal matrix with k™ roots of 1 on the diagonal. Since v/ (x)
is the sum of the diagonal entries (and does not depend on the choice of basis), ¥ (x)
is a sum of roots of 1. Moreover, if € is a root of 1, e ! = €. Thus the inverse of a
diagonal matrix with roots of 1 on the diagonal is the diagonal matrix with the complex
conjugates of those roots of 1 on the diagonal. Since the complex conjugate of a sum
is the sum of the complex conjugates, ¥ (x 1) = tro(x ') = tro(x) = ¥ (x).

Keep in mind that in the proof of Proposition 14 we first fixed a group element x
and then chose a basis of the representation space so that ¢(x) was a diagonal matrix.
It is always possible to diagonalize a single element but it is possible to simultaneously
diagonalize all ¢(x)’s if and only if ¢ is similar to a sum of degree 1 representations.

Combining the above proposition with equation (15) proves:

Theorem 15. (The First Orthogonality Relation for Group Characters) Let G be a
finite group and let x;, ..., x, be the irreducible characters of G over C. Then with
respect to the inner product (, ) above we have

O xj) = 6ij

and the irreducible characters are an orthonormal basis for the space of class functions.
In particular, if 6 is any class function then

0= 6, x)x-
i=l1

Proof: We have just established that the irreducible characters form an orthonormal
basis for the space of class functions. If 6 is any class function, write 6 = Z,;] a; Xi,
for some a; € C. It follows from linearity of the Hermitian product that a; = (6, x;),
as stated.

We list without proof the Second Orthogonality Relation; we shall not require it
for the applications in this book.

Theorem 16. (The Second Orthogonality Relation for Group Characters) Under the
notation above, forany x,y € G

- - |Cc(x)| if x and y are conjugate in G
D X xG) = .
P 0 otherwise.

1/2

Definition. For 6 any class function on G the norm of 0 is (6, 6)"/* and will be denoted

by |6 1].
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When a class function is written in terms of the irreducible characters, 6 = Z ; Xi,
its norm is easily calculated as || 6 || = (3_ &?)!/2. It follows that

a character has norm 1 if and only if it is irreducible.

Finally, observethat computations of the inner product of characters 6 and ¢ may be
simplified as follows. If Kj, .. ., K, are the conjugacy classes of G withsizes dj, . .., d,
and representatives g, . . . , g, respectively, then the value 6(g;)y (g;) appears d; times
in the sum for (6, ¥), once for each element of ;. Collecting these terms gives

6.9 = 5 2 Z d:0(2)¥ (8,
a sum only over representatives of the conjugacy classes of G. In particular, the norm
of 6 is given by

16 11> = (6, 6) = |G|Zd|9(g')|2

Examples
(1) Let G = S3 and let 7 be the permutation character of degree 3 described in the
examples at the beginning of this section. Recall that (o) equals the number of
elements in {1, 2, 3} fixed by o. The conjugacy classes of S3 are represented by 1,
(1 2) and (1 2 3) of sizes 1, 3 and 2 respectively, and 7 (1) = 3, n((1 2)) = 1,
7((1 23)) =0. Hence

112 = 2 [1 2% + 3 7((1 2))* + 2 n((1 23))?]

-Ac\|>—l

=-09+4+3+0=

This implies that r is a sum of two distinct irreducible characters, each appearing with
multiplicity 1. Let x; be the principal character of S3, so that x; (6) = x31(c) = 1 for
allo € S3. Then

1 I - -
(mox) = ¢ [17x1 (D +37((12))((12)) +27((123)x1((123)) ]

G\

=%(3+3+0):1

so the principal character appears as a constituent of 7z with multiplicity 1. This proves
7 = x1 + x2 for some irreducible character x; of S3 of degree 2 (and agrees with our
earlier decomposition of this representation). This also shows that the value of x; on
o € S3 is the number of fixed points of o minus 1.

(2) Let G = S4 and let 7 be the natural permutation character of degree 4 (so again (o)
is the number of fixed points of o). The conjugacy classes of S4 are represented by 1,
(12),(123),(1234)and (12)(3 4) of'sizes 1, 6, 8, 6 and 3 respectively. Again we
compute:

Iz = % [1 7% +67((12)2 +87((1 23)% + 6 w((1 23 4))2
+37((1 26 4)?]

1
= — 6 =
24(1 +24+8+0+0)
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so 7 has two distinct irreducible constituents. If x; is the principal character of S,
then

(1) = o [L (1) + 6 m((1 ) +87((1 23))
+67((1234))+37((1 2)(3 4))]
1
=54+ 12+8+0+0)=1.

This proves that the degree 4 permutation character is the sum of the principal character
and an irreducible character of degree 3.
(3) Let G == Dg, where

D8=(r,s|s2=r4=1, rs=sr—1).

The conjugacy classes of Dg are represented by 1, s, 7,72 and sr and have sizes 1, 2,
2, 1 and 2, respectively. Let ¢ be the degree 2 matrix representation of Dg obtained
as in Example 6 in Section 1 from embedding a square in R?:

w0=(2 Devr= (2 ) o= (3 ) wen=(4 9)

Let ¢ be the character of this representation (where we consider the real matrices as
a subset of the complex matrices). Again, since i is real valued one computes

[1y(D? +2¢(s)? + 29 ()? + 1y (rH)? + 2y (s7)?]

oo| =

Nyl =
1
= §(4+0+0+4+0)= 1.

This proves the representation ¢ is irreducible (even if we allow similarity transfor-
mations by complex matrices).

We have seen that the sum of two characters is again a character. Specifically, if
Y1 and i, are characters of representations ¢; and ¢;,, then y; + ¥ is the character of

o1+ .
Proposition 17. If i and v, are characters, then so is their product ;.

Proof: Let V; and V, be CG-modules affording characters i, and i, and define
W = V; ®c V. Since each g € G acts as a linear transformation on V; and V,, the
action of g on simple tensors by g(v; ® v;) = (gv1) ® (gv2) extends by linearity to a
well defined linear transformation on W by Proposition 17 in Section 11.2. One easily
checks that this action also makes W into a CG-module. By Exercise 38 in Section
11.2 the character afforded by W is ;.

The next chapter will contain further explicit character computations as well as
some applications of group characters to proving theorems about certain classes of
groups.
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Some Remarks on Fourier Analysis and Group Characters

This brief discussion is intended to indicate some connections of the results above with
other areas of mathematics.

The theory of group representations described to this point is a special branch of
an area of mathematics called Harmonic Analysis. Readers may already be familiar
with the basic theory of Fourier series which also falls into this realm. We make some
observations which show how representation theory for finite groups corresponds to
“Fourier series” for some infinite groups (in particular, to Fourier series on the circle).
Tobe mathematically precise one needs the Lebesgue integral to ensure completeness of
certain (Hilbert) spaces but readers may get the flavor of things by replacing “Lebesgue”
by “Riemann.”

Let G be the multiplicative group of points on the unit circle in C:

G={zeC|lz| =1}.

We shall usually view G as the interval [0, 277] in R with the two end points identified,
i.e., as the additive group R/277Z (the isomorphism is: the real number x corresponds
to the complex number e'*). Note that G has a translation invariant measure, namely
the Lebesgue measure, and the measure of the circle is 2. For finite groups, the
counting measure is the translation invariant measure (so the measure of a subset H is
the number of elements in that subset, | H]) and integrals on a finite group with respect
to this counting measure are just finite sums.
The space

L*(G) = {f : G = C | f is measurable and | f|? is integrable over G }

plays the role of the group algebra of the infinite group G. This space becomes a
commutative ring with 1 under the convolution of functions: for f,g € L*(G) the
product f x g : G — C is defined by

1 2
(f*xg)x) = 7 f(x—y)g@()dy forallx € G.
T Jo

(Recall that for a finite group H, the group algebra is also formally the ring of C-valued
functions on H under a convolution multiplication and that these functions are written
as formal sums — the element )_«a,g € CG denotes the function which sends g to
ap € Cforallg € G.)

The complete set of continuous homomorphisms of G into GL;(C) is given by

e,(x)=¢€™, x€[0,27], nelZ.

(Recall that for a finite abelian group, all irreducible representations are 1-dimensional
and for 1-dimensional representations, characters and representations may be identi-
fied.)

The ring L?(G) admits an Hermitian inner product: for f, g € L*(G)

2r

1 _
(f. 9= 7 fg@) dr.
T Jo
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Under this inner product, {e,, | n € Z} is an orthonormal basis (where the term “basis” is
used in the analytic sense that these are independent and O is the only function orthogonal

to all of them). Moreover,
L*(G) = PE.

neZ

where E, is the 1-dimensional subspace spanned by e,, the hat over the direct sum
denotes taking the closure of the direct sum in the L?-topology, and equality indicates
equality in the L? sense. (Recall that the group algebra of a finite abelian group is the
direct sum of the irreducible 1-dimensional submodules, each occurring with multi-
plicity one.) These facts imply the well known result from Fourier analysis that every
square integrable function f(x) on [0, 277] has a Fourier series

o0
§ Cn el nx
n=-—00
where the Fourier coefficients, c,, are given by
2r

1 .
cn=(fe)= 2 ), fte ™ dt.

This brief description indicates how the representation theory of finite groups ex-
tends to certain infinite groups and the results we have proved may already be familiar in
the latter context. In fact, there is a completely analogous theory for arbitrary (not nec-
essarily abelian) compact Lie groups — here the irreducible (complex) representations
need not be 1-dimensional but they are all finite dimensional and L?(G) decomposes
as a direct sum of them, each appearing with multiplicity equal to its degree. The
emphasis (at least at the introductory level) in this theory is often on the importance of
being able to represent functions as (Fourier) series and then using these series to solve
other problems (e.g., solve differential equations). The underlying group provides the
“symmetry” on which to build this “harmonic analysis,” rather than being itself the
principal object of study.

EXERCISES

Let G be a finite group. Unless stated otherwise all representations and characters are over C.

1. Prove thattr AB = tr BA forn x n matrices A and B with entries from any commutative
ring.
2. In each of (a) to (c) let ¥ be the character afforded by the specified representation ¢.

(a) Let ¢ be the degree 2 representation of D¢ described in Example 6 in the second
set of examples in Section 1 (here n = 5) and show that || [I2 = 1 (hence ¢ is
irreducible).

(b) Let ¢ be the degree 2 representation of Qg described in Example 7 in the second set
of examples in Section 1 and show that || ¢ ||2 = 1 (hence ¢ is irreducible).

(c) Let g bethe degree 4 representation of Qg described in Example 8 in thesecond set of
examples in Section 1 and show that || ¥ ||2 = 4 (hence even though ¢ is irreducible
over R, ¢ decomposes over C as twice an irreducible representation of degree 2).

3. If x is an irreducible character of G, prove that the x-isotypic subspace of a CG-module
is unique.
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4. Prove that if N is any irreducible CG-module and M = N & N, then M has infinitely
many direct sum decompositions into two copies of N.

S. Prove that a class function is a character if and only if it is a positive integral linear
combination of irreducible characters.

6. Let ¢ : G —> GL(V) be a representation with character yy. Let W be the subspace
{veV|pE =vforall g € G} of V fixed pointwise by all elements of G. Prove that
dim W = (¥, x1), where x; is the principal character of G.

7. Assume V is a CG-module on which G acts by permuting the basis B = {ey, ..., en}.
Write I3 as a disjoint union of the orbits By, ..., I3, of G on B.
(a) Prove that V decomposes as a CG-moduleas V} @ - - - @ V;, where V; is the span of
;.

(b) Prove that if v; is the sum of the vectors in I3; then the 1-dimensional subspace of V;
spanned by v; is the unique CG-submodule of V; affording the trivial representation
(in other words, any vector in V; that is fixed under the action of G is a multiple of
v;). [Use the fact that G is transitive on I3;. See also Exercise 8 in Section 1.]

(c) Let W = {v € V| p(g)(v) = vforall g € G} be the subspace of V fixed pointwise
by all elements of G. Deduce that dim W = ¢ = the number of orbits of G on B.

8. Prove the following result (sometimes called Burnside’s Lemma although its origin is with
Frobenius): let G be a subgroup of S,, and for each o € G let Fix(o) denote the number
of fixed points of o on {1, ..., n}. Lett be the number of orbits of G on {1, ..., n}. Then

t1Gl = ) _ Fix(g).

g€CG
[Use the preceding two exercises.]

9. Let G be a nontrivial, transitive group of permutations on the finite set £ andlet ¢ be the
character afforded by the linear representation over C obtained from €2 (cf. Example 4 in
Section 1) so ¥ (o) is the number of fixed points of o on . Now let G act on the set
Qx Qbyg- (w1, ) = (8w, g - wy) and let 7w be the character afforded by the linear
representation obtained from this action.

(@) Provethatn = 1[/2.

(b) Prove that the number of orbits of G on 2 x 2 is given by the inner product (¥, ¥).
[By the preceding exercises, the number of orbits on 2 x 2 is equal to (;, x1), where
X1 is the principal character.]

(c) Recall that G is said to be doubly transitive on  if it has precisely 2 orbits in its
action on 2 x € (it always has at least 2 orbits since the diagonal, {(w, ») | @ € 2},
is one orbit). Prove that if G is doubly transitive on 2 then ¥ = x) + x2, where x)
is the principal character and x3 is a nonprincipal irreducible character of G.

d LetQ2 ={1,2,..., n} and let G = S, act on Q in the natural fashion. Show that the
character of the associated linear representation decomposes as the principal character
plus an irreducible character of degree n — 1.

10. Let ¢ be the character of any 2-dimensional representation of a group G and let x be an
element of order 2 in G. Prove that ¢ (x) = 2, 0 or —2. Generalize this to n-dimensional
representations.

11. Let x be an irreducible character of G. Prove that for every element z in the center of G
we have x (z) = € x (1), where € is some root of 1in C. [Use Schur’s Lemma.]

12. Let ¢ be the character of some representation ¢ of G. Prove thatfor g € G the following
hold:

(a) if y(g) = ¥(1) then g € ker ¢, and
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(b) if |¥(g)l = ¥(1) and ¢ is faithful then g € Z(G) (where |{/(g)] is the complex
absolute value of 1 (g)). [Use the method of proof of Proposition 14.]

13. Lety : G — GL(V)bearepresentationandlet x : G — C* be adegree 1 representation.
Prove that x¢ : G — GL(V) defined by x¢(g) = x(g)¢(g) is a representation (note that
multiplication of the linear transformation ¢(g) by the complex number yx(g) is well
defined). Show that x ¢ is irreducible if and only if ¢ is irreducible. Show that if ¢ is the
character afforded by ¢ then x i is the character afforded by x ¢. Deduce that the product
of any irreducible character with a character of degree 1 is also an irreducible character.

The next few exercises study the notion of algebraically conjugate characters. These exercises
may be considered as extensions of Proposition 14 and some consequences of these extensions.
In particular we obtain a group-theoretic characterization of the conditions under which all
irreducible characters of a group take values in Q.

Let F be the subfield of C of all elements that are algebraic over Q (the field of algebraic
numbers). Thus F is the algebraic closure of Q contained in C and all the results established
over C hold without change over F.

14. Note that since F C C, every representation ¢ : G — GL,,(F) may also be considered
as a complex representation. Prove that if ¢ is a representation over F that is irreducible
over F, then ¢ is also irreducible when considered over the larger field C (note that this is
not true if F is not algebraically closed — cf. Exercise 2(c) above). Show that the set of
irreducible characters of G over F is the same as the set of irreducible characters over C
(ie.. these are exactly the same set of class functions on G). Deduce that every complex
representation is equivalent to a representation over F. [Since F is algebraically closed
of characteristic O, the irreducible characters over either F or C are characterized by the
first orthogonality relation.]

Lety : G > GL,,(F) be any representation with character y.. Let Q(¢) denote the subfield
of F generated by all the entries of the matrices ¢(g) forall g € G.

15. Prove that Q(¢) is a finite extension of Q.

Now let K be any Galois extension of QQ containing Q(¢) and let 0 € Gal(K/Q). In fact,
since every automorphism of K extends to an automorphism of F, we may assume o is any
automorphism of F. The map ¢° : G — GL,(F) is defined by letting ¢” (g) be the n x n
matrix whose entries are obtained by applying the field automorphism o to the entries of the
matrix ¢(g).

16. Prove that ¢° is a representation. Prove also that the character of ¢ is ¥, where
¥7(g) = o (Y¥(g))-

17. Prove that ¢ is irreducible if and only if ¢ is irreducible.

The representation ¢° (or character ?) is called the algebraic conjugate of ¢ by o (or of
¥, respectively); two representations ¢ and ¢ (or characters y; and ;) are said to be alge-
braically conjugate if there is some automorphism o of F such that ¢f = ¢ (or ¥{ = 2,
respectively). Some care needs to be taken with this (standard) notation since the exponen-
tial notation usually denotes a right action whereas automorphisms of F act on the left on
representations: ¢©7) = (7)°.

Let Q(v) be the subfield of F generatéd by the numbers ¢ (g) forallg € G. Let |G| =n
and let € be a primitive n™® root of 1in F.

18. Prove that Q(3) € Q(e). Deduce that Q(3) is a Galois extension of (Q with abelian Galois
group. [See Proposition 14.]
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Recall from Section 14.5 that Gal(Q(¢) /Q) = (Z/nZ)>, where the Galois automorphisms are
given on the generator € by o, : € — €9, where a is an integer relatively prime to n.

19. Prove that if 0, € Gal(Q(€)/Q) is the field automorphism defined above, then for all
g € G we have y7+(g) = ¥(g?). [Use the method of Proposition 14.]

20. Prove that if g is an element of G which is conjugate to g for all integers a relatively
prime to n, then ¥ (g) € Q, forevery character ¢ of G. [Use the preceding exercise and
the fact that Q is the field fixed by all o,’s.]

21. Prove that an element g € G is conjugate to g for all integers a relatively prime to |G| if
and only if g is conjugate to g for all integers a’ relatively primeto |g|.

22. Show for any positive integer n that every character of the symmetric group S, is rational
valued (i.e., ¥(g) € Q for all g € S,, and all characters i of S,).

The next two exercises establish the converse to Exercise 20.

23. Prove thatelements x and y are conjugate in a group G if and only if x(x) = x(y) forall
irreducible characters x of G.

24, Let g € G and assume that every irreducible character of G is rational valued on g. Prove
that g is conjugate to g forevery integer a relatively prime to |G|. [If g is not conjugate to
g° for some a relatively prime to |G| then by the preceding exercise there is an irreducible
character x such that x(g) # x(g?). Derive a contradiction from the hypothesis that
x(8) €Q]

25. Describe which irreducible characters of the cyclic group of order n are algebraically
conjugate.

26. Prove that every irreducible character of both Qg and Dg is rational valued. Prove that
Dy has an irreducible character that is not rational valued.

27.Let G = H x Kandlet ¢ : H - GL(V) be an irreducible representation of H with

character x. Then G =% H %> GL(V) gives an irreducible representation of G, where

sy is the natural projection; the character, %, of this representation is X ((h, k) = x(h).

Likewise any irreducible character ¥ of K gives an irreducible character ¢ of G with

F(h, k) = ¥ (k). .

(a) Prove that the product X is an irreducible character of G. [Show it has norm 1.]

(b) Prove that every irreducible character of G is obtained from such products of irre-
ducible characters of the direct factors. [Use Theorem 10, either (3) or (4).]

28. (Finite subgroups of GL2(Q)) Let G be a finite subgroup of GL,(Q).

(a) Show that GL2(Q) does not contain an element of ordern forn = 5,7, orn > 9.
Deduce that |G| = 293P. [Use rational canonical forms.]

(b) Show that the Klein 4-group is the only noncyclic abelian subgroup of GL2(Q).
Deduce from this and (a) that |G| | 24.

(c) Show that the only finite subgroups of GL2(Q) are the cyclic groups of order 1, 2, 3,
4, and 6, the Klein 4-group, and the dihedral groups of order 6, 8, and 12. [Use the
classifications of groups of small order in Section 4.5 and Exercise 10 of Section 1
to restrict G to this list. Show conversely that each group listed has a 2-dimensional
faithful rational representation.]
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CHAPTER 19

Examples and Applications
of Character Theory

19.1 CHARACTERS OF GROUPS OF SMALL ORDER

The character rable of a finite group is the table of character values formatted as follows:
list representatives of the r conjugacy classes along the top row and list the irreducible
characters down the first column. The entry in the table in row x; and column g; is
Xi(gj). The character table of a finite group is unique up to a permutation of its rows
and columns. It is customary to make the principal character the first row and the
identity the first column and to list the characters in increasing order by degrees. In
our examples we shall list the size of the conjugacy classes under each class so the
entire table will have r + 2 rows and r + 1 columns (although strictly speaking, the
character table is the r x r matrix of character values). This will enable one to easily
check the “orthogonality of rows” using the first orthogonality relation: if the classes

are represented by gy, ..., g, of sizes dy, ..., d, then
1 « -
Xi» Xj) = — deXi(gk)Xj(gk)-
1€ B

The second orthogonality relation says that the Hermitian product of any two distinct
columns of a character table is zero (i.e., it gives an “orthogonality of columns™).

A number of character tables are given in the Atlas of Finite Groups by Conway,
Curtis, Norton, Parker and Wilson, Clarendon Press, 1985. These include the character
table of the Monster simple group, M. The group M has 194 irreducible characters.
The smallest degree of a nonprincipal irreducible character of M is 196883 and the
largest degree is on the order of 2 x 10%. Nonetheless, it is possible to compute the
values of all these characters on all conjugacy classes of M.

For the first example of a character table let G = {x ) be the cyclic group of order
2. Then G has 2 conjugacy classes and two irreducible characters:

classes: 1 x
sizes: 1 1
X1 1 1
X2 1 —1

Character Table of Z,



The characters and representations of this abelian group are the same, and the irreducible
representations of any abelian group are described in Example 1 at the end of Section
18.2.

Similarly, if G = (x ) is cyclic of order 3, and ¢ is a fixed primitive cube root of 1
(so ¢2 = ¢), then the character table of G is the following:

classes: 1 x x?
sizes: 1 1 1
X1 1 1 1

x2 1 ¢ ¢
X3 12 ¢
Character Table of Z3

Next we construct the character table of S5. Recall from Example 2 in Section 18.2
that S; has 3 irreducible characters whose values are described in that example and in
Example 1 at the end of Section 18.3.

classes: 1 (12) (123)
sizes: 1 3 2
X 1 1 1
X2 1 -1 1
X3 2 0 -1
Character Table of S3

Next we consider Dg, adopting the notation of Example 3 of Section 18.3. By
Corollary 11, Dg has four characters of degree 1. Also, in Example 3 we constructed
an irreducible degree 2 representation. Since the sum of the squares of the degrees
of these representations is 8, this accounts for all irreducible representations (or, since
there are 5 conjugacy classes, there are 5 irreducible representations). If we let bars
denote passage to the commutator quotient group (which is the Klein 4-group), then
T = r2. The degree 1 representations (= their characters) are computed by sending
generators § and 7 to 1 (and the product class is mapped to the product of the values).
Matrices for the degree 2 irreducible representation were computed in Example 3 of
Section 18.3 and the character of this representation can be read directly from these
matrices. The character table of Dg is therefore the following:

classes: 1 r s r sr
sizes: 1 1 2 2 2
X1 1 1 1 1 1
X2 1 1 -1 1 -1
X3 1 1 1 -1 -1

X4 1 1 -1 -1 1

X5 2 -2 0 0 O

Character Table of Dg
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Now we compute the character table of the quaternion group of order 8. We use
the usual presentation

Os=(ijli*=1,i"=j i"ji=j")

and let k = ij and i? = —1. The conjugacy classes of Qg are represented by 1, —1, i,
Jj and k of sizes 1, 1, 2, 2 and 2, respectively. Since the commutator quotient of Qg is
the Klein 4-group, there are four characters of degree 1. The one remaining irreducible
character must have degree 2 in order that the sum of the squares of the degrees be 8. Let
x5 be the degree 2 irreducible character of Qg. One may check that the representation
¢ : Qg = GL,(C) described explicitly in Example 7 in the second set of examples of
Section 18.1 affords xs, but we show how the orthogonality relations give the values
of x5 without knowing these explicit matrices. If ¢ is an irreducible representation of
degree 2, by Schur’s Lemma (cf. Exercise 18 in Section 18.1) ¢(—1) is a 2 x 2 scalar
matrix and so is & the identity matrix since —1 has order 2 in Og. Hence xs(—1) = 2.
Let xs(i) = a, x5(j) = b and xs5(k) = c. The orthogonality relations give

1 _
1= (xs, x5) = §(22 + (£2)% + 2aa + 2bb + 2¢7).

Since aa, bb and cc are nonnegative real numbers, they must all be zero. Also, since
X5 is orthogonal to the principal character we get

1
0= (1, x5) = §(2+(i2)+0+0+0),

hence xs(—1) = —2. The complete character table of Qg is the following:

classes: 1 -1 i j k
sizes: 1 1 2 2 2
xi 1 1 1 1 1
X2 1 1 -1 1 -1

X3 1 1 1 -1 —1

Xa 1 1 -1 -1 1
x5 2 -2 0O 0 O

Character Table of Qg

Observe that Dg and Qg have the same character table, hence
nonisomorphic groups may have the same character table.

Note that the values of the degree 2 representation of Qg could also have been easily
calculated by applying the second orthogonality relation to each column of the character
table. Weleave this check as an exercise. Also note thatalthough the degree 2 irreducible
characters of Dg and Qg have the same (real number) values the degree 2 representation
of Dg may be realized by real matrices whereas it may be shown that Qg has no faithful
2-dimensional representation over R (cf. Exercise 10 in Section 18.1).

For the next example we construct the character table of S4. The conjugacy classes
of S,4 are represented by 1, (12), (123), (1234) and (12)(34) withsizes I, 6, 8, 6,
and 3 respectively. Since S; = A, there are two characters of degree 1: the principal
character and the character whose values are the sign of the permutation.
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To obtain a degree 2 irreducible character let V be the normal subgroup of order
4 generated by (12)(34) and (13)(24). Any representation ¢ of S4/V = S5 gives,
by composition with the natural projection S4 — S4/ V, a representation of Sg; if the
former is irreducible, so is the latter. Let ¢ be the composition of the projection with the
irreducible 2-dimensional representation of S3, and let x3 be its character. The classes
of 1 and (12)(34) map to the identity in the S3 quotient, (12) and (1 234) map to
transpositions and (12 3) maps to a 3-cycle. The values of x3 can thus be read directly
from the values of the character of degree 2 in the table for Ss.

Since S4 has 5 irreducible characters and the sum of the squares of the degrees is
24, there must be two remaining irreducible characters, each of degree 3. In Example 2
of Section 18.3 one of these was calculated, call it x4. Recall that

x4(0) = (the number of fixed points of o) — 1.

The remaining irreducible character, xs, is x4 x2- One can either use Proposition 17 in
Section 18.3 or Exercise 13 in Section 18.3 to see that this product is indeed a character.
The first orthogonality relation verifies that it is irreducible.

classes: 1 12 @A23) 12349 1239
sizes: 1 6 8 6 3
X1 1 1 1 1 1
X2 1 -1 1 -1 1
X3 2 0 -1 0 2
X4 3 1 0 -1 -1
X5 3 -1 0 1 -1
Character Table of S,

From the character table of S4 one can easily compute the character table of Aj.
Note that A4 has 4 conjugacy classes. Also |A4 : Aj| = 3, so A4 has three characters
of degree 1 with V = A}, in the kernel of each degree 1 representation. The remaining
irreducible character must have degree 3. One checks directly from the orthogonality
relation applied in A4 that the character x4 of S, restricted to A4 (= xs|4,) is irreducible.
This irreducibility check is really necessary since an irreducible representation of a
group need not restrict to an irreducible representation of a subgroup (for instance, the
irreducible degree 2 representation of S3 must become reducible when restricted to any
proper subgroup, since these are all abelian). The character table of Ay is the following

classes: 1 A234 123) (132
sizes: 1 3 4 4
X1 1 1 1 1
x2 1 1 ¢ ¢?
X3 1 1 ¢? ¢
X4 3 -1 0 0
Character Table of A4

where ¢ is a primitive cube root of 1 in C.
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As a final example we construct the following character table of Ss:

classes: 1 (12 (@123) (@1234) (12345 (1234 (12345
sizes: 1 10 20 30 24 15 20
X1 1 1 1 1 1 1 1
X2 1 -1 1 -1 1 1 -1
X3 4 2 1 0 -1 0 -1
X4 4 2 1 0 -1 0 1
X5 5 -1 -1 1 0 1 -1
X6 5 1 -1 -1 0 1 1
X7 6 0 0 0 1 -2 0
Character Table of S;s

The conjugacy classes and their sizes were computedin Section4.3. Since | S5 : S5| = 2,
there are two degree 1 characters: the principal character and the “sign” character.

The natural permutation of S5 on S points gives rise to a permutation character of
degree 5. As with S4 and S5 the orthogonality relations show that the square of its norm
is 2 and it contains the principal character. Thus x; is the permutation character minus
the principal character (and, as with the smaller symmetric groups, x3(o) is the number
of fixed points of o minus 1). As argued with Sy, it follows that x4 = x3x is also an
irreducible character.

To obtain xs recall that Ss has six Sylow 5-subgroups. Its action by conjugation on
these gives a faithful permutation representation of degree 6. If ¢ is the character of
the associated linear representation, then since o € s fixes a Sylow 5-subgroup if and
only if it normalizes that subgroup, we have

Y (o) = the number of Sylow 5-subgroups normalized by o.

The normalizer in S5 of the Sylow S-subgroup ( (12345))is ( (12345), (2354) )
and all normalizers of Sylow 5-subgroups are conjugate in Ss to this group. This
normalizer contains only the identity, S-cycles, 4-cycles and products of two disjoint
transpositions. No other cycle type normalizes any Sylow 5-subgroup so on any other
class, ¥ is zero. To compute i on the remaining three nonidentity classes note (by
inspection in Sg) that in any faithful action on 6 points the following hold: an element
of order 5 must be a S-cycle (hence fixes 1 point); any element of order 4 which fixes
one point must be a 4-cycle (hence fixes 2 points); an element of order 2 which is the
square of an element of order 4 fixes exactly 2 points also. This gives all the values of
Y. Now direct computation shows that

Hyl*=2 and  (x,¥) =1

Thus xs = ¥ — xj is irreducible of degree 5. By the same theory as for x4 one gets
that x¢ = xs5x2 is another irreducible character.

Since there are 7 conjugacy classes, there is one remaining irreducible character
and its degree is 6. Its values can be obtained immediately from the decomposition of
the regular character, p (cf. Example 3 in Section 18.2 and Example 4 in Section 18.3):

P X1—X2—4X3—4Xa — 5X5 — 5Xe
= < X

X7
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A direct calculation by the orthogonality relations checks that 7 is irreducible. Note
that the values of the character x7 were computed without explicitly exhibiting a rep-
resentation with this character.

o 00 N &

10.
11.
12.
13.
14.

15.
16.

EXERCISES

. Calculate the character tables of Z; x Z3, Z; x Z3 and Z; x Z; x Z,. Explain why the

table of Z, x Z3 contains primitive 6t roots of 1.

. Compute the degrees of the irreducible characters of Dj¢.
. Compute the degrees of the irreducible characters of As. Deduce that the degree 6 irre-

ducible character of Ss is not irreducible when restricted to As. [The conjugacy classes of
As are worked out in Section 4.3.)

Using the character tables in this section, for each of parts (a) to (d) use the first orthogo-
nality relation to write the specified permutation character (cf. Example 3, Section 18.3)
as a sum of irreducible characters:

(a) the permutation character of the subgroup A3 of $3

(b) the permutation character of the subgroup ( (123 4)) of S4

(¢) the permutation character of the subgroup V4 of S4

(d) the permutation character ofthe subgroup( (1 2 3), (1 2), (4 5)) of S5 (this subgroup

is the normalizer of a Sylow 3-subgroup of Ss).

. Assume that for any character 1 of a group, y2 is alsoa character (where 2 (g) = (¥(g))?)

— this is a special case of Proposition 17 in Section 18.3. Using the character tables in this
section, for each of parts (a) to (e) write out the values of the square, x2, of the specified
character x and use the first orthogonality relation to write x2 as a sum of irreducible
characters:

(@) x = x3, the degree 2 character in the table of S3

(b) x = xs, the degree 2 character in the table of Qg

(¢) x = xs., the last character in the table of Sy

(d) x = xa, the second degree 4 character in the table of Ss

(e) x = x7, the last character in the table of Ss.

. Calculate the character table of As.

. Show that S¢ has an irreducible character of degree 5.

. Calculate the character table of Djg. (This table contains nonreal entries.)
. Calculate the character table of D1;.

Calculate the character table of S3 x S3.
Calculate the character table of Z3 x S3.
Calculate the character table of Z, x Sy4.
Calculate the character table of S3 x S4.

Let n be an integer with n > 3. Show that every irreducible character of D;, has degree 1
or 2 and find the number of irreducible characters of each degree. [The conjugacy classes
of D,, were found in Exercises 31 and 32 of Section 4.3 and its commutator subgroup
was computed in Section 5.4.)

Prove that the character table is an invertible matrix. [Use the orthogonality relations.]

Foreachof As and D¢ describe which irreducible characters are algebraically conjugate
(cf. the exercises in Section 18.3).
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17. Let p be any prime and let P be a non-abelian group of order p> (up to isomorphism there
are two choices for P; for odd p these were constructed when the groups of order p> were
classified in Section 5.5). This exercise determines the character table of P and shows that
both isomorphism types have the same character table (the argument includes the p = 2
case worked out in this section).

(a) Prove that P has p? characters of degree 1.

(b) Prove that P has p — 1 irreducible characters of degree p and that these together with
the p? degree 1 characters are all the irreducible characters of P. [Use Theorem 10(3)
and Theorem 12 in Section 18.2.]

(c) Deduce that (regardless of the isomorphism type) the group P has p2+ p—1 conjugacy
classes, p of which are of size 1 (i.e., are central classes) and p? — 1 of which each
have size p. Deduce also that the classes of size p are precisely the nonidentity cosets
of the center of P (i.e., if x € P — Z(P) then the conjugacy class of x is the set of p
elements in the coset x Z(P)).

(d) Prove thatif x is anirreducible character of degree p then the representation affording
x is faithful.

(e) Fix a generator, z, of the center of P and let € be a fixed primitive pth root of 1 in
C. Prove that if y is an irreducible character of degree p then x(z) = pe’ for some
i €{l,2,..., p—1}. Prove further that x (x) = Oforall x € P — Z(P). (Note then
that the degree p characters are all algebraically conjugate.) [Use the same reasoning
as in the construction of the character table of Qg.]

(f) Prove that for each i € {1,2,..., p — 1} there is a unique irreducible character
xi of degree p such that x;(z) = pe’. Deduce that the character table of P is
uniquely determined, and describe it. [Recall from Section 6.1 that regardless of the
isomorphism type, P’ = Z(P) and P/P’ = Z, x Zp. From this one can write out
the degree 1 characters. Part (e) describes the degree p characters.]

19.2 THEOREMS OF BURNSIDE AND HALL

In this section we give a “theoretical” application of character theory: Burnside’s p“g®
Theorem. We also prove Philip Hall’s characterization of finite solvable groups, which
is agroup-theoretic proof relying on Burnside’s Theorem as the first step in its induction.

Burnside’s Theorem

The following result was proved by Burnside in 1904. Although purely group-theoretic
proofs of it were discovered recently (see Theorem 2.8 in Finite Groups Il by B.
Huppert and N. Blackburn, Springer-Verlag, 1982) the original proof by Burnside pre-
sented here is very accessible, elegant, and quite brief (given our present knowledge of
representation theory).

Theorem 1. (Burnside) For p and g primes, every group of order p“g” is solvable.
Before undertaking the proof of Burnside’s Theorem itself we establish some results

of a general nature. An easy consequence of these preliminary propositions is that the

degrees of the irreducible characters of any finite group divide its order. The particular

results that lead directly to the proof of Burnside’s Theoremappear in Lemmas 6 and 7.
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It follows quite easily that a counterexample to Burnside’s Theorem of minimal order
is a non-abelian simple group, and it is these two character-theoretic lemmas that give
the contradiction by proving the existence of a normal subgroup.

We first recall from Section 15.3 the definition of algebraic integers.

Definition. An element ¢ € C is called an algebraic integer if it is a root of a monic
polynomial with coefficients from Z.

The basic results needed for the proof of Burnside’s Theorem are:

Proposition 2. Let« € C.
(1) The following are equivalent:
(i) « is an algebraic integer,
(ii) « is algebraic over Q and the minimal polynomial of & over Q has
integer coefficients, and
(iii) Z[¢] is a finitely generated Z-module (where Z[«] is the subring of C
generated by Z and «, i.e., is the ring of all Z-linear combinations of
nonnegative powers of «).
(2) The algebraic integers in C form a ring and the algebraic integers in Q are the
elements of Z.

Proof: These are established in Section 15.3. (The portion of Section 15.3 consist-
ing of integral extensions and properties of algebraic integers may be read independently
from the rest of Chapter 15.)

Corollary 3. For every character ¢ of the finite group G, ¥ (x) is an algebraic integer
forallx € G.

Proof: By Proposition 14 in Section 18.3, ¥ (x) is a sum of roots of 1. Each root
of 1 is an algebraic integer, so the result follows immediately from Proposition 2(2).

We shall also need some preliminary character-theoretic lemmas before beginning
the main proof. Adoptthe following notationforthe arbitrary finite group G: xi, .. -, Xr
are the distinct irreducible (complex) characters of G, Ky, ..., K, are the conjugacy
classes of G and ¢; is an irreducible matrix representation whose character is x; for
eachi.

Proposition 4. Define the complex valued function w; on {Ky, ..., K,} for each i by
K5l
wiky) = Kilxie)
xi(1)

where g is any element of K;. Then w;(X;) is an algebraic integer forall i and j.

Proof: We first prove that if I is the identity matrix, then
Y 6i(®) = e (K. (19.1)

ge)C,-
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To see this let X be the left hand side of (1). As we saw in Section 18.2, eachx € G
acting by conjugation permutes the elements of X; and so X commutes with ¢; (g) for
all g. By Schur’s Lemma (Exercise 18 in Section 18.1) X is a scalar matrix:

X=al forsome a € C.

It remains to show that o = w;(K;). But

trX = Z tr;(g) = Z xi(8) = I1K;|xi(g).

gele gEle

Thus ay;(1) = tr X = |K;|xi(g), as needed to establish (1).

Now let g be a fixed element of K and define g;;; to be the number of ordered
pairs g;, g; with g; € K;, g; € K; and g;g; = g Notice that a;j, is an integer. It is
independent of the choice of g in K because if x ~! gx is a conjugate of g, every ordered
pair g;, g; whose product is g gives rise to an ordered pair x ! g;x, x g ix whose
product is x~!gx (and vice versa).

Next we prove that for all i, j, ¢t € {1,...,r}
w, (K)o () =) aijseor (Ko). (19.2)
s=1

To see this note that by (1), the left hand side of (2) is the diagonal entry of the scalar
matrix on the left of the following equation:

( > so:(g))( > ¢t(g)) =Y ) o)

gekK; gek; &i€K; gjek;
r
=) ajee
s=1 gek;
r . . .
(since a;j, is independent
=Zaijs Z‘pt(g) OngICS)
s=1 gek

= Za,'jswt (’Cs)l (by (1) )-

s=1

Comparing entries of these scalar matrices gives (2).

Now (2) implies that the subring of C generated by Z and w,(Ky), ..., o,(K,) isa
finitely generated Z-module for each ¢ € {1, ..., r} (it is generated as a Z-module by
1, w (K1), ..., w:(K,)). Since Z is a Principal Ideal Domain the submodule Z[w, (K;)]
is also a finitely generated Z-module, hence «; (K;) is an algebraic integer by Proposition
2. This completes the proof.

Corollary 5. The degree of each complex irreducible representation of a finite group
G divides the order of G, i.e., x; (1) | |G| fori =1,2,...,r.
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Proof: Under the notation of Proposition 4 and with g; € K; we have

161 _ 191 0
x(1)  xQ
_ 3y Polre)u@)
= xi(1)
= Zwi(lcj)szgj)-
=1

The right hand side is an algebraic integer and the left hand side is rational, hence is an
integer. This proves the corollary.

The next two lemmas lead directly to Burnside’s Theorem.

Lemma 6. If G is any group that has a conjugacy class K and an irreducible matrix
representation ¢ with character x such that (||, x(1)) = 1, then for g € K either
x (&) = 0or ¢(g) is a scalar matrix.

Proof: By hypothesis there exist s, ¢ € Z such that s|K| + #x (1) = 1. Thus

sIKIx(@) +tx(M)x(g) = x(8).

Divide both sides of this by x (1) and note that by Corollary 3 and Proposition 4 both
K
x(g) and M are algebraic integers, hence so is X(g). Letag = & and
x(D) . XD x(@)

let a;, ay, . .., a, be all its algebraic conjugates over Q (i.e., the roots of the minimal
polynomial of a; over Q). Since a; is a sum of x (1) roots of 1 divided by the integer
x (1), each g; is also a sum of x(1) roots of 1 divided by x(1). Thus a; has complex
absolute value < 1 foralli. Now b = [[/_, a; € Q and b is an algebraic integer (b
is the constant term of the irreducible polynomial of a;), hence b € Z. But

n
bl =] Jlail < 1,
i=1

so b = 0, £1. Since all g;’s are conjugate, b = 0 & a; = 0 & x(g) = 0. Also,
b = +1 & |a;| = 1 for all i. Thus either x(g) = O or |x(g)] = x(1). In the former
situation the lemma is established, so assume | x(g)| = x(1).

Let ¢; be a matrix representation equivalent to ¢ in which ¢;(g) is a diagonal
matrix:

€1

0i1(g) =

€n

Thus x(g) = €1 + - - - + &,. By the triangle inequality if €; # €; for any i, j, then
le1+-- -+ €] < n = x(1). Since this is not the case we must have ¢;(g) = €I (where
€ = ¢ for all i). Since scalar matrices are similar only to themselves, ¢(g) = €I as
well. This completes the proof.

Sec. 19.2  Theorems of Burnside and Hall 889



Lemma 7. If || is a power of a prime for some nonidentity conjugacy class X of G,
then G is not a non-abelian simple group.

Proof: Suppose to the contrary that G is a non-abelian simple group and let
IK|=pc.Let g € K. If c = O then g € Z(G), contrary to a non-abelian simple
group having a trivial center. As above, let i, ..., x, be all the irreducible charac-
ters of G with x; the principal character and let p be the regular character of G. By
decomposing p into irreducibles we obtain

r
0=p(g =1+ x:(Dx:(8) (19.3)
=2
If p | xj(1) forevery j > 1 with x;(g) # O, then write x;(1) = pd;. In this case
(3) becomes
0=1+p) dixi(8)

J

Thus ) ; djx;j(8) = —1/p is an algebraic integer, a contradiction. This proves there is
some j such that p does notdivide x ;(1) and x;(g) # 0. If ¢ is a representation whose
characteris y;, then ¢ is faithful (because G is assumed to be simple) and, by Lemma 6,
@(g) is a scalar matrix. Since ¢(g) commutes with all matrices, ¢(g) € Z(¢(G)). This
forces g € Z(G), contrary to G being a non-abelian simple group. The proof of the
lemma is complete.

We now prove Burnside’s Theorem. Let G be a group of order p®q” for some primes
pand q. If p = q or if either exponent is 0 then G is nilpotent hence solvable. Thus we
may assume this is not the case. Proceeding by induction let G be a counterexample
of minimal order. If G has a proper, nontrivial normal subgroup N, then by induction
both N and G/N are solvable, hence so is G (cf. Section 3.4 or Proposition 6.10). Thus
we may assume G is a non-abelian simple group. Let P € Syl,(G). By Theorem 8
of Chapter 4 there exists g € Z(P) with g # 1. Since P < Cg;(g), the order of the
conjugacy class of g (which equals |G : Cgs(g)|) is prime to p, i.e., is a power of q.
This violates Lemma 7 and so completes the proof of Burnside’s Theorem.

Philip Hall’s Theorem

Recall that a subgroup of a finite group is called a Hall subgroup if its order and index are
relatively prime. For any subgroup H of a group G a subgroup K suchthat G = HK
and H N K = 1 s called a complement to H in G.

Theorem 8. (P. Hall) Let G be a group of order p{' p;* - - - p;* where pi,..., p
are distinct primes. If for eachi € {1, ..., ¢} there exists a subgroup H; of G with

|G : H;| = p{", then G is solvable.

Hall’s Theorem can also be phrased: if foreachi € {1, ..., t} aSylow p;-subgroup
of G has a complement, then G is solvable. The converse to Hall’s Theorem is also true
— this was Exercise 33 in Section 6.1.

We shall first need some elementary lemmas.
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Lemma 9. If G is solvable of order > 1, then there exists P < G with P a nontrivial
p-group for some prime p.

Proof: This is a special case of the exercise on minimal normal subgroups of
solvable groups at the end of Section 6.1. One can see this easily by letting P be a
nontrivial Sylow subgroup of the last nontrivial term, G"~V, in the derived series of G
(where G has solvable length n). In this case G”~ is abelian so P is a characteristic
subgroup of GV, hence is normal in G.

Lemma 10. Let G be a group of order pi" p;” - - - p{* where py, ..., p; are distinct
primes. Suppose there are subgroups H and K of G such that for eachi € {1,...,t},

either p{" divides |H| or p;* divides |K|. Then G = HK and [H N K| = (|H|, |K]).

Proof: Fix some i € {1, ..., t} and suppose first that p;* divides the order of H.
Since HK is a disjoint union of right cosets of H and each of these right cosets has
orderequal to | H|, it follows that p* divides |H K |. Similarly, if p;* divides | K|, since
HK is a disjoint union of left cosets of K, again p;* divides |HK|. Thus |G| | |HK|
and so G = HK. Since

|HIIK|

HK|= ———,
IHK] |HN K|

it follows that |[H N K| = (|H]|, |K]).

We now begin the proof of Hall’s Theorem, proceeding by induction on |G|. Note
that if # = 1 the hypotheses are trivially satisfied for any group (H; = 1) and if t = 2
the hypotheses are again satisfied for any group by Sylow’s Theorem (H; is a Sylow
p2-subgroup of G and H, is a Sylow p;-subgroup of G). If t = 1, G is nilpotent, hence
solvable and if # = 2, G is solvable by Burnside’s Theorem. Assume therefore that
t>3.

Fix i and note that by the preceding lemma, forall j € {1, ..., t} — {i},

|H; : H;NH;| = p;’.

Thus every Sylow pj-subgroup of H; has a complement in H;: H; N H;. By induction
H; is solvable.

By Lemma 9 we may choose P < H,; with |P| = p{ > 1forsomei > 1. Since
t > 3 there exists anindex j € {1, ...,¢} — {1,i}. By Lemma 10

|Hy N Hj| = p3* -+« piy pit -+ P
Thus H, N Hj contains a Sylow p;-subgroup of H;. Since P is a normal p;-subgroup
of Hj, P is contained in every Sylow p;-subgroup of H; and so P < H, N H;. By
Lemma 10, G = H; H; so each g € G may be written g = hh; for some k| € H; and
h; € H;. Then
gHig™' = (mh)Hj(hhj)™" = hiH;hy'

(eHig "' = () mHR"
gEG h,eH,

and so
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Now P < Hj and hy Ph{' = P forall hy € H,. Thus
1#£P< [ hHh'

h,€eH,

Thus N = NgeggHjg ™! is a nontrivial, proper normal subgroup of G. It follows that
both N and G/N satisfy the hypotheses of the theorem (cf. the exercises in Section
3.3). Both N and G/N are solvable by induction, so G is solvable. This completes the
proof of Hall’s Theorem.

EXERCISES

1. Show that every character of the symmetric group S, is integer valued, for all n (i.e.,
¥(g) € Zforall g € S, andall characters i of S,;). [See Exercise 22 in Section 18.3.]

2. Let G be a finite group with the property that every maximal subgroup has either prime
or prime squared index. Prove that G is solvable. (The simple group GL3(FF2) has the
property that every maximal subgroup has index either 7 or 8, i.e., either prime or prime
cubed index — cf. Section 6.2.). [Let p be the largest prime dividing |G| and let P be
a Sylow p-subgroup of G. If P < G, apply induction to G/P. Otherwise let M be a
maximal subgroup containing N (P). Use Exercise 51 in Section 4.5 to show that p = 3
and deduce that |G| = 243/ )

3. Assume G is a finite group that possesses an abelian subgroup H whoseindex is a power
of a prime. Prove that G is solvable.

4. Repeat the preceding exercise with the word “abelian” replaced by “nilpotent.”

5. Use the ideas in the proof of Philip Hall’s Theorem to prove Bumnside’s p?g? Theorem in
the special case when all Sylow subgroups are abelian (without use of character theory.)

19.3 INTRODUCTION TO THE THEORY OF INDUCED CHARACTERS

Let G be a finite group, let H be a subgroup of G and let ¢ be a representation of
the subgroup H over an arbitrary field F. In this section we show how to obtain a
representation of G, called the induced representation, from the representation ¢ of its
subgroup. We also determine a formula for the character of this induced representation,
the induced character, in terms of the character of ¢ and we illustrate this formula by
computing some induced characters in specific groups. Finally, we apply the theory of
induced characters to prove that there are no simple groups of order 3* - 7 - 13 - 409,
a group order which was discussed at the end of Section 6.2 in the context of the
existence problem for simple groups. The theory of induced representations and induced
characters marks the beginning of more advanced representation theory. This section
is intended as an introduction rather than as a comprehensive treatment, and the results
we have included were chosen to serve this purpose.

First observe thatit may not be possible toextend a representation ¢ of the subgroup
H to a representation @ of G in such a way that |y = ¢. For example, Az < S3
and A3 has a faithful representation of degree 1 (cf. Section 1). Since every degree 1
representation of S3 contains A3 = S; in its kernel, this representation of A3 cannot
be extended to a representation of S;. For another example of a representation of a
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subgroup which cannot be extended to the whole group take G to be any simple group
and let ¢ be any representation of H with the property that ker ¢ is a proper, nontrivial
normal subgroup of H. If ¢ extended to a representation @ of G then the kernel of @
would be a proper, nontrivial subgroup of G, contrary to G being a simple group. We
shall see that the method of induced characters produces a representation @ of G from
a given representation ¢ of its subgroup H but that @ |y # ¢ in general (indeed, unless
H = G the degree of @ will be greater than the degree of ¢).

We saw in Example 5 following Corollary 9 in Section 10.4 that because F H is a
subring of FG, the ring FG is an (FG, F H)-bimodule; and so for any left F H-module
V, the abelian group FG ®fy V is aleft F G-module (called the extension of scalars
from FH to FG for V). In the representation theory of finite groups this extension is
given a special name.

Definition. Let H be a subgroup of the finite group G and let V be an F H-module
affording the representation ¢ of H. The FG-module FG ®fy V is called the induced
module of V and the representation of G it affords is called the induced representation
of ¢. If ' is the character of ¢ then the character of the induced representation is called
the induced character and is denoted by Indf, ).

Theorem 11. Let H be a subgroup of the finite group G and let gy, ..., g, be rep-
resentatives for the distinct left cosets of H in G. Let V be an F H-module affording
the matrix representation ¢ of H of degree n. The FG-module W = FG Qry V
has dimension nm over F and there is a basis of W such that W affords the matrix
representation @ defined for each g € G by

o(g'ge) - 08788
P(g) = : :
v(g,'gg) - 9(g,'2gm)
where each ¢(g; 1ggj) is an n x n block appearing in the i, j block position of @ (g),
and where ¢(g; 1ggj) is defined to be the zero block whenever g; lggj ¢ H.
Proof: First note that FG is a free right F H-module:
FG=gtFHO g, FH®---®g,FH.

Since tensor products commute with direct sums (Theorem 17, Section 10.4), as abelian
groups we have

W=FGQrar V=1 ®V)®(£®V)®---®EnQV).

Since F isin the center of FG it follows that this is an F-vector space isomorphism as
well. Thus if vy, vy, ..., v, is a basis of V affording the matrix representation ¢, then
{gi®vj| 1 <i<m, 1< j<n}isabasis of W. This shows the dimension of W is
mn. Order the basis into m sets, each of size n as

21®V,81QV2,...,8100,,2200,...,822QUp,...... » 8m ® V.
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We compute the matrix representation @ (g) of each g acting on W with respect to this
basis. Fix j and g, and let gg; = g;h for some index i and some 4 € H. Then for
every k

g(g; ® u) = (88)) ® vk = & ® hux

= an(h)(g ® v)
=1
where ay;, is the ¢, k coefficient of the matrix of & acting on V with respect to the basis
{v1, ..., vy}. Inother words, the action of g on W maps the j™ block of n basis vectors
of W to the i block of basis vectors, and then has the matrix ¢(k) on that block. Since
h=g 1gg i, this describes the block matrix @(g) of the theorem, as needed.

Corollary 12. In the notation of Theorem 11
(1) if ¢ is the character afforded by V then the induced character is given by

Ind$ (¥) (@) = Y ¥(g g8

i=1

where ¥ (g;” ! g8i) is defined to be 0 if g;° ! ggi ¢ H, and
2) Indg(w) (g) = 0if g is not conjugate in G to some elementof H. In particular,
if H is a normal subgroup of G then Indg, () is zero on all elements of G — H.

Remark: Since the character { of H is constant on the conjugacy classes of H we have
V¥(g) = Y(h~'gh) for all h € H. As h runs over all elements of H, xh runs over
all elements of the coset x H. Thus the formula for the induced character may also be

written
Y vGgx)

x€G

1

G [ Jp—
Indg (¥)(g) = Hi

where the elements x in each fixed coset give the same character value | H | times (which
accounts for the factor of 1/|H|), and again ¥ (x " 1gx) =0if x'gx ¢ H.

Proof: From the matrix of g computed above, the blocks ¢(g;” lggi) down the
diagonal of @(g) are zero except when g;” l¢gi € H. Thus the trace of the block matrix
@ (g) is the sum of the traces of the matrices ¢(g;” 1 gg:) for which g, lgg,- € H. Since
the trace of ¢(g; leg) is v(g 1¢gi), part (1) holds.

If g; lggi ¢ H for all coset representatives g; then each term in the sum for
Indg(l,b)(g) is zero. In particular, if g is not in the normal subgroup H then neither is
any conjugate of g, so Ind{, (y) is zero on g.

Examples

(1) LetG = D1y = (r,s | r® =s2 = 1. rs = sr~1) be the dihedral group of order 12 and
let H={1,s, r3, sr3}, sothat H is isomorphic to the Klein 4-groupand |G : H| = 3.
Following the notation of Theorem 11 we exhibit the matrices for r and s of the induced
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representation of a specific representation ¢ of H. Let the representation of H on a
2-dimensional vector space over Q with respect to some basis v;, v2 be given by

w0 =(T5 )=a wr=(y D)=p wr=(7 9)-=c

so n = 2, m = 3 and the induced representation ¢ has degree nm = 6. Fix represen-
tatives g1 = 1, g2 = r, and g3 = r? for the left cosets of H in G, so that g = rk~1,
Then

g \rg; = r=EmDHIHG=D _ =41 g

g,-—lsgj — sr(i—1)+(j—1) — Sri+j—2.

Thus the 6 x 6 matrices for the induced representation are seen to be

0 0 B A 0 O
dr)=(1 0 O P(s)=10 0 C
01 O 0 C O

where the 2 x 2 matrices A, B and C are given above, I is the 2 x 2 identity matrix
and 0 denotes the 2 x 2 zero matrix.

(2) If H is any subgroup of G and v is the principal character of H, then Indg(wl)(g)
counts 1 for each coset representative g; such that g;- lgg,- € H. Since g; lgg; €H
if and only if g fixes the left coset g; H under left multiplication, Indg ¥1)(g) is the
number of points fixed by g in the permutation representation of g on the left cosets
of H. Thus by Example 3 of Section 18.3 we see that: if i is the principal character
of H then Indg (1) is the permutation character on the left cosets of H in G. Inthe
special case when H = 1, this implies if x; is the principal character of the trivial
subgroup H = 1 then IndIG (x1) isthe regular character of G. This also shows that an
induced character is not, in general, irreducible even if the character from which it is
induced is irreducible.

(3) Let G = S3 andlet ¢ be anonprincipal linear character of A3 = (x ), sothat ¥ (x) = ¢,
for some primitive cube root of unity ¢ (the character tables of A3 = Z3 and S3 appear
in Section 1). Let ¥ = Indi"1 (¢). Thus W has degree 1 - |S3 : A3| = 2 and, by the
corollary, ¥ is zero on all transpositions. If y is any transposition then 1, y is a set of
left coset representatives of A3 in S3 and y~!xy = x2. Thus ¥(x) = ¢ (x) + ¥ (x2)
equals £ 4+ £2 = —1. This shows that if y is either of the two nonprincipal irreducible
characters of A3 then the induced character of i is the (unique) irreducible character
of S3 of degree 2. In particular, different characters of a subgroup may induce the
same character of the whole group.

(4) Let G = Dg have its usual generators and relations and let H = (s ). Let ¢ be the
nonprincipal irreducible character of H andlet ¥ = Indg (¥). Pickleftcoset represen-
tatives 1, r, 2, r3 for H. By Theorem 11, ¥(1) = 4. Since y/(s) = —1, one computes
directly that W(s) = —2. By Corollary 12(2) we obtain ¥ (r) = W(r?) = W(sr) = 0.
In the notation of the character table of Dg in Section 1, by the orthogonality relations
we obtain ¥ = x2 + x4 + x5 (Which may be checked by inspection).

For the remainder of this section the field F is taken to be the complex numbers:
F =C.

Before concluding with an application of induced characters to simple groups we
compute the characters of an important class of groups.
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Definition. A finite group G is called a Frobenius group with Frobenius kernel Q if
Q is a proper, nontrivial normal subgroup of G and Cg(x) < Q for all nonidentity
elements x of Q.

In view of the application to simple groups mentioned at the beginning of this
section we shall restrict attention to Frobenius groups G of order g¢ p, where p and ¢
are distinct primes, such that the Frobenius kernel Q is an elementary abelian g-group
of order ¢ and the cyclic group G/Q acts irreducibly by conjugation on Q. In other
words, we shall assume Q is a direct product of cyclic groups of order g and the only
normal subgroups of G that are contained in Q are 1 and Q, i.e., Q is a minimal normal
subgroup of G. For example, A4 is a Frobenius group of this type with Frobenius kernel
V4, its Sylow 2-subgroup. Also, if p and g are distinct primes with p < g and G is a
non-abelian group of order pq (one always exists if p | g — 1) then G is a Frobenius
group whose Frobenius kernel is its Sylow g-subgroup (which is normal by Sylow’s
Theorem). We essentially determine the character table of these Frobenius groups.
Analogous results on more general Frobenius groups appear in the exercises.

Proposition 13. Let G be a Frobenius group of order ¢¢ p, where p and ¢ are distinct
primes, such that the Frobenius kernel Q is an elementary abelian ¢g-group of order ¢*
and the cyclic group G/ Q acts irreducibly by conjugation on Q. Then the following
hold:
(1) G = QP where P is a Sylow p-subgroup of G. Every nonidentity element of
G has order p or q. Every element of order p is conjugate to an element of
P and every element of order g belongs to . The nonidentity elements of P
represent the p — 1 distinct conjugacy classes of elements of order p and each
of these classes has size g°. There are (¢“ — 1)/ p distinct conjugacy classes of
elements of order g and each of these classes has size p.
(2) G’ = Q so the number of degree 1 characters of G is p and every degree 1
character contains Q in its kernel.
(3) If ¢ is any nonprincipal irreducible character of Q, then Ind‘é(g[;) is an irre-
ducible character of G. Moreover, every irreducible character of G of degree
> 1 is equal to Indg(t,//) for some nonprincipal irreducible character i of Q.
Every irreducible character of G has degree either 1 or p and the number of
irreducible characters of degree p is (¢“ — 1)/p.

Proof: Note that Q P equals G by order consideration. By definition of a Frobenius
group and because Q is abelian, C(h) = Q for every nonidentity element h of Q. If
x were an element of order pg, then x? would be an element of order g, hence would
lie in the unique Sylow g-subgroup Q of G. But then x would commute with x? and so
x would belong to Cs(xP) = Q, a contradiction. Thus G has no elements of order pq.
By Sylow’s Theorem every element of order p is conjugate to anelementof P and every
element of order g lies in Q. No two distinct elements of P are conjugate in G because
if g71xg = y for some x, y € P then g~!xg = ¥ in the abelian group G = G/Q
andsoX =Y. Then x = y because P = P. Thus there are exactly p — 1 conjugacy
classes of elements of order p and these are represented by the nonidentity elements of
P. If x is a nonidentity element of P, then Cs(x) = P and so the conjugacy class of
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x consists of |G : P| = q° elements. Finally, if £ is a nonidentity element of Q, then
Cg(h) = Q and the conjugacy class of h is {h, h*, ..., R }, where P = (x ). This
proves all parts of (1).

Since G/ Q is abelian, G’ < Q. Since G is non-abelian and Q is, by hypothesis,
a minimal normal subgroup of G we must have G’ = Q. Part (2) now follows from
Corollary 11 in Section 18.2.

Let ¥ be a nonprincipal irreducible character of Q and let ¢ = Indg(df). We use
the orthogonality relations to show that W is irreducible. Let 1, x, ..., xP~1 be coset
representatives for Q in G. By Corollary 12, W is zeroon G — Q so

1 _
UIP=—) YWY
IR IGI% (¥ ()

IV‘pV_{ iy —i ipy—i

:l—G_IhLe'é,éal/f(th YW (xhx™)

= LS v
IGI heQ
_rlol_,
|G| ’
where the second line follows from the definition of the induced character W, the third
line follows because each element of Q appears exactly p times in the sum in the second
line, and the last line follows from the first orthogonality relation in Q because ¥ is an
irreducible character of Q. This proves W is an irreducible character of G.

We prove that every irreducible character of G of degree > 1 is the induced char-
acter of some nonprincipal degree 1 character of Q by counting the number of distinct
irreducible characters of G obtained this way. By parts (1) and (2) the number of irre-
ducible characters of G (= the number of conjugacy classes) is p + (¢° — 1)/ p and the
number of degree 1 characters is p. Thus the number of irreducible characters of G of
degree > 1is (g° — 1)/p. The group P acts on the set C of nonprincipal irreducible
characters of Q as follows: for each ¢ € C and each x € P let Y¥* be defined by

Y*(h) = y(xhx ')  forallh e Q.

Since ¥ is a nontrivial homomorphism from Q into C* (recall that all irreducible
characters of the abelian group Q have degree 1) it follows easily that {* is also a
homomorphism. Thus ¢¥* € C and so P permutes the elements of C. Now let x be a
generator for the cyclic group P. Then 1, x, ..., xP~! are representatives for the left
cosets of Q in G. By Corollary 12 applied with this set of coset representatives we see
that if ¥ € C then the value of Indg(l,/f) on any element h of Q is given by the sum

V() +¥*(h)+---+¥*" (h). Thus whenthe induced character Indg () is restricted
to Q it decomposes into irreducible characters of Q as

IndG (Vg = ¢ +¥* +-- -+ 9.

If ¥, and 9, are in different orbits of the action of P on C then the induced characters
Indg (¥1) and Indg(‘lllz) restrict to distinct characters of Q (they have no irreducible
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constituents in common). Thus characters induced from elements of distinct orbits
of P on C are distinct irreducible characters of G. The abelian group Q has g¢ — 1
nonprincipal irreducible characters (i.e., |C| = g% — 1) and |P| = p so there are at
least (q° — 1)/ p orbits of P on C and hence at least this number of distinct irreducible
characters of G of degree p. Since G has exactly (¢° — 1)/ p irreducible characters of
degree > 1, every irreducible character of G of degree > 1 must have degree p and
must be an induced character from some element of C. The proof is complete.

For the final example we shall require two properties of induced characters. These
properties are listed in the next proposition and the proofs are straightforward exercises
which follow easily from the formula for induced characters or from the definition of
induced modules together with properties of tensor products.

Proposition 14. Let G be a group, let H be a subgroup of G and let ¥ and ¢’ be
characters of H.
(1) (Induction of characters is additive) Ind$; (¢ + ¢') = Ind$; (¢) + Ind§, (¥').
(2) (Induction of characters is transitive) If H < K < G then

Ind§ (ind% (¥)) = Ind§, ().

It follows from part (1) of Proposition 14 that if ) ;_; n;¥; is any integral linear
combination of characters of H with n; > O for all i then

Indj ( 2 mi ) = D _mi Indfy(yo). ®
i=1 =1

A class function of H of the form )_;_, n;y;, where the coefficients are any integers
(not necessarily nonnegative) is called a generalized character or virtual character of
H. For a generalized character of H we define its induced generalized character of G
by equation (), allowing now negative coefficients n; as well. In this way the function
Ind% becomes a grouphomomorphism from the additive group of generalized characters
of H 1o the additive group of generalized characters of G (which maps characters to
characters). This implies that the formula for induced characters in Corollary 12 holds
also if ¢ is a generalized character of H.

Application to Groups of Order 33 -7-13-409
We now conclude with a proof of the following result:
there are no simple groups of order 3* - 7 - 13 - 409.

Asmentionedat the beginning of this section, simple groups of this order were discussed
at the end of Section 6.2 in the context of the existence problem for simple groups. It is
possible to prove that there are no simple groups of this order by arguments involving a
permutation representation of degree 819 (cf. the exercises in Section 6.2). We include
a character-theoretic proof of this since the methods illustrate some important ideas in
the theory of finite groups. The approach is based on M. Suzuki’s seminal paper The
nonexistence of a certain type of simple group of odd order, Proc. Amer. Math. Soc.,
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8(1957), pp. 686—695, which treats much more general groups. Because we are dealing
with a specific group order, our arguments are simpler and numerically more explicit,
yet they retain some of the key ideas of Suzuki’s work. Moreover, Suzuki’s paper and its
successor, Finite groups in which the centralizer of any non-identity element is nilpotent,
by W. Feit, M. Hall and J. Thompson, Math. Zeit., 74(1960), pp. 1-17, are prototypes
for the lengthy and difficult Feit-Thompson Theorem (cf. Section 3.4). Our discussion
also conveys some of the flavor of these fundamental papers. In particular, each of
these papers follows the basic development in which the structure and embedding of
the Sylow subgroups is first determined and then character theory (with heavy reliance
on induced characters) is applied.

For the remainder of this section we assume G is a simple group of order33-7-13.
409. We list some properties of G which may be verified using the methods stemming
from Sylow’s Theorem discussed in Section 6.2. The details are left as exercises.

(1) Letg; = 3, let O, be a Sylow 3-subgroup of G and let Ny = Ng(Q;). Then 0,
is an elementary abelian 3-group of order 33 and N, is a Frobenius group of order
33.13 with Frobenius kernel Q, and with N,/Q) acting irreducibly by conjugation
on Q).

(2) Letg, =17, let O, be a Sylow 7-subgroup of G and let N, = Ng(Q>). Then Q3 is
cyclic of order 7 and N; is the non-abelian group of order 7 -3 (so IV, is a Frobenius
group with Frobenius kernel Q,).

(3) Let g3 = 13, let O3 be a Sylow 11-subgroup of G and let N3 = Ng(Q3). Then
Q5 is cyclic of order 13 and N3 is the non-abelian group of order 13 - 3 (so N3 is a
Frobenius group with Frobenius kernel Q3).

(4) Letgs = 409, let Q4 be a Sylow 409-subgroup of G and let Ny = Ng(Q4). Then
Qs is cyclic of order 409 and N, is the non-abelian group of order 409 - 3 (so N,
is a Frobenius group with Frobenius kernel Q).

(5) Every nonidentity element of G has prime order and Q; N Q% = 1 for every
g € G — N, foreachi =1, 2, 3, 4. The nonidentity conjugacy classes of G are:
(a) 2 classes of elements of order 3 (each of these classes has size 7 - 13 - 409)
(b) 2 classes of elements of order 7 (each of these classes has size 3% - 13 - 409)
(c) 4 classes of elements of order 13 (each of these classes has size 3° - 7 - 409)
(d) 136 classes of elements of order 409 (each of these classes has size 33 -7 - 13),
and so there are 145 conjugacy classes in G.

Since each ofthe groups N; is a Frobenius group satisfying the hypothesis of Proposition
13, the number of characters of N; of degree > 1 may be read off from that proposition:
(i) N, has 2 irreducible characters of degree 13
(ii) N, has 2 irreducible characters of degree 3
(iii) V3 has 4 irreducible characters of degree 3
(iv) N, has 136 irreducible characters of degree 3.

From now on, to simplify notation, for any subgroup H of G and any generalized
character i of H let
p* = Ind§j (1)

so a star will always denote induction from a subgroup to the whole group G and the
subgroup will be clear from the context.
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The following lemma is a key point in the proof. It shows how the vanishing
of induced characters described in Corollary 12 (together with the trivial intersection
property of the Sylow subgroups Q;, namely the fact that Q; N O = 1forall g €
G — Ng(Q;)) may be used to relate inner products of certain generalized characters to
the inner products of their induced generalized characters. For these computations it is
important that the generalized characters are zero on the identity (which explains why
we are considering differences of characters of the same degree).

Lemma 15. Foranyi € {1,2,3,4} let g = g;, let Q = Q;, let N = N; and let
p =|N : Q|. Let ¢, ..., ¥4 be any irreducible characters of N of degree p (not
necessarily distinct) and let « = Y, — Y and 8 = Y3 — V4. Then « and B are
generalized characters of N which are zero on every element of N of order not equal
to g. Furthermore, o* and B* are generalized characters of G which are zero on every
element of G of order not equal to g and

(@, B")6 = (@, B)n
(where (, )y denotes the usual Hermitian product of class functions computed in the
group H). In other words, induction from N to G is an inner product preserving map
on such generalized characters «, B of N.

Proof: By Proposition 13, there are nonprincipal characters A1, ..., A4 of Q of
degree 1 such that ¥; = Indz (Aj)forj =1, ..., 4. By Corollary 12 therefore, each y;
vanishes on N — Q, hence so do « and S. Note that since ¥ (1) = p for all j we have
a(1) = (1) = 0. By the transitivity of induction, Y * = Ind () = Ind(%;) for all
Jj. Again by Corollary 12 applied to the latter induced character we see that ;" vanishes
on all elements not conjugate in G to some element of Q, hence so do both ¢* and 8*.
Since the induced characters Y/ all have degree |G : Q)|, the generalized characters
o* and B* are zero on the identity. Thus ¢ and £* vanish on all elements of G which
are not of order g. Finally, if gy, ..., g, are representatives for the left cosets of N in
G with gy = 1, thenbecause Q N Q% = 1 for all k > 1 (by (5) above), it follows
immediately from the formula for induced (generalized) characters that «*(x) = a/(x)
and B*(x) = B(x) for all nonidentity elements x € Q (i.e., for all elements x € N of
order g). Furthermore, by Sylow’s Theorem every element of G of order g lies in a
conjugate of Q, hence the collection of G-conjugates of the set O — {1} partition the
elements of order g in G into |G : N| disjoint subsets. Since o* and S* are class
functions on G, the sum of «*(x)B*(x) as x runs over any of these subsets is the same.
These facts imply

1 -
@, B =— Y " ®)B X
lGl xeG

1 _
= Gi D (DB

x€G

Ixl=¢
1 LYY TT2RY
=i z}; |G : Nla* (x)B*(x)
IxI=¢
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1

=N Za(x)m = (o, B)nN-

xeN
This completes the proof.

The next lemma sets up a correspondence between the irreducible characters of »;
of degree > 1 and some nonprincipal irreducible characters of G.

Lemma 16. For any i € {1,2,3,4}letg = g;, let Q = Q;, let N = N; and let
p = |N : QJ. Let ¢y, ..., ¥« be the distinct irreducible characters of N of degree
p. Then there are distinct irreducible characters xi, ..., xx of G, all of which have
the same degree, and a fixed sign € = *£1 such that Y} — 1#]3" = €(x1 — ;) for all
ji=2,3,... k.

Proof: Letaj = ¢y — ¢ for j = 2,3,...,k so ¢; satisfies the hypothesis of
Lemma 15. Since ¥ # ¥, by Lemma 15
2=|le; 11> = (e, )y = (@}, &) = || |
for all j. Thus aJ’.* must have two distinct irreducible characters of G as its irreducible
constituents. Since a]f’(l) = 0 it must be a difference of two distinct irreducible char-

acters, both of which have the same degree. In particular, the lemma holds if k = 2
(which is the case for g = 3 and g = 7). Assume therefore that k > 2 and write

o=y — ¥ =e(x —x)
=y —yY;=€©-0

for some irreducible characters x, x’, 6, ¢’ of G and some signs €, €’. As proved above,
X # x’' and 6 # 6'. Interchanging 6 and €' if necessary, we may assume € = €’. Thus

- =y —yYi=€0—-6—x+x.

By Lemma 15, ¢7 — ¥3 = (Y2 — ¥3)* also has exactly two distinct irreducible con-
stituents, hence either &8 = x or & = x’. Replacing € by —e if necessary we may
assume that 6 = x so that now we have

=y —¥; =e(x — X

a3 =Y — Y35 =€(x -6
where x, x’ and 6 are distinct irreducible characters of G and the sign € is determined.
Label x = x1, X’ = x2 and & = x3. Now one similarly checks that for each j > 3
there is an irreducible character x; of G such that

o =¥ — ¥} =€t —x)
and xi, ..., Xx are distinct. Since all x;’s have the same degree as xi, the proof is
complete.

We remark that it need not be the case that x; = ;" for any j, but only that the
differences of irreducible characters of N induce to differences of irreducible characters
of G.

The irreducible characters x; of G obtained via Lemma 16 are called exceptional
characters associated to Q.
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Lemma 17. The exceptional characters associated to Q; are all distinct from the
exceptional characters associated to Q; for i and j distinct elements of {1, 2, 3, 4}.

Proof: Let x be an exceptional character associated to Q; and let@ be anexceptional
character associated to Q;. By construction, there are distinct irreducible characters ¥
and ¥’ of Q; such that ¥* — '* = x — x’ and there are distinct irreducible characters
Aand A’ of Q; suchthat A* — A" =6 — 6'. Leta = ¢ — ¢/ andlet B = A — 1. By
Lemma 15, o* is zero on all elements of G whose order is not equal to g; (including
the identity) and B* is zero on all elements of G whose order is not equal to g;. Thus
clearly (a*, B*) = 0. It follows easily that the two irreducible constituents of o* are
pairwise orthogonal to those of * as well. This establishes the lemma.

It is now easy to show that such a simple group G does not exist. By Lemma 16

and properties (i) to (iv) of G we can count the number of exceptional characters:
(i) there are 2 exceptional characters associated to Q;

(ii) there are 2 exceptional characters associated to O,

(iii) there are 4 exceptional characters associated to Q5

(iv) there are 136 exceptional characters associated to Qg .
Denote the common degree of the exceptional characters associated to Q; by d; for
i=1,...,4 By Lemma 17, the exceptional characters account for 144 nonprincipal
irreducible characters of G hence these, together with the principal character, are all the
irreducible characters of G (the number of conjugacy classes of G is 145). The sum of
the squares of the degrees of the irreducible characters is the order of G:

L+ 2d} +2d2 + 4d; + 13642 = 1004913.
Simplifying this, we obtain
d? +d? + 2d3 + 68d? = 502456. (19.4)
Finally, since each nonprincipal irreducible representation of the simple group G is
faithful and since the smallest degree of a faithful representation of N; is 13, each
d; > 13. Since d4 < 4/502456/68 < 86 and d, divides |G|, it follows that
dy € {13, 21, 27, 39, 63}.

Furthermore, each d; | |G| by Corollary 5 and sothere are a small number of possibilities
for each d;. One now checks that equation (4) has no solution (this is particularly easy
to do by computer). This contradiction completes the proof.

EXERCISES

Throughout the exercises all representations are over the complex numbers.

1. Let G = S3, let H = A3 and let V be the 3-dimensional CH-module which affords the
natural permutation representation of As. More explicitly, let V have basis e, ez, €3 and
let o € Az acton V by oe; = e,(;). Let 1 and (1 2) be coset representatives for the left
cosets of Az in S3 and write out the explicit matrices described in Theorem 11 for the
action of S3 on the induced module W, for each of the elements of S3.

2. Ineachof parts (a) to (f) a character ¥ of a subgroup H of a particular group G is specified.
Computethe values of the induced character Indf, (¥) onall theconjugacy classes of G and
use the character tables in Section 1 to write Indg (¥) as a sum of irreducible characters:
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(a) v is the unique nonprincipal degree 1 character of the subgroup ( (1 2)) of S3

(b)  is the degree 1 character of the subgroup (r ) of Dg defined by v (r) = i, where
i € Cis asquare root of —1

(c) ¥ isthe degree | character of the subgroup (r ) of Dg defined by yr(r) = —1

(d) y isany of the nonprincipal degree 1 characters of the subgroup V4 = ( (1 2), (34))
of Sy

(e) Y = xg is the first of the two characters of degree 3 in the character table of H = S4
in Section 1 and H is a subgroup of G = S5

(f) v is any of the nonprincipal degree 1 characters of the subgroup V4 = ( (1 2), (34))
of Ss.

3. Use Proposition 13 to explicitly write out the character table of each of the following
groups:
(a) the dihedral group of order 10
(b) the non-abelian group of order 57
(c) the non-abelian group of order 56 which has a normal, elementary abelian Sylow

2-subgroup.

4. Let H be asubgroup of G, let ¢ be a representation of H and suppose that N is a normal
subgroup of G with N < H and N contained in the kernel of ¢. Prove that N is also
contained in the kernel of the induced representation of ¢.

5. Let N be a normal subgroup of G and let y; be the principal character of N. Let ¥ be
the induced character Indf\;, (1) so that by the preceding exercise we may consider ¥ as
the character of a representation of G/N. Prove that W is the character of the regular
representation of G/N.

6. Let Z be any subgroup of the center of G, let |G : Z| = m and let  be a character of Z.
Prove that .
my(g) ifgeZ

Ind§ (¥)(g) = { 0 ifg ¢z

7. Let ¢ be a matrix representation of the subgroup H of G and define matrices @ (g) for
every g € G by the displayed formula in the statement of Theorem 11. Prove directly that
@ is a representation by showing that @ (xy) = @(x)@(y) forallx, y € G.

8. Let G be a Frobenius group with Frobenius kernel Q. Assume that both Q and G/Q are

abelian but G is not abelian (i.e., G # Q). Let |Q| =nand |G : Q| = m.

(a) Prove that G/Q is cyclic and show that G = QC for some cyclic subgroup C of G
with CN Q =1 (i.e, G is a semidirect product of Q and C and |C| = m). [Let g
be a prime divisor of n and let G/Q act by conjugation on the elementary abelian
g-group {h € Q | h9 = 1}. Apply Exercise 14(e) of Section 18.1 and the definition
of a Frobenius group to an irreducible constituent of this IF; G/ Q-module.]

(b) Prove that n and m are relatively prime. [If a prime p divides both the order and
index of Q, let P be a Sylow p-subgroup of G. Then PN Q < Pand PN Q isa
Sylow p-subgroup of Q. Consider the centralizer in G of the subgroup Z(P) N Q
(this intersection is nontrivial by Theorem 1 of Section 6.1).]

(c) Show that G has no elements of order gp, where g is any nontrivial divisor of n and
p is any nontrivial divisor of m. [Argue as in Proposition 13.]

(d) Prove that the number of nonidentity conjugacy classes of G contained in Q is
(n — 1)/m and that each of these classes has size m. [Argue asin Proposition 13.]

(e) Prove that no two distinct elements of C are conjugate in G. Deduce that the non-
identity elements of C are representatives for m — 1 distinct conjugacy classes of G
and that each of these classes has size n. Deduce then that every element of G — Q
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is conjugate to some element of C and that G has m + (n — 1)/m conjugacy classes.

(f) Prove that G’ = Q and deduce that G has m distinct characters of degree 1. [To
show O < G’ let C = (x) and argue that the map h + [h,x] = x~lh-lxhisa
homomorphism from Q to Q whose kemel is trivial, hence this map is surjective.]

(g) Show that if v is any nonprincipal irreducible character of Q, then Ind(G2 (¥) is an
irreducible character of G. Show that every irreducible character of G of degree > 1
is equal to Il’ldg(‘l//) for some nonprincipal irreducible character ¢ of Q. Deduce
that every irreducible character of G has degree either 1 or m and the number of
irreducible characters of degree m is (n — 1) /m. [Check that the proof of Proposition
13(3) establishes this more general result with the appropriate changes to the numbers
involved.]

9. Usethe preceding exercise to explicitly write out the character table of
((12345), (2354)), which is the normalizer in S5 of a Sylow 5-subgroup (this group
is a Frobenius group of order 20).

10. Let N be a normal subgroup of G, let i be a character of N and let g € G. Define 18 by
Y8 (h) = y(ghg!) forallh € N.

(a) Provethat y8 is a character of N (i and 8 are called G-conjugate characters of N).
Prove that 18 is irreducible if and only if i is irreducible.

(b) Prove that the map ¢ +— 8 is a right group action of G on the set of characters of
N and N is in the kernel of this action.

(¢) Prove that if ¥ and y-, are G-conjugate characters of N, then Ind$ (y1) = Ind§ (y2).
Prove also that if i and vy, are characters of N that are not G-conjugate then
Ind$ (y1) # Ind (2). [Use the argument in the proof of Proposition 13(3).]

11. Show that if G = A4 and N = V; is its Sylow 2-subgroup then any two nonprincipal
irreducible characters of N are G-conjugate (cf. the preceding exercise).

12. Let G = D», be presented by its usual generators and relations. Prove that if ¢ is any
degree 1 characterof H = (r ) such that {r # ¢*, then Indg (y) is an irreducible character
of D3,. Show that every irreducible character of Dy, is the induced character of some
degree 1 characterof (r ).

13. Prove both parts of Proposition 14.

14. Prove the following result known as Frobenius Reciprocity: let H < G, let ¢ be any
character of H and let x be any character of G. Then

W, xImu = d§@), xc.

[Expand the right hand side using the formula for the induced character Indg () or follow
the proof of Shapiro’s Lemma in Section 17.2.]

15. Assume G were a simple group of order 33 - 7- 13 - 409 whose Sylow subgroups and their
normalizers are described by properties (1) to (5) in this section. Prove that the permutation
character of degree 819 obtained from the action of G on the left cosets of the subgroup
N4 decomposes as xo + ¥ + ¥, where xg is the principal character of G and ¥ and y’
are distinct irreducible characters of G of degree 409. [Use Exercise 9 in Section 18.3 to
show that this permutation character r has || ||2 =3]
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APPENDIX |

Cartesian Products
and Zorn’s Lemma

Section 1 of this appendix contains the definition of the Cartesian product of an arbitrary
collection of sets. In the text we shall primarily be interested in products of finitely
many (or occasionally countably many) sets. We indicate how the general definition
agrees with the familiar “ordered n-tuple” notion of a Cartesian product in these cases.
Section 2 contains a discussion of Zorn’s Lemma and related topics.

1. CARTESIAN PRODUCTS

A set I is called an indexing set or index set if the elements of I are used to index
some collection of sets. In particular, if A and I are sets, we can form the collection
{A; | i € I} by specifying that A; = A for all i € I. Thus any set can be an indexing
set; we use this term to emphasize that the elements are used as indices.

Definition.
(1) Let I be an indexing set and let {A; | i € I} be a collection of sets. A choice
Sfunction is any function
f: 1> U A;
iel
such that f(i) € A; foralli € 1.

(2) Let I be an indexing set and for alli € I let A; be a set. The Cartesian product
of {A; | i € I}is the set of all choice functions from I to U;¢; A; and is denoted
by [1;c; Ai (where if either I or any of the sets A; are empty the Cartesian
product is the empty set). The elements of this Cartesian product are written as
]_[i <7 @i, where this denotes the choice function f such that f(i) = a; for each
iel.

(3) Foreach j € I the set A; is called the j™ component of the Cartesian product
[Lie; Ai and g is the j® coordinate of the element [ ], a;.

(@) For j € I the projectionmap of [[;, A; onto the j® coordinate, A;, is defined
by niel a; — aj.

Each choice function f in the Cartesian product [ |;, A; may be thought of as a
way of “choosing” an element f (i) from each set A;.

If I = {1,2,...,n} for some n € Z* and if f is a choice function from I to
A, U---UA,, where each A; is nonempty, we can associate to f a unique (ordered)
n-tuple:

f=> (M), fQ), ..., f(n)).
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Note that by definition of a choice function, f(i) € A; for all i, so the n-tuple above
has an element of A; in the i position for each i .

Conversely, given an n-tuple (ay, ay, ..., a,), where a; € A; foralli € I, thereis
a unique choice function, f, from I to U;¢s A; associated to it, namely

f@) =a, foralli € I.

It is clear that this map from n-tuples to choice functions is the inverse to the map
described in the preceding paragraph. Thus there is a bijection between ordered n-
tuples and elements of [ |;.; Ai- Henceforth when I = {1, 2, ..., n} we shall write

iel

l—[A,- or A XAy x---X A,

i=1

for the Cartesian product and we shall describe the elements as ordered n-tuples.

If I = Z*, we shall similarly write: []{-; A; or A; X Az x - - - for the Cartesian
product of the A;’s. We shall write the elements as ordered tuples: (a;, a2, ... ), i.e., as
infinite sequences whose i terms are in A;.

Note that when I = (1,2, ..., n} or I = Z* we have used the natural ordering on
I to arrange the elements of our Cartesian products into n-tuples. Any other ordering
of I (or any ordering on a finite or countable index set) gives a different representation
of the elements of the same Cartesian product.

Examples

M) AxB={(a,b)|aeA,be B).

(2) R" =R xR x --- x R(nfactors) is the usual set of n-tuples with real number entries,
Euclidean n-space.

(3) SupposeI = Z' and A; isthesameset A, foralli € I. TheCartesianproduct [];z+ A
is the set of all (infinite) sequences aj, az, a3 ... of elements of A. In particular, if
A =R, then the Cartesian product [];cz+ R is the set of all real sequences.

(4) Suppose I is any indexing set and A; is the same set A, forall i € I. The Cartesian
product [];.; A is just the set of all functions from I to A, where the function f :
I — A corresponds to the element [ ];; f(i) in the Cartesian product. This Cartesian
product is often (particularly in topology books) denoted by A’. Note that for each
fixed j € I the projection map onto the j® coordinate sends the function f to f(j),
i.e., is evaluation at j.

(5) Let R be aring and let x be an indeterminate over R. The definition of the ring R[x] of
polynomials in x with coefficients from R may be given in terms of Cartesian products
rather than in the more intuitive and familiar terms of “formal sums” (in Chapters 7
and 9 we introduced them in the latter form since this is the way we envision and
work with them). Let I be the indexing set Zt U {0} and let R[x] be the subset
of the Cartesian product ]_L?'io R consisting of elements (ap, a1, a2, ...) such that
only finitely many of the a;’s are nonzero. If (ap, a1,a2,...,a,,0,0,...) is such a
sequence we represent it by the more familiar “formal sum” "7 a;x*. Addition and
multiplication of these sequences is defined so that the usual rules for addition and
multiplication of polynomials hold.
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Proposition 1. Let / be a nonempty countable set and for each i € I let A; be a set.
The cardinality of the Cartesian product is the product of the cardinalities of the sets

A,’, i.e.,
I[[Tai=]T14:.

iel iel
(where if some A; is an infinite set or if I is infinite and an infinite number of A;’s have
cardinality > 2, both sides of this equality are infinity). In particular,

|A1 X Ap X - X Ap] = |A1] X |Ag| X - -+ X |Ag].

Proof: In order to count the number of choice functions note thateachi € I may be
mapped to any of the | A; | elements of A; and fori # j the values of choice functions at
i and j may be chosen completely independently. Thus the number of choice functions
is the product of the cardinalities of the A;’s, as claimed.

For Cartesian products of finitely many sets, A; x A, X - -- X A,, one can see this
easily from the n-tuple representation: the elements of A; x A, x - - - X A, are n-tuples
(a1, ay, ..., a,) and each g; may be chosen as any of the |A;| elements of A;. Since
these choices are made independently fori # j, there are |A;| - |A;| - - - |A,| elements
in the Cartesian product.

EXERCISE

1. Let I and J be any two indexing sets and let A be an arbitrary set. For any function
¢ : J — I define

o*: ]_[A - HA by ¢*(f) = foe forall choice functions f € HA.
iel jeJ iel
(@) Letl ={1,2}),letJ ={1,2,3}andletp : J — I bedefined by ¢(1) =2, ¢(2) =2
and ¢(3) = 1. Describe explicitly how a 3-tuple in A x A x A maps to an ordered
pair in A x A under this ¢*.
(b) LetI =J ={1,2,...,n} and assume ¢ is a permutation of /. Describe in terms of
n-tuplesin A x A x - - - x A the function ¢*.

2. PARTIALLY ORDERED SETS AND ZORN’S LEMMA

We shall have occasion to use Zorn’s Lemma as a form of “infinite induction” in a
few places in the text where it is desirable to know the existence of some set which is
maximal with respect to certain specified properties. For example, Zom’s Lemma is
used to show that every vector space has a basis. In this situation a basis of a vector space
V is a subset of V which is maximal as a set consisting of linearly independent vectors
(the maximality ensures that these vectors span V). For finite dimensional spaces this
can be proved by induction; however, for spaces of arbitrary dimension Zom’s Lemma
is needed to establish this. By having results which hold in full generality the theory
often becomes a little neater in places, although the main results of the text do not
require its use.
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A specific instance in the text where a maximal object which helps to simplify
matters is constructed by Zorn’s Lemma is the algebraic closure of a field. An algebraic
closure of a field F is an extension of F which is maximal among any collection of
algebraic extensions. Such a field contains (up to isomorphism) all elements which
are algebraic over F, hence all manipulations involving such algebraic elements can
be effected in this one larger field. In any particular situation the use of an algebraic
closure can be avoided by adjoining the algebraic elements involved to the base field
F, however this becomes tedious (and often obscures matters) in complicated proofs.
For the specific fields appearing as examples in this text the use of Zorn’s Lemma
to construct an algebraic closure can be avoided (for example, the construction of an
a]gebraic closure of any subfield of the complex numbers or of any finite field does not
require it).

The first example of the use of Zorn’s Lemma appears in the proof of Proposition
11 in Section 7.4.

In order to state Zorn’s Lemma we need some terminology.

Definition. A partial order on a nonempty set A is arelation < on A satisfying
1) x <x forallx € A (reflexive),
(2) ifx<yandy <xthenx =y forallx,y € A (antisymmetric),
(@) ifx<yandy <zthenx <z forallx,y.z € A (transitive).

We shall usually say that A is a partially ordered set under the ordering < or that
A is partially ordered by <.

Definition. Let the nonempty set A be partially ordered by <.
(1) A subset B of Ais called a chain if forall x,y € B, eitherx < yory < x.
(2) An upper bound for a subset B of A is an element u € A such that b < u, for
allb € B.
(3) A maximal element of A isan elementm € A suchthatifm < x foranyx € A,
then m = x.

In the literature a chainis also called a tower or called a totally ordered or linearly
ordered or simply ordered subset.

Some examples below highlight the distinction between upper bounds and maximal
elements. Also note that if m is a maximal element of A, it is not necessarily the case
that x < m for all x € A (i.e., m is not necessarily a maximum element).

Examples

(1) Let A be the power set (i.e., set of all subsets) of some set X and < be set containment:
C. Notice that this is only a partial ordering since some subsets of X may not be
comparable, e.g. singletons: if x # y then {x} € {y} and {y} € {x}. In this situation
an example of a chain is a collection of subsets of X such as

X1SX2CX3C -

Any subset B of A has an upper bound, b, namely,

b:Ux.

x€B
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This partially ordered set A has a (unique) maximal element, X.

In many instances the set A consists of some (but not necessarily all) subsets of
a set X (i.e., A is a subset of the power set of X) and with the ordering on A again
being inclusion. The existence of upper bounds and maximal elements depends on
the nature of A.

(2) Let A bethe collection of all proper subsets of Z* ordered under C. In this situation,

chains need not have maximal elements, e.g. the chain

11c{1,2)c{1,2,3} < ---
does not have an upper bound. The set A does have maximal elements: for example
Zt — {n} is a maximal element of A forany n € Zt.

(3) Let A = R under the usual < relation. In this example every subset of A is a chain
(including A itself). The notion of a subset of A having an upper bound is the same as
the usual notion of a subset of R being bounded above by some real number (so some
sets, such as intervals of finite length, have upper bounds and others, such as the set
of positive reals, do not). The set A does not have a maximal element.

Zorn’s Lemma If A is a nonempty partially ordered set in which every chain has
an upper bound then A has a maximal element.

It is a nontrivial result that Zorn’s Lemma is independent of the usual (Zermelo—
Fraenkel) axioms of set theory! in the sense that if the axioms of set theory are con-
sistent,? then so are these axioms together with Zorn’s Lemma; and if the axioms of
set theory are consistent, then so are these axioms together with the negation of Zorn’s
Lemma. The use of the term “lemma” in Zorn’s Lemma is historical.

For the sake of completeness (and to relate Zorn’s Lemma to formulations found
in other courses) we include two other equivalent formulations of Zorn’s Lemma.

The Axiom of Choice The Cartesian product of any nonempty collection of nonempty
sets is nonempty. In other words, if I is any nonempty (indexing) set and A; is a
nonempty set forall i € I, then there exists a choice function from I to U;¢; A;.

Definition. Let A be a nonempty set. A well ordering on A is a total ordering on A
such that every nonempty subset of A has a minimum (or smallest) element, i.e., for
each nonempty B C A there is some s € B such thats < b, for all b € B.

The Well Ordering Principle Every nonempty set A has a well ordering.

Theorem 2. Assuming theusual (Zermelo-Fraenkel) axioms of set theory, the following
are equivalent:

(1) Zomm’s Lemma

(2) the Axiom of Choice

(3) the Well Ordering Principle.

Proof: This follows from elementary set theory. We refer the reader to Real and
Abstract Analysis by Hewitt and Stromberg, Springer-Verlag, 1965, Section 3 for these
equivalences and some others.

1See P.J. Cohen’s papers in: Proc. Nat. Acad. Sci., 50(1963), and 51(1964).
2This is notknown to be the case!
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EXERCISES

1. Let A be the collection of all finite subsets of R ordered by inclusion. Discuss the exis-
tence (or nonexistence) of upper bounds, minimal and maximal elements (where minimal
elements are defined analogously to maximal elements). Explain why this is not a well
ordering.

2. Let A be the collection of all infinite subsets of R ordered by inclusion. Discuss the
existence (or nonexistence) of upper bounds, minimal and maximal elements. Explain
why this is not a well ordering.

3. Show that the following partial orderings on the given sets are not well orderings:
(a) R under the usual relation <.
(b) R under the usual relation <.
(¢) Rt U {0} under the usual relation <.
(d) Z under the usual relation <.

4. Show that Zt is well ordered under the usual relation <.
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APPENDIXI

Category Theory

Category theory provides the language and the mathematical foundations for discussing
properties of large classes of mathematical objects such as the class of “all sets” or “all
groups” while circumventing problems such as Russell’s Paradox. In this framework
one may explore the commonality across classes of concepts and methods used in
the study of each class: homomorphisms, isomorphisms, etc., and one may introduce
tools for studying relations between classes: functors, equivalence of categories, etc.
One may then formulate precise notions of a “natural” transformation and “natural”
isomorphism, both within a given class or between two classes. (In the text we described
“natural” as being “coordinate free.”) A prototypical example of natural isomorphisms
within a class is the isomorphism of an arbitrary finite dimensional vector space with its
double dual in Section 11.3. Infact one of the primary motivations for the introduction
of categories and functors by S. Eilenberg and S. MacLane in 1945 was to give a precise
meaningto thenotions of “natural” in cases such as this. Category theory has also played
a foundational role for formalizing new concepts such as schemes (cf. Section 15.5) that
are fundamental to major areas of contemporary research (e.g., algebraic geometry).
Pioneering work of this nature was done by A. Grothendieck, K. Morita and others.

Our treatment of category theory should be viewed more as an introduction to some
of the basic language. Since we have not discussed the Zermelo—Fraenkel axioms of set
theory or the Godel-Bernays axioms of classes we make no mention of the foundations
of category theory. To remain consistent with the set theory axioms, however, we
implicitly assume that there is a universe set U which contains all the sets, groups,
rings, etc. that one would encounter in “ordinary” mathematics (so that the category
of “all sets” implicitly means “all sets in U”). The reader is referred to books on set
theory, logic, or category theory such as Categories for the Working Mathematician by
S. MacLane, Springer—Verlag, 1971 for further study.

We have organized this appendix so that wherever possible the examples of each
new concept use terminology and structures in the order that these appear in the body
of the text. For instance, the first example of a functor involves sets and groups, the
second example uses rings, etc. In this way the appendix may be read early on in one’s
study, and a greater appreciation may be gained through rereading the examples as one
becomes conversant with a wider variety of mathematical structures.

1. CATEGORIES AND FUNCTORS
We begin with the basic concept of this appendix.

Definition. A category C consists of a class of objects and sets of morphisms between
those objects. For every ordered pair A, B of objects there is a set Hom¢(A, B) of
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morphisms from A to B, and forevery ordered triple A, B, C of objects there is a law
of composition of morphisms, i.e., a map

Hom¢(A, B) x Hom¢(B, C) — Homc¢(A, C)

where (f, g) — gf, and gf is called the composition of g with f. The objects and
morphism satisfy the following axioms: for objects A, B, C and D
(i) if A # B or C # D, then Hom¢(A, B) and Hom¢(C, D) are disjoint sets,
(ii) composition of morphisms is associative, i.e., h(gf) = (hg)f forevery f in
Homc¢(A, B), g in Hom¢ (B, C) and A in Hom¢(C, D),
(iii) each object has an identity morphism, i.e., for every object A there is a mor-
phism 1, € Hom¢(A, A) such that f14 = f for every f € Homc(A, B) and
1,8 = g for every g € Hom¢(B, A).

Morphisms are also called arrows. Itis an exercise to see that the identity morphism
for each object is unique (by the same argument that the identity of a group is unique).
Weshall write Hom(A, B) forHom¢(A, B) whenthe category is clearfromthe context.

The terminology we use throughout the text is common to all categories: a mor-

phism from A to B will be denotedby f : A —> Bor A EA B. The object A is the
domainof f and B is the codomain of f. A morphismfrom A to A is an endomorphism
of A. A morphism f : A — B is an isomorphism if there is a morphism g : B —> A
such that gf = 14 and fg = 15.

There is a natural notion of a subcategory category C of D, i.e., when every ob-
ject of C is also an object in D, and for objects A, B in C we have the containment
Homc¢(A, B) € Homp (A, B).

Examples

In each of the following examples we leave the details of the verification of the axioms for

a category as exercises.

(1) Set is the category of all sets. For any two sets A and B, Hom(A, B) is the set of
all functions from A to B. Composition of morphisms is the familiar composition of
functions: gf = g o f. The identity in Hom(A, A) is the map 14(a) = a, for all
a € A. This category contains the category of all finite sets as a subcategory.

(2) Grpis the category of all groups, where morphisms are group homomorphisms. Note
that the composition of group homomorphisms is again a group homomorphism. A
subcategory of Grp is Ab, the category of all abelian groups. Similarly, Ring is the
category of all nonzero rings with 1, where morphisms are ring homomorphisms that
send 1 to 1. The category CRing of all commutative rings with 1 is a subcategory of
Ring.

(3) Forafixedring R, the category R—mod consists of all left R-modules with morphisms
being R-module homomorphisms.

(4) Topis thecategory whose objects are topological spaces and morphisms are continuous
maps between topological spaces (cf. Section 15.2). Note that the identity (set) map
from a space to itself is continuous in every topology, so Hom(A, A) always has an
identity.

(5) Let 0 be the empty category, with no objects and no morphisms. Let 1 denote
the category with one object, A, and one morphism: Hom(A, A) = {14}. Let 2
be the category with two objects, A; and Az, and only one nonidentity morphism:
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Hom(Aj, A2) = {f}and Hom(A2, A1) = (. Note that the objects A; and Az and the
morphism f are “primitives” in the sense that A; and A2 are not defined to be sets
and f is simply an arrow (literally) from Aj to Az; itis not defined as a set map on the
elements of some set. One can continue this way and define N to be the category with
N objects Ay, Az, ..., Ay with the only nonidentity morphisms being a unique arrow
from A; to Aj forevery j > i (so that composition of arrows is uniquely determined).

(6) If Gisagroup, formthe category G as follows. The only object is G and Hom(G, G) =
G; the composition of two functions f and g is the product gf in the group G. Note
that Hom(G, G) has an identity morphism: the identity of the group G.

Definition. Let C and D be categories.
(1) Wesay F is a covariant functor from C to D if
(a) for every object A in C, FA is an object in D, and
(b) for every f € Homc(A, B) we have F(f) € Homp(FA, FB),
such that the following axioms are satisfied:
@) if gf is a composition of morphisms in C, then F(gf) = F(g)F( D)
in D, and
@) F(1a) = 1za.
(2) We say F is a contravariant functor from C to D if the conditions in (1) hold
but property (b) and axiom (i) are replaced by:
(b) for every f € Hom¢(A, B), F(f) € Homp(F B, FA),
(i') if gf is a composition of morphisms in C, then F(gf) = F(f)F(g)
inD
(i.e., contravariant functors reverse the arrows).

Examples

In each of these examples the verification of the axioms for a functor are left as exercises.
Additional examples of functors appear in the exercises at the end of this section.

(1) The identity functor Z¢ maps any category C to itself by sending objects and mor-
phisms to themselves. More generally, if C is a subcategory of D, the inclusion functor
maps C into D by sending objects and morphisms to themselves.

(2) Let F be the functor from Grp to Set that maps any group G to the same set G and
any group homomorphism ¢ to the same set map ¢. This functor is called the forgetful
JSunctor since it “removes” or “forgets” the structure of the groups and the homomor-
phisms between them. Likewise there are forgetful functors from the categories Ab,
R-mod, Top, etc., to Set.

(3) The abelianizing functor maps Grp to Ab by sending each group G to the abelian
group G® = G/G’, where G’ is the commutator subgroup of G (cf. Section 5.4).
Each group homomorphism ¢ : G — H is mapped to the induced homomorphism on
quotient groups:

$:G® > H® by $(xG)=ex)H
The definition of the commutator subgroup ensures that @ is well defined and the
axioms for a functor are satisfied.
(4) Let R be a ring and let D be a left R-module. For each left R-module N the
set Homg(D, N) is an abelian group, and is an R-module if R is commutative

(cf. Proposition 2 in Section 10.2). If ¢ : Ny — N3 is an R-module homomor-
phism, then for every f € Homg(D, N1) we have ¢ o f € Homg(D, N3). Thus

Sect. 1 Categories and Functors 913



¢’ : Homg(D, N1) = Homg (D, N2) by ¢'(f) = ¢ o f. This shows the map
Hom(D, _) : N — Homg(D, N)
Hom(D,_):9 — ¢

is a covariant functor from R—-Med to Grp. If R is commutative, it maps R—Med to
itself.

(5) In the notation of the preceding example, we observe that if ¢ : Ny — N, then for
every g € Homg(N2, D) we have gogp € Homg (N1, D). Thus ¢’ : Homg (N2, D) —
Homg (N1, D) by ¢'(g) = g o . In this case the map

Hom(__, D) : N — Homg(N, D)
Hom(__,D):¢ — ¢

defines a contravariant functor.

(6) When D is a right R-module the map D ® g __ : N - D ®g N defines a covariant
functor from R—Meod to Ab (or to R—Mod when R is commutative). Here the mor-
phism ¢ : N; — N, maps to the morphism 1 ® ¢.

Likewise when D is a left R-module _ ®g D : N - N ®g D defines a co-
variant functor from the category of right R-modules to Ab (or to R-Mod when R is
commutative), where the morphism ¢ maps to the morphism ¢ ® 1.

(7) Let K be afield and let K—fdVec be the category of all finite dimensional vector spaces
over K, where morphisms in this category are K-linear transformations. We define
the double dual functor D? from K—fdVec to itself. Recall from Section 11.3 that
the dual space, V*, of V is defined as V* = Homg (V, K); the double dual of V is
V** = Homg (V*, K). Then D? is defined on objects by mapping a vector space V
to its double dual V**. If ¢ : V — W is a linear transformation of finite dimensional
spaces, then

DXp): V™ > W™ by  DXeNE.) = Ey),

where E, denotes “evaluation at v” for each v € V. By Theorem 19 in Section 11.3,
E, € V**, and each element of V** is of the form E, for a unique v € V. Since
@(v) € W we have E, ) € W™, so D2(g) is well defined.

The functor F from C to D is called faithful (or is called full) if for every pair
of objects A and B in C the map F : Hom(A, B) - Hom(F A, F B) is injective (or
surjective, respectively). Thus, for example, the forgetful functor is faithful but not full.

EXERCISES

1. Let N be a group and let Nor—N be the collection of all groups that contain N as a normal
subgroup. A morphism between objects A and B is any group homomorphism that maps
N into N.
(a) Prove that Nor—N is a category.
(b) Show how the projection homomorphism G + G/N may be used to define a functor

from Nor-N to Grp.

2. Let H be a group. Define a map H x from Grp to itself on objects and morphisms as

follows:

Hx:G —> H x G, and
ifg:G1—> G2 thenHx(p): Hx G - HxGy by (h,g)w (h,e(g).
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Prove that H x is a functor.

3. Show that the map Ring to Grp by mapping a ring to its group of units (i.e., R - R*)
defines a functor. Show by explicit examples that this functor is neither faithful nor full.

4. Show that for eachn > 1 themap GL, : R - GL,(R) defines a functor from CRing to
Grp. [Define GL, on morphisms by applying each ring homomorphism to the entries of
a matrix.]

S. Supply the details that show the double dual map described in Example 7 satisfies the
axioms of a functor.

2. NATURAL TRANSFORMATIONS AND UNIVERSALS

As mentioned in the introduction to this appendix, one of the motivations for the in-
ception of category theory was to give a precise definition of the notion of “natural”
isomorphism. We now do so, and see how some natural maps mentioned in the text
are instances of the categorical concept. We likewise give the categorical definition of
“universal arrows” and view some occurrences of universal properties in the text in this
light.

Definition. Let C and D be categories and let F, G be covariant functors from C to
D. A natural transformation or morphism of functors from F to G is a map 7 that
assigns to each object A in C a morphism 7, in Homp(F A, GA) with the following
property: for every pair of objects A and B in C and every f € Homc(A, B) we have
G(fIna = ngF(f), i.e., the following diagram commutes:

FA —2 5 GA

F( )l lg(f )

FB —2 5 GB

If each 74 is an isomorphism, 7 is called a natural isomorphism of functors.

Consider the special case where C = D and C is a subcategory of Set, and where
F is the identity functor. There is a natural transformation 7 from the identity functor
to G if whenever G maps the object A to the object GA there is a morphism 74 from
A to GA, and whenever there is a morphism f from A to B the morphism G(f) is
compatible with f as a map from GA to GB. In fact G(f) is uniquely determined by
f as a map from the subset 774 (A) in GA to the subset 5 (B) of GB. If n is a natural
isomorphism, then the value of G on every morphism is completely determined by 7,
namely G(f) =np f n;'. In this case the functor G is entirely specified by 7. We shall
see that some of the examples of functors in the preceding section arise this way.

Examples
(1) For any categories C and D and any functor F from C to D the identity is a natural

isomorphism from F to itself: 74 = 14 for every object A in C.

Sec. 2. Natural Transformations and Universals 915



(2) Let R be aring and let F be any functor from R—-Mod to itself. The zero map is a
natural transformation from F toitself: 54 = 04 for every R-module A, where 0, is
the zero map from A to itself. This is not a natural isomorphism.

(3) Let F be the identity functor from Grp to itself, and let G be the abelianizing functor
(Example 3) considered here as a map from Grp to itself. For each group G let
nc : G - G/G’ be the usual projection map onto the quotient group. Then 7 is a
natural transformation (but not an isomorphism) with respect to these two functors.
(We call the maps 7n¢ the natural projection maps.)

(4) LetG = D? be the double dual functor from the category of finite dimensional vector
spaces over a field K to itself (Example 7). Then there is a natural isomorphism 7
from the identity functor to G given by

nw:V->V*™ by gy =E,

where E, is “evaluation at v” for every v € V.

(5) Let GL, be the functor from CRing to Grp defined as follows. Each object (com-
mutative ring) R is mapped by G.L,, to the group GL,(R) of n x n invertible matrices
with entries from R. For each ring homomorphism f : R — S let GL,,(f) be the
map of matrices that applies f to each matrix entry. Since f sends 1 to 1 it follows
that GL,, (f) sends invertible matrices to invertible matrices (cf. Exercise 4 in Section
1). Let G be the functor from CRing to Grp that maps each ring R to its group of
units R*, and each ring homomorphism f to its restriction to the groups of units (also
denoted by f). The determinant is a natural transformation from GL,, to G because
the determinant is defined by the same polynomial for all rings so that the following
diagram commutes:

GL.(R) —*', Rx

GL.(n| %

GL,(S) —2 5 sx

Let C, D and E be categories, let F be a functor from C to D, and let G be a
functor from D to E. There is an obvious notion of the composition of functors GF
from C to E. When E = C the composition GF maps C to itself and G maps D
to itself. We say C and D are isomorphic if for some F and G we have GF is the
identity functor Z., and G = Zp. By the discussion in Section 10.1 the categories Z—
Mod and Ab are isomorphic. It also follows from observations in Section 10.1 that the
categories of elementary abelian p-groups and vector spaces over IF, are isomorphic. In
practice we tend to identify such isomorphic categories. The following generalization
of isomorphism between categories gives a broader and more useful notion of when
two categories are “similar.”

Definition. Categories C and D are said to be equivalent if there are functors F from
C to D and G from D to C such that the functor GF is naturally isomorphic to Z (the
identity functor of C) and F¢ is naturally isomorphic to the identity functor Zp.

It is an exercise that equivalence of categories is reflexive, symmetric and transi-
tive. The example of Affine k-algebras in Section 15.5 is an equivalence of categories
(where one needs to modify the direction of the arrows in the definition of a natural
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transformation to accommodate the contravariant functors in this example). Another
example (which requires some proving) is that for R a commutative ring with 1 the
categories of left modules R—Meod and M,,,,(R)-Mod are equivalent.

Finally, we introduce the concepts of universal arrows and universal objects.

Definition.
(1) Let C and D be categories, let F be a functor from C to D, and let X be an

object in D. A universal arrow from X to F is a pair (U (X), t), where U (X) is
anobjectinCand¢ : X — FU(X) is amorphism in D satisfying the following
property: forany object A in C if ¢ is any morphism from X to F A in D, then
there exists a unique morphism @ : U(X) — A in C such that 7 (@) = ¢,
i.e., the following diagram commutes:

X —t > FUux)
l F@)
TA

(2) Let C be a category and let F be a functor from C to the category Set of all

sets. A universal element of the functor F is a pair (U, ¢), where U is an object
in C and ¢ is an element of the set FU satisfying the following property: for
any object A in C and any element g in the set F A there is a unique morphism
¢ : U — A in C such that F(¢)(t) = g.

Examples
(1) (Universal Arrow: Free Objects) Let R be aring with 1. We translate into the language

of universal arrows the statement that if U (X) is the free R-module on a set X then any
set map from X to an R-module A extends uniquely by R-linearity to an R-module
homomorphism from U (X) to A (cf. Theorem 6, Section 10.3): Let F be the forgetful
functor from R—Moed to Set, so that F maps an R-module A tothe set 4,i.e., A = FA
as sets. Let X be any set (i.e., an object in Set), let U(X) be the free R-module with
basis X, and let: : X — FU(X) be the set map which sends each b € X to the basis
element b in U(X). Then the universal property of free R-modules is precisely the
result that (U(X), ¢) is a universal arrow from X to the forgetful functor F.

Similarly, free groups, vector spaces (which are free modules over a field), poly-
nomial algebras (which are free R-algebras) and the like are all instances of universal
arrows.

(2) (UniversalArrow: Fields of Fractions) Let J be the forgetful functor fromthe category

of fields to the category of integral domains, where the morphisms in both categories
are injective ring homomorphisms. For any integral domain X let U(X) be its field
of fractions and let ¢ be the inclusion of X into U(X). Then (U(X), ¢) is a universal
arrow from X to the functor F (cf. Theorem 15(2) in Section 7.5).

(3) (Universal Object: Tensor Products) This example refers to the construction of the

Sec. 2.

tensor product of two modules in Section 10.4. Let C = R—Maod be the category of
R-modules over the commutative ring R, and let M and N be R-modules. For each
R-module A let Bilin(M, N; A) denote the set of all R-bilinear functions from M x N
to A. Define a functor from R—Mod to Set on objects by

F : A — Bilin(M, N; A),
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and if ¢ : A — B is an R-module homomorphism then
F@)h) =¢oh forevery h € Bilin(M, N; A).
Let U = M ®g N and let « be the bilinear function
t:MxN—>MQ®@rM by tim,n) =mQ@n,

so ¢ is an element of the set Bilin(M, N; M ®g N) = FU. Then (M ®g N, 1)
is a universal element of F because for any R-module A and for any bilinear map
g : M xN — A(ie.,any element of F A) there is a unique R-module homomorphism
¢:M®rN — Asuchthat g = ¢ ot = F(p)(®).

EXERCISES

1. LetNor-N be the category described in Exercise 1 of Section 1, and let F be the inclusion
functor from Nor—N into Grp. Describe a functor G from Nor—N into Grp such that the
transformation 7 defined by 5 : G — G/N is a natural transformation from F to G.

2. Let H and K be groups and let {x and K x be functors from Grp to itself described in
Exercise 2 of Section 1. Let ¢ : H — K be a group homomorphism.

(a) Show that the maps 54 : H x A > K x A by na(h,a) = (¢(h), a) determine a
natural transformation 7 from # x to K x.

(b) Show that the transformation 7 is a natural isomorphism if and only if ¢ is a group
isomorphism.

3. Express the universal property of the commutator quotient group — described in Propo-
sition 7(5) of Section 5.4 — as a universal arrow for some functor F.
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Index

A

1-parameter subgroup, 505
2-stage Euclidean Domain, 294
A.C.C. — see ascending chain condition
abelian, 17
abelian categories, 791
abelian extensions of Q, 599ff.
abelian group, 17, 84, 158ff., 196, 339, 468
representation of,, 861
Abel’s Theorem (insolvability of quintic), 625
absolutely flat, 797
action, faithful, 43, 112ff.
group ring, 842
group, 41ff., 112ff.,, 451
left vs. right, 128, 156
Adjoint Associativity, 401, 804, 811
affine algebraic sets, 658/
affine curve, 726
affine k-algebra, 734
affine n-space, 338, 658
affine scheme, 742
affords a representation, 114, 843
algebra, 342ff., 657
algebraic, element, 520ff., 527
extension, 520ff., 527
integer, 695ff., 887
number, 527
algebraic closure, 543
of a finite field, 588
algebraic conjugate — see conjugate
algebraic geometry, 330, 655ff., 658, 742, 745,
760, 762, 911
algebraically closed, 543
algebraically conjugate characters, 878
algebraically independent, 645, 699
algebraically indistinguishable, 518
algorithm, for Jordan Canonical Form, 496
for rational canonical form, 481
alternating form, 437
alternating group, 107ff.,, 611
Ag4, 110, 111
As simplicity of, 127, 145
characters of, 883
simplicity of, 110, 149ff.

alternating, function, 436, 446
tensor, 451
angle trisecting, 535, 535
annijhilated by, 338
annihilator, 249
of a submodule, 344, 460
of a subspace, 434, 435
arrow, 912
Artin—Schreier extensions, 589, 636
Artin--Schreier map, 623
Artinian, 657, 750f., 855
ascending chain condition (A.C.C.), 458, 656/
assassin, 670
associate, 284ff.
associated primes, of a module, 670, 730, 748
of a prime ideal, 685
of an ideal, 682
associative, 16
asymptotic behavior, S08
augmentation, ideal, 245, 253, 255, 258, 846
map, 245, 255, 799, 811
augmented matrix, 424
Aut(R/Q), 567
automorphism, 41, 133ff.
group, 41, 133ff.
of Dg, 136, 220
of Og, 136, 220f.
of Sg, 221
of S,, 136ff.
of a cyclic group, 61, 135, 136, 314
of a field extension, 558ff.
of a field, 558ff.
of an elementary abelian group, 136
autonomous system, 507

B

B"(G; A) — see coboundaries
Baer’s Criterion, 396
balanced map, 365ff.

bar resolution, 799

base field, 511

basic open set, 738

basis, 354
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free, 218, 354
of a field extension, 513
of a vector space, 408

Bass’ Characterization of Noetherian Rings, 793

belongs to an ideal, 682

Berlekamp’s Factorization Algorithm, 311, 589ff.

Betti number, 159, 464
Bezout Domain, 274, 283, 294, 302, 307, 775
bijection, 2
bilinear, 368f, 372, 436
bimodule, 366, 404
binary, operation, 16
relation, 3
Binomial Theorem, 60, 249, 548
biquadratic, extension, 530, 582, 589
polynomial, 617
block, 117
diagonal, 423, 475
upper triangular, 423
Boolean ring, 231, 232, 249, 250, 258, 267
Brauer group, 836
Buchberger’s Algorithm, 324/
Buchberger’s Criterion, 324ff, 332
building, 212
Building-Up Lemma, 411
Burnside’s Basis Theorem, 199
Burnside’s Lemma, 877
Bumnside’s N /C-Theorem, 213
Bumside’s p?q? Theorem, 196, 886/

C

C"(G; A) — see cochains
cancellation laws, 20
canonical forms, 457, 472
canonical model, 734
Cardano’s Formulas, 630ff., 638ff.
cardinality, 1
Cartesian product, 1, 905fF.
Castelnuovo’s Theorem, 646
Casus irreducibilis, 633, 637
category, 391, 911ff.
Cauchy’s Theorem, 93, 96, 102, 146
Cayley—Hamilton Theorem, 478
Cayley’s Theorem, 118/
center, of a group, 50, 84, 89, 124, 134, 198
of a group ring, 239
of a matrixring, 239, 834, 856
of a p-group, 125, 188
of aring, 231, 231, 344, 832ff, 856
central idempotent, 357, 856
central product, 157, 169
central simple algebra, 832ff.
centralize, 94
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centralizer, 49ff., 123ff,, 133ff.

of acycle, 173

of a representation, 853
chain complex, 777

homotopy, 782
change of basis, 40, 419
changing the base — see extension of scalars
character, of a group, 568, 866

of a representation, 866
character table, 880ff.

of Ag, 883

of Dg, 881

of Og, 882

of S3, 881

of 4, 883

of S5, 884

of Z/2Z, 880

of Z/3Z, 881
characteristic, of a field, 510

of aring, 250
characteristic function, 249
characteristic p fields, 510
characteristic polynomial, 473
characteristic subgroup, 135ff., 174
Chinese Remainder Theorem, 246, 265(f., 313, 357,

768

choice function, 905
class equation, 122ff, 556
class field theory, 600
class function, 866, 870
class group, 761, 774
class number, 761
Classical Greek Problems, 531/
classification theorems, 38, 142ff, 181ff.
closed, topologically, 676

under an operation, 16, 242, 528
closed points, 733
coboundaries, 800
cochain, 777, 799, 808
cochain complex, 777
cochain homotopy, 792
cocycle, 800
codomain, 1
coefficient matrix, 424
cofactor, 439

Expansion Formula, 439

Formula forthe Inverse of a Matrix, 440
coherent module sheaf, 748
cohomologically trivial, 802, 804, 812
cohomology group, 777, 798ff.
coinduced module, 803, 811, 812
cokernel, 792
coloring graphs, 335
column rank, 418, 427, 434
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comaximal ideals, 265
commutative, 16, 223

diagram, 100
commutator, 89, 169
commutator series — see derived series
commutator subgroup, 89, 169, 195ff.
commute, diagram, 100
compact, 688

support, 225
companion matrix, 475
compatible homomorphisms, 805
complement, 180, 453, 454, 820, 829, 890
complete, 759ff.
complete preimage, 83
completely reducible, 847
completion, 759
complex conjugation, 345, 567, 603, 618, 654, 872
complex numbers, 1, 512, 515, 654
component of a direct product, 155, 338
composite extensions, 529, 591ff.

of fields, 528
composition factors, 103
composition series, 1031
computing k-algebra homomorphisms, 664ff.
computing Galois groups, 640ff.
congruence class, 8ff.
congruent, 8
conjugacy class, 123ff., 489, 860
conjugate, algebraic, 573

field, 573

of a field element, 573

of a group element, 82, 123ff.

of a set, 123ff.

of a subgroup, 134, 139ff.
conjugation, 45, 52, 122ff., 133

in A,, 127, 131

in§,, 125f£
connected, 687
connecting homomorphisms, 778, 791
constituent of a module, 847
constructible, 532ff.
constructibility of a regular n-gon, 534ff., 601
construction of cube roots, 535
construction of the regular 17-gon, 602ff.
continuous cohomology groups, 809
continuous group action, 808ff.
contracting homomorphisms, 809
contraction of ideals, 693, 708(f.
contravariant, 659
converge, 503
coordinate ring, 661
coprime — see relatively prime
corestriction homomorphism, 806, 807
corresponding group actions, 129

Index

coset, 77/f., 89ff.
representatives, 77
Cramer’s Rule, 438
Criterion for the Solvability of a Quintic, 639
crossed homomorphisms, 814ff.
crossed product algebra, 833ff.
cubic equations, formulas for roots, 630f.
curve, 726
cycle, 29, 30, 33, 106f., 173
cycle decomposition, 29, 30, 115f., 641
algorithm, 30
cycle type, 126ff.
of automorphisms, 640
cyclic extensions, 625, 636
cyclic group, 22, 54ff., 90, 149, 192, 198, 539
characters of, 880, 881
cohomology of, 801, 811
cyclic module, 351, 462
cyclotomic extensions, 552ff., 596ff.
cyclotomic field, 540, 698
cyclotomic polynomial, 310, 489, 552f
cyclotomy, 598

D
D.C.C. — see descending chain condition
decomposable module, 847

Dedekind Domain, 764ff.
modules over, 769f
Dedekind-Hasse Criterion, 281
Dedekind-Hasse norm, 281, 289, 294
degree, of a character, 866
of a field element, 520
of afield extension, 512
of a monomial, 621
of a polynomial, 234, 295, 297
of a representation, 840
of a symmetric group, 29
degree ordering, 331
dense, 677, 687
density of primes, 642
derivative, of a polynomial, 312, 546
of a power series, 505
derived functors, 785
derived series, 195ff
descending chaincondition(D.C.C.), 331, 657, 751,
855
determinant, 248, 435ff., 450, 488
computing, 441
determinant ideal, 671
diagonal subgroup, 49, 89
diagonalizable matrices criterion, 493, 494
Dickson’s Lemma, 334
differential, 723
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of a morphism, 728
dihedral group, 23ff.
as Galois group, 617ff.
characters of, 881, 885
commutator subgroup of, 171
conjugacy classes in, 132
dimension, of a ring, 750, 754/f-
of a tensor product, 421
of a variety, 681, 729
of a vector space, 408, 411
of §¥(v), 446
of T*(v), 443
of \¥(v), 449
dimension shifting, 802
Diophantine Equations, 14, 245, 276, 278
direct factor, 455
direct limit, 268, 358, 741
direct product, characters of, 879
infinite, 157, 357, 414
of free modules, 358
of groups, 18, 152ff., 385, 593
of injective modules, 793
of injective resolutions, 793
of modules, 353, 357, 358, 385
of rings, 231, 233, 265f.
direct sum, infinite, 158, 357, 414
of injective modules, 403
of modules, 351ff., 357, 385
of projective modules, 392,403, 793
of projective resolutions, 793
of rings, 232
direct summand, 373, 385, 451
directed set, 268
Dirichlet’s Theorem on Primes in Arithmetic
Progressions, 557
discrete G-module, 808
discrete cohomology groups, 808(f.
discrete valuation, 232, 238, 272, 755
Discrete Valuation Ring, 232, 272, 755ff., 762
discriminant, 610
asresultant, 621
of a cubic, 612
of a polynomial, 610
of a quadratic, 611
of a quartic, 614
of p® cyclotomic polynomial, 621
distributive laws, 34, 223
divides, 4, 252, 274
divisibility of ideals, 767
divisible, group, 66, 86, 167
module, 397
Division Algorithm, 4, 270, 299
division ring, 224, 225, 834
divisor, 274
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domain, 1

double coset, 117

double dual, 432, 823, 914

Doubling the Cube impossibility of, 531f.
doubly transitive, 117, 877

dual basis, 432

dual group, 167, 815, 823

dual module, 404, 404

dual numbers, 729

dual vector space, 431

E

echelon, 425
eigenspace, 473
eigenvalue, 414, 423, 472
eigenvector, 414, 423, 472
Eisenstein’s Criterion, 309(, 312
elementary abelian group, 136, 155, 339, 654
elementary divisor, 161ff., 465ff.
decomposition, 161ff., 464
decomposition algorithm, 495
elementary Jordan matrix, 492
elementary row and column operations, 424, 470ff.,
4791
elementary symmetric functions, 607
elimination ideal, 328
elimination theory, 327
elliptic, curve, 14
function, 600
function field, 653
integral, 14
embedded prime ideal, 685
embedding, 83, 359, 569
endomorphism, 347
ring, 347
equivalence class, 3, 45, 114
equivalence of categories, 734, 916
equivalence of short exact sequences, 381
equivalence relation, 3, 45, 114
equivalent extensions, 381, 787, 824
equivalent representations, 846, 869
Euclidean Algorithm, §, 271
Euclidean Domain, 270ff., 299
modules over, 470, 490
Euler ¢-function, 7, 8, 11, 267, 315, 539ff., 589
Euler’s Theorem, 13, 96
evaluation homomorphism, 244, 255, 432ff.
exact, functor, 391, 396
sequence, 378
exactness, of Hom, 389, 393ff.
of tensor products, 399
exceptional characters, 901
exponent of a group, 165ff., 626
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exponential map, 86
exponential notation, 20, 22
exponential of a matrix, 5031
Exti(A, B), T79f.
extension, of a map, 3, 386, 393

of ideals, 693, 708ff.

of modules, 378

of scalars, 359(f., 363ff., 369, 373
extension field, S11ff
extension problem, 104, 378, 776
Extension Theorem, for Isomorphisms of Fields,

519, 541

exterior algebra, 446
exterior power, 446
exterior product — see wedge product
external, direct product, 172

direct sum, 353

F

F-algebra — see algebra
factor group — see quotient group
factor set, 824ff
factor through, homomorphism, 100, 365
factorial variety, 726
factorization, 283ff.
faithful, action, 43, 112ff
functor, 914
representation, 840
Fano Plane, 210
Feit-Thompson Theorem, 104, 106, 149, 196, 212,
899
Fermat primes, 601
Fermat’s Little Theorem, 96
Fermat’s Theorem on sums of squares, 291
fiber, 2, 73ff., 240ff.
fiber product of homomorphisms, 407
fiber sum of homomorphisms, 407
field, 34, 224, 226, 510ff.
of fractions, 260ff.
of p-adic numbers, 759
of rational functions, 264, 516, 530, 567, 585,
647(f, 681, 721
field extension, 511ff.
field generated by, 511, 516
field norm, 229
finite covering, 704
finite dimensional, 408, 411
finite extensions, S12ff, 521, 526
finite fields, 34, 301, 529
algebraic closure of, 588
existence and uniqueness of, 549(f
Galois groups of, 566, 586
of four elements, 516, 653

Index

subfields of, 588
finite group, 17
finitely generated, field extension, 524ff., 646
group, 65, 158, 218ff.
ideal, 251, 317
k-algebra, 657
module, 35111, 458
finitely presented, group, 218ff
module, 795ff.
First Order Diophantine Equation, 276, 278
First Orthogonality Relation, 872
Fitting ideal, 671
Fitting’s Lemma, 668
fixed, element, 558
field, 560
set, 131, 798
fixed point free, 41, 132
flat module, 4001, 405ff., 790, 795
form, 297
formal Laurent series, 238, 265, 756, 759
formal power series, 238, 258, 265, 668
formally real fields, 530
Fourier Analysis, 875ff.
fractional ideal, 760ff.
fractional linear transformations, 567, 647
Frattini subgroup, 198(f.
Frattini’s Argument, 193
free, abelian group, 158, 355
group, 215ff
module, 338, 352, 354ff., 358, 400
nilpotent group, 221
free generators, 218
of a module, 354
free rank, 159, 218, 355, 460, 464
Frobenius automorphism, 549, 556, 566, 586, 589,
604
Frobenius group, 168, 638, 643ff., 896
as Galois group, 638
characters of , 896
Frobenius kernel, 896
Frobenius Reciprocity, 904
full functor, 914
function, 1
function field, 646, 653
functor, 391, 396, 398, 913
contravariant, 395, 913
covariant, 391, 398, 913
fundamental matrix, 506
Fundamental Theorem, of Algebra, 545, 615ff.
of Arithmetic, 6, 289
of Finitely Generated Abelian Groups, 158(f.,
196, 468
of Finitely Generated Modules over a
Dedekind Domain, 769ff.
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of Finitely Generated Modules overa P.1.D., 462,

464, 466
of Galois Theory, 574ff.
on Symmetric Functions, 608

G

G-invariant, 843
G-module, 798
G-stable, 843
Galois closure, 594
Galois cohomology groups, 809
Galois conjugates, 573
Galois extension, 562, 572ff
Galois group, 562, 574fF.
of Fpn, 566, 586
of Q2178,4) or x8 — 2, 577
of Q(2!/8, i) over quadratic subfields, 581

of Q/ 2+ V2)(3+/3)), 584

of Qv2 +/2), 582

of Q(v/2), 563

of Q(+/2,+/3), 563ff, 567, 576

of Q(v/Dy, VD7), 582

of Q(¢13), S98f-

of Q(¢s), 597

of Q¢ + &1, 601, 603

of Q(¢n), 596fF .

of Q(¢p), 597

of x3 — 2, 564, 568, 576

of x4 + 1, 5796

of x* — 2x2 —2,582

of x6 —2x3 — 2,623, 644

of x" —a, 636

of xP —x —a, 589

of a biquadratic, 582

of a composite extension, 592

of a cubic, 612

of a cyclotomic field, 599

of a general polynomial, 609

of a quadratic, 563

of a quartic, 615, 618
Galois groups, of polynomials, 606ff

infinite, 651(

over Q, 640f.
Galois Theory, 14, 105, 558
Gaschiitz’s Theorem, 838
Gauss’ Lemma, 303, 530, 819, 824
Gauss—Jordan elimination, 327, 424("
Gauss sum, 637
Gaussian integers, 229ff., 271, 278, 289(, 377
general linear group, 35, 89, 236, 413, 418
general polynomial, 607, 609, 629, 646
general polynomial division, 320f., 331
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generalized associative law, 18
generalized character, 898
generalized eigenspace, 501
generalized quaternion group, 178
generating set, 61f.
generator, 25ff., 54, 218

of S,, 64, 107, 219

of Sp. 111

of a cyclic group, 57

of a free module, 354

of a subgroup, 61

of a submodule, 351

of an ideal, 251
generic point, 733
germs of continuous functions, 269
GL3(F7), 211ff, 489, 644
global sections, 740
globally asymptotically stable, 508
Going-down Theorem, 694, 728
Going-up Theorem, 694, 720
graded, ordering, 331

ring, 443
graded ideal, 443
graded lexicographic ordering (grlex), 331
graph, 210, 669, 687

coloring, 335(¢

greatest commondivisor (g.c.d.), 4, 252, 274ff., 287

of ideals, 767
grevlex monomial ordering, 331
Grobner basis, 315ff, 3194, 664f., 702, 712
in field extensions, 672
group, 13, 16ff
of nth roots of unity — see root of unity
of units in a ring, 226
group extensions, 824(f
groupring, 236ff., 798, 840
group table, 21
groups, of order 12, 144, 182
of order 30, 143, 182
of order 56, 185
of order 60, 145, 186
of order 75, 185
of order 147, 185
of order 168, 207
of order 33 - 7- 13 - 409, 212ff., 898§
of order p2, 125, 137
of order p3, 179, 183, 198, 199f., 886
of order 2p?, 186
of order 4p, 186
of order pq, 143, 179, 181
of order p2q, 144
groups, table of small order, 167
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H

H"(G; A) — see cohomology group
Hall subgroup, 101, 200, 829, 890
Hall’s Theorem, 105, 196, 890
Hamilton Quaternions, 224ff, 231, 237, 249, 299
Harmonic Analysis, 875
Heisenberg group, 35, 53, 174, 179, 187
Hilbert’s Basis Theorem, 316, 334, 657
Hilbert’s Nullstellensatz, 675, 700
Hilbert’s Specialization Theorem, 648
Hilbert’s Theorem 90, 583, 814
addisive form, 584, 815
Hilbert’s Zahlbericht, 815
Holder Program, 103
holomorph, 179, 186
Hom, of direct products, 404
of direct sums, 388, 388, 404
Hompg(V, W), 416
Hompg(M, N), 345 ff,, 385ff.
homeomorphism, 738
homogeneous cochains, 810
homogeneous component, of a polynomial, 297
of a graded ring, 443
homogeneous ideal, 299
homogeneous of degree m, 621
homogeneous polynomial, 297
homological algebra, 391, 655, 776ff
homology groups, 777
homomorphism, of algebras, 343, 657
of complexes, 777
of fields, 253, 512
of graded rings, 443
of groups, 36, 73ff, 215
of modules, 345/
of rings, 239
of short exact sequences, 381/
of tensor algebras, 450
homotopic, 792
hypemilpotent group, 191
hypersurface, 659

|

icosahedron — see Platonic solids
ideal quotient, 333, 691
ideal, 242
generated by set, 251
idempotent, 267, 856
idempotent linear transformation, 423
identity, of a group, 17
matrix, 236
of aring, 223
image, of a map, 2

Index

of ak-algebrahomomorphism, computing, 665/
of a linear transformation, computing, 429
implicitization, 678
incidence relation, 210
indecomposable module, 847
independence of characters, 569, 872
independent transcendentals, 645
index, of a subgroup, 90f.
of a field extension, 512
induced, character, 892ff., 898
module, 363, 803, 811, 812, 893
representation, 893
inductive limit — see direct limit
inequivalent extensions, 379ff
inert prime, 749, 775 .
infinite cyclic group, 57, 811
infinite Galois groups, 6511
inflation homomorphism, 806
inhomogeneous cochains, 810
injective envelope — see injective hull
injective hull, 398, 405, 405
injective map, 2
injective module, 395ff, 403ff, 784
injective resolution, 786
injectively equivalent, 407
inner automorphism, 134
inner product of characters, 870ff.
inseparable degree, of a polynomial, 550
of a field extension, 650
inseparable extension, 551, 566
inseparable polynomial, 546
insolvability of the quintic, 625, 629
integer, 1, 695ff
integers mod n — see Z/nZ
integral basis, 698, 775
integral closure, 229, 691 ff.
integral domain, 228, 235
integral element, 691
integral extension, 691 ff.
integral group ring (ZG), 237, 798
integral ideal, 760
integral Quaternions, 229
integrally closed, 691f
internal, direct product, 172
direct sum, 354
intersection of ideals, computing, 330f
intertwine, 847
invariant factor, 159ff., 464, 774
decomposition, 159ff., 462ff.
of a manrix, 475, 477
Invariant Factor Decomposition Algorithm, 480
invariant subspace, 341, 843
inverse, of a map, 2
of an elementin a group, 17
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inverse image, 2 Krull’s Theorem, 652

inverse limit, 268, 358, 652 Kummer extensions, 627, 817
inverse of a fractional ideal, 760 Kummer generators for cyclic extensions, 636
inverse of marrices, 427, 440 Kummer theory, 626, 816, 823
invertible fractional ideal, 760
irreducibility, criteria, 307ff L
of a cyclotomic polynomial, 310
irreducible algebraic set, 679 Lagrange resolvent, 626
irreducible character, 866, 870, 873 Lagrange’s Theorem, 13, 45, 89f., 460
irreducible element, 284 lattice of subfields, 574
in Z[i], 289f¢ of Q(¥/2, p), 568
irreducible ideal, 683 of Q(¢13), 598
irreducible module, 356, 847 of Q21/8, i), 581
irreducible polynomial, 287, 512ff., 572 lattice of subgroups, 66ff.
of degree n over I, 301, 586 of A4, 111
irreducible topological space, 733 of Dg, 69, 99
isolated prime ideal, 685 of Dy, 70
isomorphism, classes, 37 of QOg, 69,99
of algebras, 343 of QD¢, 72, 580
of cyclic groups, 56 of S3, 69
of groups, 37 of Z/2Z, 67
of modules, 345 of Z/4Z, 67
of rings, 239 of Z/6Z, 68
of short exact sequences, 381 of Z/8Z, 67
of vector spaces, 408 of Z/12Z, 68
Isomorphism Theorems, for groups, 97ff. of Z/nZ, 67
for modules, 349 of Z/p"Z, 68
forrings, 243,246 ~ of Z/2Z. x Z./27 (Klein 4-group), 68
isomorphism type, 37 of Z/27Z x Z/4Z, T1ff.
isotypic component, 869 of Z/2Z x Z/8Z, T2

of the modular group of order 16, 72
lattice of subgroups for quotient group, 98ff.
J Laurent series — see formal Laurent series

Jacobson radical, 259, 750 leading coefficient, 234, 295
join, 67, 88 leading term, 234, 295, 318

Jordan block, 492 1 ideal of, 318ﬁ1 inle (1 4. 279, 293
Jordan canonical form, 457, 472, 492ff. east common multiple (Le.m.). 4, ’

Jordan—-Holder Theorem, 103ff. ::?ts:l::is\iz:‘;eiz 9nclor 788
ul >

left exact, 391, 395, 402

K left group action, 43
leftideal, 242, 251, 256
k-stage Euclidean Domains, 294 left inverse, in aring, 233
k-tensors, 442 of a map, 2
kemel, of a group action, 43, 51, 112ff left module, 337
of a homomorphism, 40, 75, 239, 345 left multiplication, 44, 118, 531
of ak-algebrahomomorphism, computing, 665ff.  1eft Principal Ideal Domain, 302
of a k-algebra homomorphism, 678 left regular representation, 44, 120
of a linear transformation, computing, 429 left translation, 44
Klein 4-group (Viergruppe), 68, 136, 155 left zero divisor, 233
Kronecker product, 421ff., 431 Legendre symbol, 818
Kronecker—Weber Theorem, 600 length of a cycle, 30
Krull dimension, 704, 750ff., 754 lexicographic monomial ordering, 317ff., 622
Krull topology, 652 Lie groups, 505, 876
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lifts, 386
linear algebraic sets, 659
linear character, 569
linear combination, 5, 275, 280, 408
linear equations, solving, 425ff.
linear functional, 431
linear representation, 840
linear transformation, 340f., 346, 408
linearly independent, characters, 569, 872
vectors, 409
local homomorphism, 723, 744
local ring, 259, 717, 752f, 755
of an affine variety, 721
localization, 706ff., 795, 796
at a point in a variety, 722
at a prime, 708f., 718
of a module, 714ff.
locally ringed spaces, 745
locus. 659
Long Exact Sequence, 778, 789
in Group Cohomology, 802
lower central series, 193
Liiroth’s Theorem, 647

M

map, 1, 215
Maschke’s Theorem, 453, 849
matrix, 34, 235, 415ff
of a composition, 418
of a linear transformation, 415
mairix representation, 840
matrix ring, 235ff., 418
ideals of, 249
maximal ideal, 2537, 280, 512
maximal order, 232
maximalreal subfield of a cyclotomic field, 603
maximal spectrum, 731
of k[x], 735
of k[x, y], 735
of Z[il, 735
of Z[x], 736
maximal subgroup, 65, 117, 131, 188, 198
of solvable groups, 200
middle linear map — see balanced map
minimal element, 4
minimal Grdbner basis, 325ff.
minimal normal subgroup, 200
minimal polynomial, 474
of a field element, 520
of a field element, computing, 667
minimal prime ideal, 298, 688
minimal primary decomposition, 683
minimum condition, 855

Index

Minkowski’s Criterion, 441
minor, 439
Mobius inversion formula, 555, 588
modular arithmetic, 9, 224
modular group of order 16, 72, 186
modular representations, 846
module, 337f
over Z, 339, 456ff.
over F[x], 340f, 456fF
over a Dedekind Domain, 769
over a group ring, 798ff., 843ff.
over a P1D., 456fF.
sheaf of, 748
module of fractions, 714
monic, 234
monomial, 297
monomial ideal, 318, 332, 334
monomial ordering, 317
monomial part, 297
monomial term, 297
Monster simple group, 865
morphism, 911
of affine algebraic sets, 662
of affine schemes, 743
multidegree, 297, 318
multilinear form, 435
multilinear map, 372, 435
multiple, 252, 274
multiple root of a polynomial, 312, 545, 547
multiplicative field norm, 230, 582
multiplicative function, 7, 267
multiplicative subgroup of a field, 314
multiplicativity of extension degrees, 523, 529
multiplicity of a root, 313, 545

N

Nakayama’s Lemma, 751
natural, 83, 167, 432, 911ff.
projection, 83, 243, 348, 916
Newton’s Formulas, 618
nilpotence class, 190
nilpotent, element, 231, 250, 596, 689
group, 1901, 198
ideal, 251, 258, 674
matrix, 502
nilradical, 250, 258, 673, 674
Noetherian, module, 458, 469
ring, 316, 458, 656fF., 793
Noether’s Normalization Lemma, 699
noncommutative polynomial algebra, 302, 443
nonfinitely generated ideal, 298, 657
nongenerator, 199
nonpivotal, 425
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nonprincipal ideal, 252, 273, 298
nonsimple field extension, 595
nonsingular, point, 725, 742, 763
variety, 725
nonsingular, linear transformation, 413
matrix, 417
nonsingular curve, 775
nonsingular model, 726
norm, 232, 270, 299
of a character, 872
of an element in a field, 582, 585
normal basis, 815
normal complement, 385
normal extension, 537, 650
normal ring, 691
normal subgroup, 82ff.
normal variety, 726
normalization, 691, 726
normalize, 82, 94
normalized, cocycle, 827
factor set, 825
section, 825
normalizer, SOf., 123ff., 134, 147, 206f
null space, 413
nullity, 413
number fields, 696

o

object, 911

opposite algebra, 834

orbit, 45, 115ff, 877

order, of a permutation, 32
of a set, 1

of an element in a group, 20, 55. 57, 90

order of conductor f, 232

order of zero or pole, 756, 763
ordered basis, 409

orthogonal characters, 872

orthogonal idempotents, 377, 856, 870
orthogonality relations, 872

outer automorphism group, 137

P

p-adic integers, 269, 652, 758
p-adic Laurent series, 759
p-adic valuation, 759
p-extensions, 596, 638
p-group, 139, 188

characters of, 886

representations of, 854, 864
p-primary component, 142, 358, 465
pM-power map, 166, 174
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PID. — see Principal Ideal Domain
parabolic subgroup, 212
partition, of a set, 3
of n, 126, 162
Pell’s equation, 230
perfect field, 549
perfect group, 174
periods in cyclotomic fields, 598, 602, 604
permutation, 3, 29, 42
even, 108ff.
odd, 108f
sign of, 108ff., 436ff.
permutation character, 866, 877, 895
permutation group, 116, 120
permutation matrix, 157
permutation module, 803
permutation representation, 43, 112ff,, 203ff., 840,
844, 852, 877
pivotal element, 425
Platonic solids, symmetries of, 28, 45, 92, 111, 148
pole, 756
polynomial, 234
map, 299, 662
ring, 234fF, 295
polynomials with S, as Galois group, 642ff.
Pontriagin dual group, 787
positive norm, 270
Postage Stamp Problem, 278
power of an ideal, 247
power series of matrices, S02ff.
power set, 232
preimage, 2
presentation, 26ff, 39, 218ff., 380
primary component — see p-primary component
Primary Decomposition Theorem. for abelian
groups, 161
for ideals, 681ff, 716f-
for modules, 357, 465, 772
primary ideal, 260, 298, 748
prime, 6
prime element in a ring, 284
prime factorization, 6
for ideals, 765ff
prime ideal, 255ff., 280, 674
algorithm for determining, 710f
prime spectrum, 731ff.
prime subfield, 264, 511, 558
primes associated, to a module, 670
to an ideal, 670
primitive central idempotent, 856, 870
primitive element, 517, 594
Primitive Element Theorem, 595
primitive idempotent, 856
Pprimitive permutation group, 117
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primitive roots of unity, 539/
principal character, 866
principal crossed homomorphisms, 814
principal fractional ideal, 760
principal ideal, 251
Principal Ideal Domain (P.I.D.), 279ff., 284, 459
characterization of, 281, 289, 294
that is not Euclidean, 282
principal open set, 687, 738
product, of ideals, 247, 250
of subgroups, 93f.
profinite, 809, 813
projection, 83, 423, 453
homomorphism, 153ff.
projections of algebraic sets, 679
projective limit — see inverse limit
projective module, 390ff., 400, 403ff., 761, 773,786
projective plane, 210
projective resolution, 779
projectively equivalent, 407
Public Key Code, 279
pullback of a homomorphism, 407
purely inseparable, 649
purely transcendental, 646
pushout of a homomorphism, 407
Pythagoras’ equation rational solutions, 584

Q

@, subgroups of, 65, 198
Q/z, 86
quadratic, equation, 522, 533
extensions, 522, 533
field, 227, 698
subfield of cyclic quartic fields, criterion, 638
subfield of Q(¢,), 621, 637
quadratic integer rings, 229ff, 248, 271, 278, 286,
293ff., 698, 749
that are Euclidean, 278
thatare P1.D.s, 278
Quadratic Reciprocity Law, 819
quadratic residue symbol, 818
quartic equations, formulas for roots, 634ff.
quasicompact, 688, 738, 746
quasidihedral group, 71/, 186
as Galois group, 579
quaternion group, 36
as Galois group, 584
characters of, 882
generalized, 178
representations of, 845, 852
Quaternionring, 224,229, 258
(see also Hamilton Quaternions)
quintic, insolvability, 625, 629

Index

quotient, computations in k-algebras, 672
group, 15, 73ff, 76, 574
module, 348
ring, 241ff.
vector space, 408, 412
quotient field, 260/

R

radical extension, 625ff.
radical ideal, 258, 673, 689
radical of an ideal, 258, 673ff., 701
computing, 701
radical of a zero-dimensional ideal, 706ff.
radicals, 625
ramified prime, 749, 775
range, 2
rank, of a free module, 338, 354, 356, 358, 459
of a group, 165, 218, 355
of a linear transformation, 413
of a module, 460, 468, 469, 471, 719, 773
rational canonical form, 457, 472
computing, 481ff.
rational functions — see field of rational functions
rational group ring, 237
rational numbers, 1, 260
rational valued characters, 879
real numbers, 1
modulo 1, 21, 86 *
reciprocity, 229, 621
recognition theorem, 171, 180
reduced Gribner basis, 326ff.
reduced row echelon form, 425
reduced word, 216ff.
reducible character, 866
reducible element, 284
reducible module, 847
reduction homomorphism, 245, 296, 300, 586
reduction mod n, 10, 243, 296, 640
reduction of polynomials mod p, 586, 589
reflexive, 3
regular at a point, 721
regular local ring, 725, 755
regular map, 662, 722
regular representation, 844, 862ff.
relations, 25ff., 218ff.. 380
relations matrix, 470
relative Brauer group, 836
relative degree of a field extension, 512
relative integral basis, 775
relatively prime, 4, 282
remainder, 5, 270, 320f.
Replacement Theorem, 410, 645
representation, 840ff.
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permutation, 43, 112ff, 203ff., 840, 844, 852,
877
representative, 3, 9, 77
residue class, 8
resolvent cubic, 614, 623
resolvent polynomials, 642
restricted direct product, 158
restriction homomorphism, 269, 805, 807
restriction maps, 269, 740
restriction of scalars, 359
resultant, 619ff.
reverse of a polynomial, 312
right derived functor, 785
right Euclidean Domain, 302
right exact, 400, 402
right group action, 43, 128, 844, 852
right ideal, 242, 251
right inverse, in a ring, 233
of amap, 2
right module, 337
right regular representation, 132
right zero divisor, 233
ring, 223
of algebraic integers, 695/
of continuous functions, 225, 227, 259
of dual numbers, 729
of fractions, 260ff., 708
of integers, 229
of sets, 232
root, 310, 521
root extension, 627
root of a polynomial, 307ff., 512
root of unity, 22, 66, 86, 539f, 552
row equivalent, 425
rowrank, 418, 427, 434
row reduced, 424
ruler and compass constructions, 534

S

saturated, 710

saturation ofan ideal, 710ff.

scalar, 408

scalar matrix, 236

scalar transformations, 348
Schanuel’s Lemma, 407

scheme, 745

Schur multiplier, 838

Schur’s Lemma, 356, 853, 856
Schur’s Theorem, 829

second dual — see double dual
Second Orthogonality Relation, 872
section, 384, 740

semidihedral group — see quasidihedral group

930

semidirect product, 175/, 383, 385, 821, 829
semisimple, 855
separable, 551
extension, 551, 572, 594ff.
polynomial, 546, 562, 572
separable degree, of a field extension, 650
of a polynomial, 550
separating transcendence base, 650
Shapiro’s Lemma, 804
short exact sequence, 379
of complexes, 778
Short Five Lemma, 383
similar, linear transformations, 419, 476
matrices, 419, 476, 4931
similar central simple algebras, 835
similar representations, 846
similarity, 40
simple algebra, 832
simple extensions, 517, 586, 594
simple group, 91, 102ff., 149f, 201, 212
classification of, 103, 212
of order 168, 207
sporadic, 104, 865
simple module — see irreducible module
simple radical extension, 625
simple ring, 253, 863
simple tensor, 360
Simultaneous Resolution, 783
singular point, 725
skew field — see division ring
skew-symmetrization, 452
Smith Normal Form, 479
smooth, 725, 742
Snake Lemma, 792
solution, of cubic equations, 630
of quartic equations, 634ff.
solvability of a quintic, criterion, 630, 639
solvability of groups of odd order — see
Feit-Thompson Theorem
solvable by radicals, 627ff.
solvable extensions, 625fF.
solvable group, 105, 149, 196", 628, 886, 890
solvable length, 195ff.
solving algebraic equations, 327ff.
solving linear equations, 425ff.
span, 62, 351, 408, 427
special linear group, 48, 89, 101, 669
specialization, 648
spectral sequences, 808

spectrum — see also prime spectrum and maximal

spectrum
of k[x], 735
of k[x, y], 735
of Z[Z/2Z), 747
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of Z[i], 735
of Z[x], 736
split algebra, 835
split exact sequence, 384, 388ff.
split extension, 384
split prime, 749, 775
splits completely, 536
splitting field, 513, 536ff., 562, 572
of (x2 — 2)(x2 — 3), 537
of x2 — 2,537
of x2 — t over k(1), 516
of x2 41,515
of x2 + x + 1 over F, 516
of x3 —2,537
of x* — px +¢,618
of x* — px? 4+ 4,618
of x* +4,538
of x* + 8, 581
of x* —2x%2 —2,582
of x6 —2x3 —2,623

of x® — 2, 577
of x" — 1, 539f.
of xP — 2, 541

of xP — x —aoverF,, 589
splitting homomorphism, 384
splitting of polynomials in Galois extensions, 572,
584, 595
sporadic simple group—see simple group, sporadic
square root of a matrix, 502
squarefree part, 227
Squaring the Circle, impossibility of, S31£
stability group, 819
stabilizer, 44, 51ff, 112ff, 123ff.
stable subspace, 341, 843
stalk, 741
standard bimodule structure, 367
standard resolution, 799
steady states, 507
Steinitz class, 773
Stone-Cech compactification, 259
straightedge and compass constructions, 531ff., 602
structure sheaf, 740ff.
Sturm’s Theorem, 624
subfield, 511, 516
subgroup, 22, 46ff.
criterion, 47
of cyclic groups, 58ff.
of index 2, 91, 120, 122
sublattice, 70
submodule, 337
criterion, 342
subring, 228
subspace topology, 677
sum, of ideals, 247, 250

Index

of submodules, 349, 351
support, 729ff.
surjective, 2
Sylow p-subgroup, 101, 139, 161
Sylow’s Theorem, 93, 105, 139/, 617
symmetric algebra, 444
symmetric function, 436, 608
symmetric group, 29f
as Galois group, 642ff, 649/
characters of, 879, 881, 883, 884
conjugation in — see conjugation
isomorphisms between, 37, 40
Sylow p-subgroups of, 168, 187
symmetric polynomials, 608, 621
symmetric relation, 3
symmetric tensor, 451
symmetrization, 452

T

table, group, 21
tangent space, 724ff., 741
Tchebotarov Density Theorem, 642
tensor algebra, 443
tensor product, 359ff., 788ff.
associativity of, 371
of algebras, 374
of direct products, 376
of direct sums, 373, 376
of fields, 377, 531, 596
of free modules, 404
of homomorphisms, 370
of ideals, 377
of matrices, 421
of projective modules, 402, 404
of vector spaces, 420
tensors, 360, 364
tetrahedron — see Platonic solids
Thompson subgroup, 139
Thompson Transfer Lemma, 822
Thompson’s Theorem, 196
topological space, 676ff.
TorR (A, B), 788ff
torsion, element, 344
module, 356, 460, 463
subgroup, 48
submodule, 344
torsion free, 406, 460
trace, of a field element, 583, 585
of a manrix, 248, 431, 431, 488, 866
trace ideal of a group ring, 846
transcendence base, 645
transcendence degree, 645
transcendental, element, 520, 527, 534
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extension, 645ff.
transfer homomorphism, 817, 822
transgression homomorphism, 807
transition matrix, 419
transitive, action, 115, 606, 640
subgroups of Ss, 643
subgroups of S,,, 640
transitive relation, 3
transpose, 434, 501
transposition, 107ff.
trilinear, 372, 436
Trisecting an Angle impossibility of,, 531ff.
trivial, action, 43
homomorphism, 79
ideal, 243
representation, 844
ring, 224
subgroup, 47
submodule, 338
twisted polynomial ring, 302
two-sided ideal, 242, 251
two-sided inverse, 2

U

U.ED. — see Unique Factorization Domain
ultrametric, 759

uniformizing parameter, 756

unipotent radical, 212

Unique Factorization Domain (U.E.D.), 283ff., 303ff.,

690, 698, 769
unique factorization of ideals, 767
uniqueness of splitting fields, 542
unital module, 337
units, 226
inZ/nZ, 10, 17, 61, 135, 267, 314, 596
universal property, of direct limits, 268
of free groups, 215ff.
of free modules, 354
of inverse limits, 269
of multilinear maps, 372, 442, 445, 447
of tensor products, 361, 365
universal side divisor, 277
universe, 911
upper central series, 190

upper triangular matrices, 49, 174, 187, 236, 502
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A\

valuation ring, 232, 755(f
value of f in Spec R, 732
Vandermonde determinant. 619
variety, 679ff.

vector space, 338, 408/, 512

Verlagerungen — see transfer homomorphism

virtual character, 898

W

Wedderbumn components, 855
Wedderbum decomposition, 855

Wedderbum’s Theorem on Finite Division Rings,

556f

Wedderburn’s Theorem on Semisimple rings, 854ff.

wedge product, 447
of ideals, 449, 455
of a monomial, 621
well defined, 1, 77, 100
Well Ordering of Z, 4, 8, 273, 909
Wilson’s Theorem, 551
word, 215
wreath product, 187

Z

Z"(G; A) — see cocycles

Z[i] — see Gaussian integers

Z[v2], 278, 311

Z[V-51, 273, 279. 283ff.

Z[(1 + v/—19)/2], 277, 280, 282
Z/nZ, 8ff., 17, 56, 75(f, 226, 267
(Z/nZ)*, 10, 18, 61, 135, 267, 314, 596
Zariski closed set, 676

Zariski closure, 677(f, 691

Zariski dense, 677,687

Zariski topology, 676ff., 733

zero divisor, 226,689

zero ring, 224

zero set, 659

zero-dimensional ideal, 705 ff-

Zom’s Lemma, 65, 254, 414, 645, 907ff.
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