
I 
+ (0) 

(2) (3) (5) (p) 

1 1 1 1 1 
(0) (2) (3) (5) (p) 

over IF P factors into irreducibles as follows: 

f = x3 + x + I mod 2 

f = x(x + I )2 mod 3 

(x -a) 

(f) 

/ 

f = (x + l ) (x + 2) (x + 3) mod 5. 

Spec Z[x] 

q;* 

Spec :£: 

There is one point in the fiber over (2) intersecting (f), namely the closed point 
(2, x3 + x + I ) .  There are two closed points in the fiber over (3) given by (3, x) 
and (3, x + I )  (with some "multiplicity" at the latter point). Over (5) there are three 
closed points: (5, x + I ) , (5, x + 2), and (5, x + 3) . For the diagram above, the 
prime p might be p = 53, since this is the first prime p greater than 5 for which 
this polynomial has three irreducible factors mod p. Note that while the prime (f) is 
drawn as a smooth curve in this diagram to emphasize the geometric similarity with 
the structure of Spec k[x .  y] in the previous example, the fibers above the primes in 
Spec Z are discrete, so some care should be exercised. For example, since f factors 
as (x + 2) (x2 + x + 6) mod 7, the intersection of (f) with the fiber above (7) contains 
only the two points (7 ,  x + 2) and (7, x2 + x + 6) , each with multiplicity one. 

The possible number of closed points in (f) lying in a fiber over (p) E Spec Z 
is controlled by the Galois group of the polynomial f over <Ql (cf. Section I4.8). For 
example, f = x4 + I has one closed point in the fiber above (2) and either two or four 
closed points in a fiber above (p) for p odd (cf. Exercise 8). 

The space Spec R together with its Zariski topology gives a geometric generaliza­
tion for arbitrary commutative rings 6f the points in a variety V.  We now consider the 
question of generalizing the ring of rational functions on V.  

When V is  a variety over the algebraically closed field k the elements in the quotient 
field k(V) of the coordinate ring k[V] define the rational functions on V. Each element 
a in k(V) can in general be written as a quotient aj f of elements a, f E k[V] in 
many different ways. The set of points U at which a is regular is an open subset of 
V ;  by definition, it consists of all the points v E V where a can be represented by 
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some quotient a If with f ( v) =j:. 0, and then the representative a If defines an element 
in the local ring Ov, V ·  Note also that the same representative alf defines a not only 
at v, but also at all the other points where f is nonzero, namely on the open subset 
vf = {w E v I f(w) =I 0} of v.  These open sets vf (called principal open sets, 
cf. Exercise 21  in Section 2) for the various possible representatives al f for a give an 
open cover of U. The example of the function a = ily for V = Z(xz - yw) C A4 
preceding Proposition 5 1  shows that in general a single representative for a does not 
suffice to determine all of U - for this example, U = V:v U Vz , and U is not covered 
by any single v1 (cf. Exercise 25 of Section 4). 

This interpretation of rational functions as functions that are regular on open subsets 
of V can be generalized to Spec R.  We first define the analogues X f in X = Spec R of 
the sets V1 and establish their basic properties. 

Definition. For any f E R let X f denote the collection of prime ideals in X = Spec R 
that do not contain f. Equivalently, X f is the set of points of Spec R at which the value 
of f E R is nonzero. The set X f is called a principal (or basic) open set in Spec R. 

Since X f is the complement of the Zariski closed set Z (f) it is indeed an open set 
in Spec R as the name implies. Some basic properties of the principal open sets are 
indicated in the next proposition. Recall that a map between topological spaces is a 
homeomorphism if it is continuous and bijective with continuous inverse. 

Proposition 56. Let f E R and let X f be the corresponding principal open set in 
X = Spec R. Then 

(1) X f = X if and only if f is a unit, and X f = 0 if and only if f is nilpotent, 
(2) x1 n Xg = x1g. 
(3) Xf � Xg, U ·  · · U Xg, if and only if f E rad(gJ , . . .  , gn ) ;  in particular Xf = Xg 

if and only if rad(f) = rad(g ), 
(4) the principal open sets form a basis for the Zariski topology on Spec R, i.e., 

every Zariski open set in X is the union of some collection of principal open 
sets xf . 

(5) the natural map from R to Rt induces a homeomorphism from Spec R f to X f ,  
where R1 i s  the localization of  R at f ,  

(6) the spectrum of any ring i s  quasicompact (i.e., every open cover has a finite 
subcover); in particular, xf is quasicompact, and 

(7) if qJ : R � S is any homomorphism of rings (with ({J(lR )  = l s) then under 
the induced map qJ* : Y = Spec S � Spec R the full preimage of the principal 
open set X f in X is the principal open set Y10<n in Y.  

Proof Parts ( 1 ), (2) and (7) are left as  easy eXercises. For (3), observe that, by defi­
nition, Xg, U · · · U Xg" consists of the primes P not containing at least one of g1 , . . .  , gn . 
Hence Xg, U ·  · · U Xg, is the complement ofthe closed set Z((gJ , . . .  , gn )) consisting of 
the primes P that contain the ideal generated by g1 , . . .  , gn . If (g1 , . . .  , gn) = R then 
Xg, U · · · U Xg, = X  and there is nothing to prove. Otherwise, X1 � Xg, U · · · U Xg, 
if and only if every prime P with f fj. P also satisfies P fj. Z((gJ , . . .  , gn)) .  This 
latter condition is equivalent to the statement that if the prime P contains the ideal 
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(gt , . . . , g11) then P also contains j, i.e., f is contained in the intersection of all the 
prime ideals P containing (gt , . . . , g11) .  Since this intersection is rad(gt ,  . . .  , g11) by 
Proposition 12, this proves (3). 

If U = X - Z (/) is a Zariski open subset of X, then U is the union of the sets X r 
with f E I ,  which proves (4) . 

· 
The natural ring homomorphism from R to the localization Rr establishes a bi­

jection between the prime ideals in Rr and the prime ideals in R not containing (f) 
(Proposition 38). The corresponding Zariski continuous map from Spec Rr to Spec R 
is therefore continuous and bijective. Since every ideal of Rr is the extension of some 
ideal of R (cf. Proposition 38( 1)), it follows that the inverse map is also continuous, 
which proves (5). 

In (6), every open set is the union of principal open sets by (4), so it suffices to 
prove that if X is covered by principal open sets X g; (for i in some index set :J) then X 
is a finite union of some of the Xg; · If the ideal I generated by the g; were a proper ideal 
in R, then I would be contained in some maximal ideal P.  But in this case the element 
P in X = Spec R would not be contained in any principal open set X g; , contradicting 
the assumption that X is covered by the X g; . Hence I = R and so 1 E R can be written 
as a finite sum 1 = a1 g;1 + · · · + a11g;" with it , . . . , i11 E :T. Consider the finite union 
X g1 U · · · U X 8" . Any point P in X not contained in this union would be a prime in 
R that contains g; 1 , • • •  , g;" , hence would contain 1 ,  a contradiction. It follows that 
X =  X81 U · · · U X8" as needed. The second part of (6) follows from (5). 

We now define an analogue for X = Spec R of the rational functions on a variety 
V.  As we observed, for the variety V a rational function a E k(V) is a regular function 
on some open set U.  At each point v E U there is a representative a If for a with 
f(v) -I 0, and this representative is an element in the localization Ov. v = k[Vlz:(v) · 
In this way the regular function a on U can be considered as a function from U to the 
disjoint union of these localizations: the point v E U is mapped to the representative 
a If E k[Vlz:(v) . Furthermore the same representative can be used simultaneously not 
only at v but on the whole Zariski neighborhood Vr of v (so, "locally near v," a is 
given by a single quotient of elements from k[V]) .  Note that a If is an element in the 
localization k[V]r ,  which is contained in each of the localizations k[Vlz:<w> for w E Vr . 

We now generalize this to Spec R by considering the collection of functions s from 
the Zariski open subset U of Spec R to the disjoint union of the localizations Rp for 
P E U such that s (P) E Rp and such that s is given locally by quotients of elements 
of R. More precisely: 

Definition. Suppose U is a Zariski open subset of Spec R. If U = 0, define O(U) = 0. 
Otherwise, define O(U) to be the set of functions s : U -+ UQEU RQ from U to the 
disjoint union of the localizations R Q for Q E U with the following two properties: 

(1) s ( Q) E RQ for every Q E U, and 
(2) for every P E U there is an open neighborhood Xr � U of P in U and an 

element al jll in the localization Rr defining s on Xr,  i.e., s ( Q) = al jll E RQ 
for every Q E Xr. 

If s ,  t are elements in O(U) then s + t and st are also elements in O(U) (cf. 
Exercise 1 8), so each O(U) is a ring. Also, every a E R gives an element in O(U) 
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defined by s (Q) = a E RQ. and in particular 1 E R gives an identity for the ring O(U). 
If U' is an open subset of U, then there is a natural restriction map from O(U) to O(U') 
which is a homomorphism of rings ( cf. Exercise 19). 

Definition. Let R be a commutative ring with 1, and let X = Spec R. 
(1) The collection of rings 0( U) for the Zariski open sets of X together with the 

restriction maps O(U) -+ O(U') for U' � U is called the structure sheaf on 
X, and is denoted simply by 0 (or Ox). 

(2) The elements s of O(U) are called the sections of 0 over U. The elements of 
O(X) are called the global sections of 0. 

The next proposition generalizes the result of Proposition 5 1  that the only rational 
functions on a variety V that are regular everywhere are the elements of the coordinate 
ring k[V] .  

Proposition 57. Let X = Spec R and let 0 = 0 x be its structure sheaf. The global 
sections of 0 are the elements of R, i.e. , O(X) � R. More generally, if X 1 is a principal 
open set in X for some f E R, then O(X1) is isomorphic to the localization R1 . 

Proof" Suppose that aIr is an element of the localization R t .  Then the map defined 
by s (Q) = air E RQ for Q E X1 gives an element in O(X1), and it is immediate 
that the resulting map 1/1 from R 1 to O(X 1) is a ring homomorphism. Suppose that 
air = hlr' in RQ for every Q E X1, i.e., g (ar' - hr) = 0 in R for some g ¢ Q. 
If I i s  the ideal in R of elements r E R with r (af'n - br) = 0,  it follows from g E I 
that I is not contained in Q for any Q E X 1 .  Put another way, every prime ideal of R 
containing I also contains f. Hence f is contained in the intersection of all the prime 
ideals of R containing I, which is to say that f E rad I .  Then f N E I for some integer 
N :::: 0, and so fN (ar' - hr) = 0 in R. But this shows that al r = bl r' in Rr and 
so the map 1/1 is injective. Suppose now that s E O(X 1 ) .  Then by definition X f can be 
covered by principal open sets X g, on which s ( Q) = a;/ g;• E R Q for every Q E X g, . 
By (6) of Proposition 56, we may take a finite number of the g; and then by taking 
different a; we may assume all the n; are equal (since a; / g;• = (a; g;-n• )  I g� if n is the 
maximum ofthe n; ). Since s (Q) = a;/g;' = a;lgj in RQ for all Q E Xg,gj = Xg, n Xgj • 
the injectivity of 1/1 (applied to Rg,g) shows that a; /g� = ajlgj in Rg,gr This means 
that g; gj N  (a; gj - a;g7) = 0, i.e. , 

a;g!" g n+N = a · gn+N g ·N  
l .I .I l .I 

in R for some N :=:: 0, and we may assume N sufficiently large that this holds for every 
i and .i . Since X f is the union of the X g, = X g;•+N , f is contained in the radical of the 
ideal generated by the g7 by (3) of Proposition 56, say 

fM = 'L, b;g�+N 

for some M :=:: 1 and b; E R.  Define a = L, b; a; g[" E R.  Then 

740 

N fM " b ( n+N N) " b  ( N n+N) n+N gi aj = � ; ajg; gj = � ; a;g; gj = gj a .  
i i 
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It follows that al JM = aj I g'j in R8i , and so the element in O(X f) defined by al fM 
in R f agrees with s on every X gi , and so on all of X 1 since these open sets cover X f .  
Hence the map l/1 gives an isomorphism Rt � O(X f ) .  Taking f = l gives R � O(X), 
completing the proof. 

In the case of affine varieties V the local ring Ov , v at the point v E V is the 
collection of all the rational functions in k(V) that are defined at v. Put another way, 
Ov. v is the union of the rings of regular functions on U for the open sets U containing 
P. where this union takes place in the function field k(V) of V.  In the more general 
case of X = Spec R, the rings O(U) for the open sets containing P E Spec R are not 
contained in such an obvious common ring. In this case we proceed by considering the 
collection of pairs (s, U) with U an open set of X containing P and s E O(U). We 
identify two pairs (s, U) and (s' , U') if there is an open set U" 5:; U n U' containing 
P on which s and s' restrict to the same element of O(U") . In the situation of affine 
varieties, this says that two functions defined in Zariski neighborhoods of the point v 
define the same regular function at v if they agree in some common neighborhood of 
v .  The collection of equivalence classes of pairs (s, U) defines the direct limit of the 
rings O(U), and is denoted li!p O(U) (cf. Exercise 8 in Section 7.6). 

Definition. If P E X = Spec R, then the direct limit, li!p O(U), of the rings O(U) 
for the open sets U of X containing P is called the stalk of the structure sheaf at P, and 
is denoted 0 p .  

Proposition 58. Let X = Spec R and let 0 = Ox be its structure sheaf. The stalk of 
0 at the point P E X is isomorphic to the localization Rp of R at P: Op � Rp.  In 
particular, the stalk 0 p is a local ring. 

Proof: If (s , U) represents an element in the stalk Op, then s(P) is an element of 
the localization R p .  By the definition of the direct limit, this element does not depend 
on the choice of representative (s, U), and so gives a well defined ring homomorphism 
cp from Op to Rp . If a, f E R with f � P, then the map s (Q) = alf E RQ defines 
an element in O(X f) .  Then the class of (s , X f )  in the stalk 0 p is mapped to al f 
in Rp by cp, so cp is a surjective map. To see that cp is also injective, suppose that the 
classes of (s, U) and (s', U') in Op satisfy s(P) = s'(P) in Rp .  By definition of O(U), 
s = algn on X8 for some g � P .  Similarly, s' = hl(g')m on X8, for some g' � P. 
Since al gn = hl(g')m in Rp ,  there is some h � P with h(a(g')m - bgn ) = 0 in R. If 
Q E Xgg'h = X8 n Xg' n Xh this last equality shows that algn = hl (g')m in RQ, so 
that s and s' agree when restricted to Xgg'h · By definition of the direct limit, (s, U) and 
(s' , U') define the same element in the stalk Op , which proves that cp is injective and 
establishes the proposition. 

Proposition 58 shows that the algebraically defined localization Rp for P E Spec R 
plays the role of the local ring Ov. v of regular functions at v for the affine variety 
V. If mp denotes the maximal ideal PRp in Rp and k(P) = Rplmp denotes the 
corresponding quotient field (which by Proposition 46(1)  is also the fraction field of 
RIP), then the tangent space at P is defined to be the k( F)-vector space dual of mp lm� . 
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This is an algebraic definition that generalizes the definition of the tangent space 11' v, v 
to a variety V at a point v (by Proposition 52). This can now be used to define what it 
means for a point in Spec R to be nonsingular: the point P E Spec R is nonsingular or 
smooth if the local ring Rp is what is called a "regular local ring" (cf. Section 16.2). 

Proposition 58 also suggests a nice geometric view of the structure sheaf on Spec R. 
If we view each point P E Spec R as having the local ring Rp above it, then above the 
open set U in X = Spec R is a "sheaf' (in the sense of a "bundle") of these "stalks" 
(in the sense of a "stalk of wheat"), which helps explain some of the terminology. A 
section s in the structure sheaf O(U) is a map from U to this bundle of stalks. The 
image of U under such a section s is indicated by the shaded region in the following 
figure. 

./ 
r � 

..... � I-

'-... ___..-' 

Definition. Let R be a commutative ring with 1 .  The pair (Spec R, Ospec R),  consisting 
of the space Spec R with the Zariski topology together with the structure sheaf Ospec R ·  
i s  called an affine scheme. 

The notion of an affine scheme gives a completely algebraic generalization of the 
geometry of affine algebraic sets valid for arbitrary commutative rings, and is the starting 
point for modem algebraic geometry. 

Examples 

(1) If F is any field then X = Spec F = { (0)} .  In this case there are only two open sets 
X and !ZJ, both of which are principal open sets: X = X 1 and QJ = Xo. The global 
sections are O(X) = F. There is only one stalk: O(o) = Fo = F. 

(2) If R = Z then because R is a P.I.D. every open set in X = Spec Z is principal open: 

742 

X, = { (p) I p f n} and 

O(X,) = Z, = Z[l/n] = {afb E Q I if the prime p I b then p I n} .  
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For nonzero p the stalk at (p) is the local ring Z(p} • and the stalk at (0) is Q. All the 
restriction maps as well as the maps from sections to stalks are the natural inclusions. 

(3) For a general integral domain R with quotient field F the stalks and sections are 

O(U) = {afb E F I b rf. P for all P E U} 

Op = Rp = {afb E F I b rf. P} 

where the stalk at (0) is  F, i.e., 0(0) = F. Again, the restriction maps and the maps 
to the stalks are all inclusions. 

(4) For the local ring R = Z(2) = {ajb E Q I b odd} we have Spec R = { (0) , (2)} with 
(2) the only closed point and { (0)} = Xz a principal open set. The sections 0({(0) }) 
are Rz = Q, and the stalks are O(o) = R(o) = Q and 0(2} = R(2) = R. 

We next consider the relationship of the affine schemes corresponding to rings R 
and S with respect to a ring homomorphism from R to S. 

Suppose that <p : R � S is a ring homomorphism. We have already seen in 
Proposition 56(7) that there is an induced continuous map <p* from Y = Spec S to 
X = Spec R and that under this map the full preimage of the principal open set X 8 
for g E R is the principal open set Y10(g) · It follows that <p also induces a map on 
corresponding sections, as follows. Let Q' E Y be any element in Spec S and let 
Q = <p*(Q') = <p-1 (Q') E X be the corresponding element in Spec R.  If U is a Zariski 
open set in X containing Q, then U' = ( <p*) -t ( U) is a Zariski open set in Y containing 
Q'. Note that <p induces a natural ring homomorphism, (/JQ say, from the localization 
RQ to the localization SQ' defined by ({JQ(ajf) = <p(a)j<p(f) E SQ' for f ¢. Q. Let 
s E 0 x ( U) be a section of the structure sheaf of X given locally in the neighborhood 
X 8 of P E X by a j gn . It is easy to check that the composite 

s' : U' � U � U RQ � U SQ' 
QEU Q'EU 

defines a map given locally in the neighborhood Y10(g) by the element <p(a)j<p(gt, so 
that s' E Oy (U') is a section of the structure sheaf of Y. It is then straightforward to 
check that the resulting map <p# : 0 x ( U) � Oy ( U') is a ring homomorphism (mapping 
1 E Ox (U) to 1 E Oy (U') ) that is compatible with the restriction maps on Ox and 
Oy (cf. Exercise 20). It also follows that there is an induced ring homomorphism on 
the stalks: <p# : Ox.P � OY, P' for any point P' E Spec S and corresponding point 
P = <p*(P') E Spec R. Under the isomorphism in Proposition 58, the homomorphism 
<p# from Rp � Ox,P to SP' � OY, P' is just the natural ring homomorphism <pp on the 
localizations induced by the homomorphism <p. In particular, the inverse image under 
<p# of the maximal ideal in the local ring Oy, P' is the maximal ideal in the local ring 
Ox,P · 

Definition. Suppose (Spec R, Ospec R) and (Spec S, Ospecs) are two affine schemes. 
A morphism of affine schemes from (Spec S, Ospec s) to (Spec R,  Ospec R) is a pair 
( <p* , <p#) such that 

(1) <p* : Spec S � Spec R is Zariski continuous, 
(2) there are ring homomorphisms <p# : O(U) � 0(<p*-1 (U)) for every Zariski 

open subset U in Spec R that commute with the restriction maps, and 
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(3) if P' E Spec S with corresponding point P = qJ* (P) E Spec R, then under the 
induced homomorphism on stalks (/)# : Ospec R, p ---+ Ospec s, P' the preimage of 
the maximal ideal of Ospec s, P' is the maximal ideal of Ospec R, P .  

A homomorphism 1/J : A ---+ B from the local ring A to the local ring B with 
the property that the preimage of the maximal ideal of B is the maximal ideal of A is 
called a local homomorphism of local rings. The third condition in the definition is 
then the statement that the induced homomorphism on stalks is required to be a local 
homomorphism. 

With this terminology, the discussion preceding the definition shows that a ring ho­
momorphism ({J : R ---+ S induces a morphism of affine schemes from (Spec S, Ospec s) 
to (Spec R ,  Ospec R) -

Conversely, suppose ( qJ* , ({J#) is a morphism of affine schemes from (Spec S, Ospec s) 
to (Spec R,  Ospec R) - Then in particular, for U = Spec R, (qJ*)-1 (U) = Spec S, so by 
assumption there is a ring homomorphism (/)# : Ospec R (Spec R) ---+ Ospec s (Spec S) 
defined on the global sections. By Proposition 57, we have Ospec R (Spec R) � R and 
Ospec s (Spec S) � S as rings. Composing with these isomorphisms shows that (/)# gives 
a ring homomorphism qJ : R ---+ S. By Proposition 58 we have a local homomorphism 
(/)# : R p ---+ S P' , and by the compatibility with the restriction homomorphisms it follows 
that the diagram 

R __!______,. S 

1 1 
lfi" 

--+ Sp, 

commutes, where the two vertical maps are the natural localization homomorphisms. 
Since qJ# is assumed to be a local homomorphism, ( ({J#) -1 ( P' S P' ) = P R P ,  from which 
it follows that qJ - 1 ( P') = P. Hence the continuous map from Spec S to Spec R induced 
by qJ is the same as qJ*, and it follows easily that qJ also induces the homomorphism (/)#. 
This shows that there is a ring homomorphism qJ : R ---+ S inducing both qJ* and qJ# as 
before. 

We summarize this in the following proposition: 

Theorem 59. Every ring homomorphism qJ : R ---+ S induces a morphism 

(qJ* , qJ#) : (Spec S, Ospcc s) ---+ (Spee R, Ospec R) 

of affine schemes. Conversely, every morphism of affine schemes arises from such a 
ring homomorphism qJ.  

Theorem 59 i s  the analogue for Spec R of Theorem 6 ,  which converted geometric 
questions relating to affine algebraic sets to algebraic questions for their coordinate 
rings. 

The condition that the homomorphism on stalks be a local homomorphism in the 
definition of a morphism of affine schemes is necessary: a continuous map on the 
spectra together with a set of compatible ring homomorphisms on sections (hence also 
on stalks) is not sufficient to force these maps to come from a ring homomorphism. 
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Example 

Let R = IZ(2) and S = Q as in the preceding set of examples. Define rp* : Spec Q -+ 
Spec /Z(2) by rp* ((O)) = (2) (which is Zariski continuous). Define rp# : 0(Spec R)  -+ 
0(Spec S) to be the inclusion map IZ(2) � Q and define rp# for all other U � Spec R simply 
to be the zero map. It is straightforward to check that these homomorphisms commute 
with the restriction maps. This family of maps does not arise from a ring homomorphism, 
however, because on the stalks for (0) E Spec S and rp* ( (0)) = (2) E Spec R the induced 
homomorphism 

rp# : Ospec R, (2) � Ospec S, (O) 

is the injection IZ(2) � Q, which is not a local homomorphism (the inverse image of (0) 
is (0) and not the maximal ideal 21Z(2J ). 

The proof ofTheorem 59 shows that a morphism ( rp* , rp#) of affine schemes necessarily 
comes from the ring homomorphism defined by rp# on global sections. In this example, 
the homomorphism on global sections is the inclusion map of R into S. The inclusion map 
from R to S defines a map from Spec S to Spec R that maps (0) E Spec S to (0) E Spec R 
and not to (2) E Spec R, so this map does not agree with the original map rp* . 

The previous example shows that the converse in Theorem 59 would not be true 
without the third (local homomorphism) condition in the definition of a morphism of 
affine schemes. As a result, Theorem 59 shows that the appropriate place to view affine 
schemes is in the category of locally ringed spaces. Roughly speaking, a locally ringed 
space is a topological space X together with a collection of rings O(U) for each open 
subset of X (with a compatible set of homomorphisms from O(U) to O(U') if U' � U 
and with some local conditions on the sections) such that the stalks 0 P = fup 0( U) for 
P E U are local rings. The morphisms in this category are continuous maps between the 
topological spaces together with ring homomorphisms between corresponding O(U) 
with precisely the same conditions as imposed in the definition of a morphism of affine 
schemes. 

A scheme is a locally ringed space in which each point lies in a neighborhood 
isomorphic to an affine scheme (with some compatibility conditions between such 
neighborhoods), and is a fundamental object of study in modern algebraic geometry. 
The affine schemes considered here form the building blocks that are "glued together" 
to define general schemes in the same way that ordinary Euclidean spaces form the 
building blocks that are "glued together" to define manifolds in analysis. 

E X E R C I S E S  

All rings are assumed commutative with identity, and all ring homomorphisms are assumed to 
map identities ro identities. 

1. If N is the nilradical of R, prove that Spec R and Spec Rj N are homeomorphic. [Show 
that the natural homomorphism from R to R j N induces a Zariski continuous isomorphism 
from Spec R/N to Spec R.] 

2. Let I be an ideal in the ring R.  Prove that the continuous map from Spec R/ I to Spec R 
induced by the canonical projection homomorphism R -+ Rj I maps Spec Rj I homeo­
morphically onto the closed set Z(l) in Spec R .  
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3. Prove that two elements f, g E R have the same values at all elements P in Spec R if and 
only if f - g is contained in the nilradical of R. In particular, prove that an element in an 
affine k-algebra is uniquely determined by its values. 

4. Let k be an arbitrary field, not necessarily algebraically closed. Prove that the prime ideals 
in k[x , y] (i.e., the elements of Spec k[x , y]) are 
(i) (0), 
(ii) (/) where f is an irreducible polynomial in k[x , y], and 

(iii) (p(x), g(x ,  y)) where p(x) is an irreducible polynomial in k[x] and g(x ,  y) is an 
irreducible polynomial in k[x, y] that is irreducible modulo p(x), i.e., g(x ,  y) remains 
irreducible in the quotient k[x,  y]/(p(x)). 

Prove that mSpec kfx ,  y] consists of the primes in (iii). [Use Exercise 20 in Section 1 .] 
5. Let m = (p(x) ,  g(x ,  y)) be a maximal ideal in k[x ,  y] as in the previous exercise. Show 

that K = k[x ,  y ]/m is an algebraic field extension of k, so that k[x , y] can also be viewed 
as a subring of K[x ,  y] .  If x, y are mapped to a, f3 e K, respectively, under the canonical 
homomorphism k[x , y] � k[x ,  y]jm, prove that m = k[x ,  y] n (x - a, y - {3) � K[x, y] . 

6. Describe the elements in Spec IR[x] and Spec <C[x ]. Describe the elements in Spec Z(2) [x] 
where Z(2) = {afb E Q I b is odd} is the localization of Z at the prime (2) . 

7. Let (f) = (x5 + x + I ) in Spec Z[x] viewed as fibered over Spec Z as in Example 3 
following Proposition 55. Show that there are two closed points in the fiber over (2) , three 
closed points in the fiber over (5), four closed points in the fiber over ( 1 9), and five closed 
points in the fiber over (21 1 ) .  

8 .  Let (f) = (x4 + 1)  in  Spec Z[x] viewed as fibered over Spec Z as  in  Example 3 following 
Proposition 55. Prove that there is one closed point in the fiber over (2), four closed points 
in the fiber over p for p odd, p = 1 mod 8, and two closed points in the fiber over p for 
all other odd primes p (cf. Corollary 16  in Section 3 of Chapter 14). 

9. Prove that the elements in the fiber over (p) of the Zariski continuous map from Spec Z[x] 
to Spec Z are homeomorphic with the elements in Spec(Z[x] ®z 1Fp) . 

10. Let X = Spec R and let X 1 be the principal open set corresponding to f E R. Prove that 
Xf n Xg = Xfg · Prove that Xt = X if and only if f is a unit in R, and that Xf = 0 if 
and only if f is nilpotent. 

11. If X 1 and X g are principal open sets in X = Spec R, prove that the open set X 1 U X g is 
the complement of the closed set Z(/) where I =  (f, g) is the ideal in R generated by f 
and g. 

12. Prove that a Zariski open subset U of X = Spec R is quasicompact if and only if U is 
a finite union of principal open subsets. Give an example of a ring R, a Zariski open 
subset U of Spec R, and a Zariski open covering of U that cannot be reduced to a finite 
subcovering. 

13. Let f/J : R � S be a homomorphism of rings. Prove that under the induced map f/J* from 
Y = Spec S to X = Spec R the full preimage of the principal open set X 1 in X is the 
principal open set Y VJ<f> in Y.  

14. Suppose that R = Rt x Rz is the direct product of the rings Rt and Rz. Prove that 
X = Spec R is the disjoint union of open subspaces X 1 .  Xz (which are therefore also 
closed), where Xt is homeomorphic to Spec Rt and Xz is homeomorphic to Spec Rz.  

15. Prove that X = Spec R i s  not connected if  and only if  R i s  the direct product of  two 
nonzero rings if and only if R contains an idempotent e with e =1= 0, 1 (cf. the previous 
exercise). 
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16. Prove that X = Spec R is irreducible (i.e., any two nonempty open subsets have a nontrivial 
intersection) if and only if X f n X8 i= 0 for any two nonempty principal open sets X f and 
X 8 •  Deduce that X = Spec R is irreducible if and only if the nilradical of R is a prime 
ideal. [Use Exercise 1 0.] 

17. Let G = { a ) be a group of order 2, let R = Z[G] = {a + ba I a , b E Z} be the 
corresponding group ring, and let X = Spec R. 
(a) Prove that the nilradical of R is (0) but is not a prime ideal. Prove that X = x+ u x­

where x+ = Z(l - a) and x- = Z(1 + a) .  [Use (1  + a) (l - a) = 0.] 
(b) Prove that the homomorphism Z[ G] � Z defined by mapping a to 1 induces a home­

omorphism of x+ with Spec .Z, and the homomorphism mapping a to - 1  induces a 
homeomorphism of x- with Spec Z. 

(c) Prove that x+ n x- consists of the single element m = (1 + a, 1 - a) = (2, 1 - a) 
and that this is  a closed point in  X. 

(d) Show that (1 - a) and (1 + a) are the unique non-closed points in X, with closures 
x+ and x-, respectively. Describe the closed points, mSpec R. in X and prove that 
Spec Z[ { a  ) ] can be pictured as follows: 

x-
( l+a) (3, 1 -a) (5 ,  1 -a) 

Spec .Z[{ a )]  

x+ 
( 1 -a) (3, 1 +a) (5, 1 +a) 

q;* 

l l l l 
Spec .Z 

(0) (2) (3) (5) 

18. Let 0 be the structure sheaf on X = Spec R, let U be an open set in X, and suppose 
s ,  t E O(U). If s = aff} on Xft and t = bffi on Xh , show that 

st = (abft !2}/Ut h)n+m and S + t = (aft fi.n+n + hft+n /2)/(/t h)n+m 

on X ft fz . Deduce that 0(U) is a commutative ring with identity. 

19. Let 0 be the structure sheaf on X = Spee R, let V � U be open sets in X, and let 
s E 0(U). Suppose P E V and that s = afr on Xt � U. 
(a) Show that there is  a principal open set X f '  � V n X f containing P.  
(b) Show that (f')m = bf for some b E R.  
(c) Show that s = (a�)f(f')mn on Xr and conclude that restricting s to  V gives a well 

defined ring homomorphism from O(U) to O(V) . 
20. Let q; : R � S be a homomorphism of rings, let X = Spec R, Y = Spec S, and let 

V � U be Zariski open subsets of X. Set V' = (q�*)- 1 (V) and U' = (cp*)- 1 (U), the 
corresponding Zariski open subsets of Y with respect to the continuous map q;* : Y � X 
induced by q;. Prove that the induced map q;# : Ox(U) � Or(U') on sections is a ring 
homomorphism. Prove that V' � U' and that q;# is compatible with restriction i .e. , that 
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the diagram 

Ox (U) "'# 
Ov(U') � 

1 1 
Ox(V) "'# Ov(V') � 

is commutative, where the vertical maps are the restriction homomorphisms. 

21. Suppose D is a multiplicatively closed subset of R. Show that the localization homo­
morphism R ---+ v-IR induces a homeomorphism from Spec(n-IR) to the collection of 
prime ideals P of R with P n D = 0. 

22. Show that Spec k[x , y]j(xy) is connected but is the union of two proper closed subsets 
each homeomorphic to Spec k[x] , hence is not irreducible (cf. Exercise 16). 

23. For each of the following rings R exhibit the elements of Spec R, the open sets U in Spec R, 
the sections O(U) of the structure sheaf for Spec R for each open U, and the stalks 0 p at 
each point P E Spec R:  
(a) 7lj47J, (b) 7lj67!, (c) 7lj27!, X 7lj37!, (d) 7lj27!, X 7lj27!, X 7lj27l. 

24. (a) If every ideal of R is principal, show every open set in Spec R is a principal open set. 
(b) Show that if R = 'll[x]/(4, x2) then R contains a nonprincipal ideal, but every open 

set in Spec R is a principal open set. 

25. (a) If M is an R-module prove that Supp(M) is a Zariski closed subset of Spec R. [Use 
Exercise 33 of Section 4.] 

(b) If M is a finitely generated R-module prove that Supp(M) = Z(Ann(M)) s; Spec R. 
[Use Exercise 34 of Section 4.] 

26. Suppose M is a finitely generated module over the Noetherian ring R .  
(a) Prove that there are finitely many minimal primes * PI , . . .  , Pn containing Ann(M). 

[Use Corollary 22.] 
(b) Prove that {PI , . . .  , Pn } is also the set of minimal primes in Ass R ( M) and that Supp( M) 

is the union ofthe Zariski closed sets Z(PI ) ,  . . .  , Z(Pn) in Spec R. [Use the previous 
exercise and Exercise 40 in Section 4.] 

The previous exercise gives a geometric view of a finitely generated module M over a Noetherian 
ring R: over each point P in Spec R is the localization Mp (the stalk over P). The stalk is 
nonzero precisely over the points in the Zariski closed subsets Z (PI ) ,  . . .  , Z ( Pn) where the P; 
are the minimal primes in Ass R ( M) . These ideas lead to the notion of the (coherent) module 
sheaf on Spec R associated to M (with a picture similar to that of the structure sheaf following 
Proposition 58), which is a powerful tool in modern algebraic geometry. 

27. Let R = k[x,  y] and let M be the ideal (x ,  y) in R. Prove that Supp(M) = Spec R and 
AssR (M) = {0} . 

The next two exercises show that the associated primes for an ideal / in a Noetherian ring R in 
the sense of primary decomposition are the associated primes for I in the sense ofAssR (R/ /) .  

28. This exercise proves that the ideal Q in a Noetherian ring R is P-primary if and only if 
AssR (R/Q) = {P} .  
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(a) Suppose Q is a P-primary ideal and let M be the R-module R/Q. If O -=f. m E M, 
show that Q s; Ann(m) s; P and that rad Ann(m) = P. Deduce that if Ann(m) is a 
prime ideal then it is equal to P and hence that AssR (R/ Q) = {P} .  [Use Exercise 33 
in Section 1 .] 
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(b) For any ideal Q of R, let 0 i= M � RfQ.  Prove that the radical of Ann(M) is the 
intersection of the prime ideals in Supp(M) . [Use Proposition 12 and Exercise 25.] 

(c) For M as in (b), prove that the radical of AnnM is also the inters�ction of the prime 
ideals in AssR (M) . [Use Exercise 26(b).] 

(d) If Q is an ideal of R with AssR (R/ Q) = { P }  prove that rad Q = P. [Use the fact 
that Q = Ann(R/Q) and (c).] 

(e) If Q is an ideal of R with AssR (R/ Q) = {P}  prove that Q is P-primary. [If ab E Q 
with a ¢. Q consider 0 i= M = (Ra + Q)/Q � RfQ and show that b is con­
tained in AnnM � rad Ann(M). Use Exercises 33-34 in Section 1 ,  to show that 
AssR (M) = {P} ,  then use (c) to show that rad Ann(M) = P, and conclude finally 
that b E P .] 

29. Suppose I = Q I  n · · · n Qn is a minimal primary decomposition of the ideal I in 
the Noetherian ring R with P; = rad Q; , i = 1 ,  . . .  , n. This exercise proves that 
AssR (R/ /) = {Pt . . . .  , Pn } -
(a) Prove that th e  natural projection homomorphisms induce an injection of R f l  into 

R / Q I  ffi · · · ffi R/ Qn and deduce that AssR (R/ I) S::: {Pt . . . .  , Pn } - [Use Exercise 34 
in Section 1 and the previous exercise.] 

(b) Let Q; = n#i Qj - Show that the minimality of the decomposition implies that 
0 i= Q; 1 I = ( Q; + Q; ) / Q; � R/ Q; . Deduce that AssR (Q; ! /) = { P; } . [Use Exer­
cises 33-34 in Section 1 and the previous exercise.] Deduce that { P; }  E AssR (R/ 1), 
so that AssR (R/ I) = {PI , . . .  , Pn } - [Use Q; ! I � R/ I and Exercise 34 in Section 1 .] 

30. Let / be the ideal (x2 , xy, xz, yz) in R = k[x , y, z]. Prove that AssR (R/ /) consists of the 
primes {(x, y), (x , z), (x , y, z)}. 

31. (Spec for Quadratic Integer Rings) Let R be the ring of integers in the quadratic field 
K = Q!(-Ji5 ) where D is a squarefree integer and let P be a nonzero prime ideal in R. 
This exercise shows how the prime ideals in R are determined explicitly from the primes 
(p) in Z, giving in particular a description of Spec R fibered over Spec Z. 

As in the discussion and example following Theorem 29, we have R = Z[w] where 
w = -JD if D = 2, 3 mod 4 (respectively, w = ( 1 + -JD) f2 if D = 1 mod 4 ), with minimal 
polynomial mw(x) = x2 - D  (respectively, mw(x) = x2 - x + ( l - D)/4), and P n Z  = pZ 
is a nonzero prime ideal of Z. 
(a) For any prime p in Z show that R/ pR � Z[x]f(p, mw(x)) � lFp [x]j(mw (x)) as rings, 

where mw(x) is the reduction of mw (x) modulo p. Deduce that there is a prime ideal 
P in R with P n Z = (p) (this gives an alternate proof of Theorem 26(2) in this case). 

(b) Use the isomorphism in (a) to prove that P is determined explicitly by the factorization 
of mw(x) modulo p: 
(i) If mw(x) = (x - a)2 mod p where a E Z then P = (p, w - a) and pR = P2. 

Show that this case occurs only for the finitely many primes p dividing the 
discriminant of mw(x).  

(ii) If mw (x) = (x - a )(x - b) mod p with integers a , b E Z that are distinct modulo 
p then P is either PI = (p, w - a) or P2 = (p, w - b) and PI , P2 are distinct 
prime ideals in R with pR = P1 P2 . 

(iii) If mw(x)  is irreducible modulo p then P = pR . 
(c) Show that the picture for Spec R over Spec Z for any D is similar to that for the case 

R = Z[i] when D = - 1 :  there is precisely one nonclosed point (0) E Spec R over 
(0) E Spec Z, precisely one closed point P E Spec R over each of the primes (p) in 
Spec Z in (i) (called ramified primes) and over the primes in (iii) (called inert primes), 
and precisely two closed points over the primes in (ii) (called split primes). 
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CHAPTER 1 6  

Arti n ia n  Ri ngs,  
D iscrete Va l u atio n  Ri ngs, 
a n d Ded e ki n d  Doma i ns  

Throughout this chapter R will denote a commutative ring with 1 =P 0. 

1 6.1  ARTINIAN RINGS 

In this section we shall study the basic theory of commutative rings that satisfy the 
descending chain condition (D.C.C.) on ideals, the Artinian rings (named after E. Artin). 
While one might at first expect that these rings have properties analogous to those for 
the commutative rings satisfying the ascending chain condition (the Noetherian rings), 
in fact this is not the case. The structure of Artinian rings is very restricted; for example 
an Artinian ring is necessarily also Noetherian (Theorem 3). Noncommutative Artinian 
rings play a central role in Representation Theory (cf. Chapters 1 8  and 1 9). 

Definition. For any commutative ring R the Krull dimension (or simply the dimension) 
of R is the maximum possible length of a chain Po c P1 c P2 c · · · c Pn of distinct 
prime ideals in R.  The dimension of R is said to be infinite if R has arbitrarily long 
chains of distinct prime ideals. 

A ring with finite dimension must satisfy both the ascending and descending chain 
conditions on prime ideals (although not necessarily on all ideals). A field has dimension 
0 and a Principal Ideal Domain that is not a field has dimension 1 .  

We shall see shortly that rings with D.C.C. on ideals always have dimension 0 
(i.e., primes are maximal). If R is an integral domain that is also a finitely generated 
k-algebra over a field k, then the dimension of R is equal to the transcendence degree 
over k of the field of fractions of R ( cf. Exercise 1 1  ). In particular, the Krull dimension 
agrees with the definition introduced earlier for the dimension of an affine variety. The 
advantage of the definition above is that it does not refer to any k-algebra structure and 
applies to arbitrary commutative rings R.  

Definition. The Jacobson radical of R i s  the intersection of all maximal ideals of R 
and is denoted by Jac R.  
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The Jacobson radical is analogous to the Frattini subgroup of a group, and it enjoys 
some corresponding properties (cf. Exercise 24 in Section 6. 1) :  

Proposition 1. Let :J be the Jacobson radical of the conunutative ring R. 
(1) If I is a proper ideal of R, then so is (/, :J), the ideal generated by I and .7. 
(2) The Jacobson radical contains the nilradical of R:  rad O £; Jac R. 
(3) An element x belongs to :J if and only if 1 - rx is a unit for all r E R. 
(4) (Nakayama 's Lemma) If M is any finitely generated R-module and :JM = M, 

then M = 0. 

Proof: If I is a proper ideal in R, then I £; M for some maximal ideal M. Since 
:J £; M, also (/, .7) £; M, which proves ( 1 ). 

Part (2) follows from the definitions of the two radicals and Proposition 1 2  in 
Section 15.2 since maximal ideals are prime. 

Suppose 1 - r x is not a unit and let M be a maximal ideal containing 1 - r x. Since 
1 fj. M, r x fj. M, so x  cannot belong to :J because :J £; M. Conversely, suppose x fj. :J, 
i.e., there is a maximal ideal M with x fj. M. Then R = (x , M), hence 1 = rx + y for 
some y E M. Thus 1 - rx = y E M and so 1 - rx is not a unit, which proves (3). 

To prove (4), assume M # 0 and let n be the smallest integer such that M is 
generated by n elements, say m 1 , . . .  , mn . Since M = :J M we have 

for some r1 , r2 , . . .  , rn E .7. 

Thus (1 - rn)mn = r1m 1 + · · · + rn-1mn-1 · By (3), 1 - rn is a unit, so mn lies in the 
module generated by m1 , . . .  , mn-1 • contradicting the rninimality of n .  Hence M = 0, 
completing the proof. 

Definition. A conunutative ring R is said to be Artinian or to satisfy the descending 
chain condition on ideals (or D. C. C. on ideals) if there is no infinite decreasing chain of 
ideals in R, i.e., whenever h 2 h 2 h 2 · · · is a decreasing chain of ideals of R, then 
there is a positive integer m such that h = Im for all k :::: m .  Similarly, an R-module 
M is said to be Artinian if it satisfies D.C.C. on submodules. 

It is inunediate from the Lattice Isomorphism Theorem that every quotient R f I of 
an Artinian ring R by an ideal I is again an Artinian ring. 

The following result for Artinian rings is parallel to results in Theorem 15.2. The 
proof is completely analogous, and so is left as an exercise. 

Proposition 2. The following are equivalent: 
(1) R is an Artinian ring. 
(2) Every nonempty set of ideals of R contains a minimal element under inclusion. 

The next result gives the main structure theorem for Artinian rings. 
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Theorem 3. Let R be an Artinian ring. 
(1) There are only finitely many maximal ideals in R. 
(2) The quotient Rj(Jac R) is a direct product of a finite number of fields. More 

precisely, if Mt , . . .  , Mn are the finitely many maximal ideals in R then 

Rj(Jac R) � kt x · · · x kn , 

where k; is the field Rj M; for 1 :::; i :::; n .  

(3) Every prime ideal of R is  maximal, i.e., R has Krull dimension 0.  The Jacobson 
radical of R equals the nilradical of R and is a nilpotent ideal: (Jac R)m = 0 
for some m :=::: l .  

(4) The ring R is isomorphic to the direct product of a finite number of Artinian 
local rings. 

(5) Every Artinian ring is Noetherian. 

Proof: To prove ( 1 ), let S be the set of all ideals of R that are the intersection of 
a finite number of maximal ideals. By Proposition 2, S has a minimal element, say 
Mt n M2 n · · · n Mn . Then for any maximal ideal M we have 

M n Mt n M2 n · · · n Mn = Mt n M2 n · · · n Mn , 
so M 2 Mt n M2 n · · · n Mn. By Exercise 1 1  in Section 7.4, M 2 M; for some i .  
Thus M = M; and so Mt , . . .  , Mn are all the maximal ideals of R. 

The proof of (2) is immediate from the Chinese Remainder Theorem (Section 7 .6) 
applied to Mt , . . .  , Mn , since these maximal ideals are clearly pairwise co maximal and 
their intersection is Jac R.  

For (3), we first prove :r = Jac R is  nilpotent. By D.C.C. there is  some m > 0 
such that :rm = :rm+i for all positive i .  By way of contradiction assume :rm -=f. 0. Let 
S be the set of proper ideals I such that I :rm -=f. 0, so :r E S. Let Io be a minimal 
element of S. There is some x E Io such that x:rm -=f. 0, so by rninimality we must 
have Io = (x) .  But now ((x)J):Jm = x:rm+I = x:rm ,  so it follows by rninimality of 
(x) that (x) = (x):J. By Nakayama's Lemma above, (x) = 0, a contradiction. This 
proves Jac R is nilpotent. 

Since Jac R is nilpotent, in particular Jac R � rad 0, so these two ideals are equal 
by the second statement in Proposition 1 .  

Every prime ideal P in R contains the nilradical of R ,  hence contains Jac R by 
what has already been proved,. The image of P is a prime ideal in the quotient ring 
Rj(Jac R) = kt x · · · x kn . But in a direct product of rings R1 x R2 (where each R; 
has a 1) every ideal is of the form It x h where Ij is an ideal of Rj for j = 1 ,  2 (cf. 
Exercise 3 in Section 7.6). It follows that a prime ideal in kt x · · · x kn consists of the 
elements that are 0 in one of the components. In particular, such a prime ideal is also a 
maximal ideal in kt x · · · x kn and it follows that P was a maximal ideal in R, which 
finishes the proof of (3). 

Let Mt , . . .  , Mn be all the distinct maximal ideals of R and let (Jac R)m = 0 as in 
(3). Then 

752 

n ( n ) m 0 M;" � 0 M; � (Jac R)m = 0. 

Chap. 1 6  Arti nian Rings, Discrete Valuation Rings, and Dedekind Domains 



By the Chinese Remainder Theorem it follows that 

R � (RI M;n) x (RIM:;')  x · · · x (RIM:;'),  

and each Rl M;n is an Artinian ring with unique maximal ideal Md M;n, proving (4). 
To prove (5), it suffices by (4) to prove that an Artinian local ring is Noetherian, so 

assume R is Artinian with unique maximal ideal M. In this case we have M = Jac R, 
so Mm = (Jac R)m = 0 for some positive m .  Then R � Rl Mm, and in this case it  is 
an exercise to see that R I Mm is Noetherian if and only if it is Artinian ( cf. Exercise 8). 

Corollary 4. The ring R is Artinian if and only if R is Noetherian and has Krull 
dimension 0. 

Proof" The forward implication was proved in Theorem 3. Suppose now that R is 
Noetherian and that R has Krull dimension 0, i.e., that prime ideals of R are maximal. 
Since R is Noetherian, by Corollary 22(3) in Section 15.2, the ideal (0) = P1 • • • Pn 
is the product of (not necessarily distinct) prime ideals, and these prime ideals are 
then maximal since R has dimension 0. By the Chinese Remainder Theorem, R is 
isomorphic to the direct product of a finite number of Noetherian rings of the form 
R I Mm where M is a maximal ideal in R. As in the proof of (5) of the theorem, R I Mm 
is Artinian, and it follows that R is Artinian. 

Examples 

(1) Let n > 1 be an integer. Since the ring R = ZjnZ is finite, it is Artinian. If 
n = p�1 p�2 • • • p�' is the unique factorization of n into distinct prime powers, then 

ZjnZ � (Zjp�1 Z) x (Zjp�2Z) x · · · x (Zjp�' Z) . 

Each Zj p�; Z is an Artinian local ring with unique maximal ideal (p; ) j(p�; ), so this 
is the decomposition of ZjnZ given by Theorem 3(4). The Jacobson radical of R 
is the ideal generated by Pt P2 · · · p,. , the squarefree part of n and Rj(Jac R) � 
(Z/ ptZ) x · · · x (Z/ p,.Z) is a direct product of fields. The ideals generated by p; for 
i = 1 , . . .  , s are the maximal ideals of R. 

(2) For any field k, a k-algebra R that is finite dimensional as a vector space over k is 
Artinian because ideals in R are in particular k-subspaces of R, hence the length of 
any chain of ideals in R is bounded by dimkR .  

(3) Suppose f i s  a nonzero polynomial i n  k [  x ]  where k is a field. Then the quotient ring 
R = k[x]j(f(x)) is Artinian by the previous example. The decomposition of R as a  
direct product of Artinian local rings is given by 

k[x]j(f(x))  � k[x]/(/J (X )a1 )  X · · ·  X k[x]f (fs (X)a' ) 

where f (x) = ft (x)a1 • • • fs (x)a, is the factorization of f(x) into powers of distinct 
irreducibles in k[x] (cf. Proposition 16 in Section 9.5). The Jacobson radical of R is 
the ideal generated by the squarefree part of f (x) and the maximal ideals of R are the 
ideals generated by the irreducible factors f; (x) for i = 1 ,  . . .  , s similar to Example 1 .  
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E X E R C I S E S  

Let R be a commutative ring with 1 and let :r be its Jacobson radical. 

1. Suppose R is an Artinian ring and I is an ideal in R. Prove that R I I is also Artinian. 

2. Show that every finite commutative ring with 1 is Artinian. 

3. Prove that an integral domain of Krull dimension 0 is a field. 

4. Prove that an Arlin ian integral domain is a field. 

5. Suppose I is a nilpotent ideal in R and M = I M for some R -module M. Prove that 
M = O. 

6. Suppose that 0 ---+ M' ---+ M ---+ M" ---+ 0 is an exact sequence of R-modules. Prove 
that M is an Artinian R-module if and only if M' and M" are Artinian R-modules. 

7. Suppose R = F is a field. Prove that an R-module M is Artinian if and only if it is 
Noetherian if and only if M is a finite dimensional vector space over F. 

8. Let M be a maximal ideal of the ring R and suppose that Mn = 0 for some n ::=: 1. Prove 
that R is Noetherian if and only if R is Artinian. [Observe the each successive quotient 
Mi 1Mi+1 , i = 0, . . .  , n - 1  in the filtration R 2 M 2  . . · 2 Mn- l 2 Mn = O is a module 
over the field F = Rl M. Then use the previous two exercises and Exercise 6 of Section 
15 . 1 .] 

9. Let M be a finitely generated R -module. Prove that if XJ , . . . , Xn are elements of M whose 
images in M 1 :r M generate M I J M, then they generate M. Deduce that if R is Noetherian 
and the images of at • . . .  , an in J I .72 generate J I J2, then J = (at • . . .  , an) .  [Let N 
be the submodule generated by xt • . . .  , Xn and apply Nakayama's Lemma to the module 
A =  MIN.] 

10. Let R = Z(2) be the localization of Z at the prime ideal (2) . Prove that Jac R = (2) is the 
ideal generated by 2. If M = <Ql, prove that MI2M is a finitely generated R-module but 
that M is not finitely generated over R. Why doesn't this contradict the previous exercise? 
[Note the hypotheses in Nakayama's Lemma.] 

11. Let V be an affine variety over a field k and let R = k[ V] be its coordinate ring. Let 
d1 (R) denote the transcendence degree of the field of fractions k( V) over k, and let dp (R) 
be the Krull dimension of R defined in terms of chains of prime ideals. This exercise 
shows d1 (R) = dp (R) . By Noether's Normalization Lemma there is a polynomial subring 
Rt = k[Yt . . . . .  Ym ] of R such that R is integral over Rt . 
(a) Show that d1 (Rt ) = d1 (R) = m and that dp (Rt ) = dp(R) . Deduce that we may 

assume R = Rt . [Use the Going-up and Going-down Theorems (cf. Theorem 26, 
Section 1 5.3) to prove the second equality.] 

(b) When R = Rt show that dp (R) 2': d1 (R) by exhibiting an explicit chain of prime 
ideals of length m. 

(c) When R = R1 show that any nonzero prime ideal of R contains an element f such 
that R(f) is transcendental over R of transcendence degree 1. Use induction to show 
that dp (R) ::::: d1 (R), and deduce that dp (R) = d1 (R) . 

12. Let R be a N  oetherian local ring with maximal ideal M. 
(a) The quotient Ml M2 is a module (i.e., vector space) over the field Rl M. Prove that 

d = dim RfM (MI M2) is finite. 
(b) Prove that M can be generated as an ideal in R by d elements and by no fewer. [Use 

Exercise 9.] 
(c) Let R = k[xt . . . . , Xn ] (x, , . . .  ,x., ) be the localization of the polynomial ring k[xt . . . . , Xn ] 

over the field k at the maximal ideal (x1 • • • .  , xn ) . and let M be the maximal ideal in 
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R. Prove that dim RfM(MIM2} = n = dim R. [Cf. the previous exercise.] 

It can be shown that dim RfM(M 1M2} 2: dim R for any Noetherian local ring R with maximal 
ideal M. A Noetherian local ring R is called a regular local ring if dim Rf M (M I M2} = dim R. 
It is a fact that a regular local ring is necessarily an integral domain and is also integrally closed. 

13. If R is a Noetherian ring, prove that the Zariski topology on Spec R is discrete (i.e., every 
subset is Zariski open and also Zariski closed) if and only if R is Artinian. 

14. Suppose I is the ideal (xt . x! , xj , . . .  } in the polynomial ring k[xt , xz , x3 , . . .  ] where k is 
a field and let R be the quotient ring k[xt , xz , XJ , . . .  11 I. Prove that the image of the ideal 
(xt ,  xz , X3 , . . .  } in R is the unique prime ideal in R but is not finitely generated. Deduce 
that R is a local ring of Krull dimension 0 but is not Artinian. 

1 6.2 DISCRETE VALUATION RINGS 

In the previous section we showed that the Artinian rings are the Noetherian rings having 
Krull dimension 0. We now consider the easiest Noetherian rings of dimension 1 ,  the 
Discrete Valuation Rings first introduced in Section 8. 1 :  

Definition. 
(1) A discrete valuation on a field K is a function v : Kx ---+ Z satisfying 

(i) v is surjective, 
(ii) v(xy) = v(x) + v(y) for all x, y E K x ,  
(iii) v (x + y )  2:_ min{v(x) , v(y) } for all x, y E K x  with x + y "I 0. 

The subring {x E K I v(x) :::_ 0} U {0} is called the valuation ring of v. 
(2) An integral domain R is called a Discrete Valuation Ring (D.V.R.) if R is the 

valuation ring of a discrete valuation v on the field of fractions of R. 

The valuation v is often extended to all of K by defining v(O) = +oo, in which case 
(ii) and (iii) hold for all a, b E K.  

Examples 

(1) The localization Z(p) of Z at any nonzero prime ideal (p} is a D.V.R. with respect 
to the discrete valuation vp on Q defined as follows (cf. Exercise 27, Section 7. 1 }. 
Every element alb E Qx can be written uniquely in the form pn (a t lht } where n E Z, 
at lht E Qx and both at and bt are relatively prime to p. Define 

vp (�) = vp (pn :: ) = n. 

One easily checks that the axioms for a D.V.R. are satisfied. We call vp the p-adic 

valuation on Q. The corresponding valuation ring is the set of rational numbers with 
n 2: 0 together with 0, i.e., the rational numbers alb where b is not divisible by p, 

which is Z(p) · 
(2) For any field F, let f be an irreducible polynomial in F[x].  Every nonzero element in 

the field F(x) can be written uniquely in the form r<alb} where n E Z, alb E F[x]X  

and both a and b are relatively prime to f.  Then 
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defines a valuation on F (x) and the corresponding valuation ring is the localization 
F[x]f of F[x] at f consisting of the rational functions in F(x) whose denominator is 
not divisible by f. When f = x - a is a polynomial of degree 1 in F[x ], the valuation 
VJ gives the order of the zero (if n :::: 0) or pole (if n < 0) of the element in F(x) at 
x = a . 

(3) The ring of formal Laurent series F((x)) with coefficients in the field F has a discrete 
valuation v defined by 

v (�a;xi) = n  
1 �n 

(cf. Exercise 5, Section 7.2). The corresponding D.V.R. is the ring F[[x]] of power 
series in x with coefficients in F. 

Note that v(l)  = v(l )  + v(l)  implies that v(l)  = 0, so every Discrete Valuation 
Ring R is a ring with identity 1 =j:. 0. Since R is a subring of a field by definition, R is 
in particular an integral domain. It is easy to see that a D.V.R. is a Euclidean Domain 
(cf. Example 4 in Section 8.1), so in particular is also a P.I.D. and a U.F.D. In fact 
the factorization and ideal structure of a D.V.R. is very simple, as the next proposition 
shows. 

Proposition 5. Suppose R is a Discrete Valuation Ring with respect to the valuation v,  
and let t be any element of R with v(t) = 1 .  Then 

(1) A nonzero element u E R is a unit if and only if v(u) = 0. 
(2) Every nonzero element r E R can be written in the form r = utn for some unit 

u E R and some n :::. 0. Every nonzero element x in the field of fractions of R 
can be written in the form x = utn for some unit u E R and some n E Z. 

(3) Every nonzero ideal of R is a principal ideal of the form W) for some n :::. 0. 
In particular, R is a Noetherian ring. 

Proof" If u is a unit, then uv = l for some v E R and then v(u) + v (v) = v(u v) = 1 
with v(u) :::_ 0 and v(v) :::_ 0 shows that v(u) = 0. Conversely, if u is nonzero and 
v(u) = 0 then u-1 E K satisfies v(u-1) + v(u) = v(l)  = 0. Hence v(u-1 )  = 0 and 
u- 1  E R, so u is a unit. This proves ( 1 ). 

For (2), note that if v(x) = n then v(xt-n)  = 0, so xt-n = u is a unit in R by ( 1 ). 
Hence x = utn , where x E R if and only if n = v(x) :::_ 0. 

If I is a nonzero ideal in R, let r E I be an element with v(r) minimal. If v(r) = n, 
then r differs from tn by a unit by (2), so tn E I and (tn ) � I. If now a is any nonzero 
element of I, then v(a) :::_ n by choice of n. Then v(arn) :::_ 0 and so at-n E R, 
which shows that a E (tn ) .  Hence I = (tn ),  proving the first statement in (3). It is then 
clear that ascending chains of ideals in R are finite, proving that R is Noetherian and 
completing the proof. 

Definition. If R is a D.V.R. with valuation v,  then an element t of R with v(t) = 1 is 
called a unifonnizing (or local) parameter for R. 
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Corollary 6. Let R be a Discrete Valuation Ring. 
(1) The ring R is an integrally closed local ring with unique maximal ideal given by 

the elements with strictly positive valuation: M = {r E R I v (r) > 0}. Every 
nonzero ideal in R is of the form M" for some integer n 2::: 0. 

(2) The only prime ideals of R are M and 0, i.e., Spec R = {0, M} . In particular, 
a D.V.R. has Krull dimension 1 .  

Proof" Any U.F.D. i s  integrally closed in its fraction field (Example 3 i n  Section 
15.3), so R is integrally closed. The remainder of the statements follow immediately 
from the description of the ideals of R in Proposition 5. 

The definition of a Discrete Valuation Ring is extremely explicit in terms of a 
valuation on the fraction field, and as a result it appears that it might be difficult to 
recognize whether a given ring R is a D.V.R. from purely "internal" algebraic properties 
of R. In fact, the ring-theoretic properties in Proposition 5 and Corollary 6 characterize 
Discrete Valuation Rings. The following theorem gives several alternate algebraic 
descriptions of Discrete Valuation Rings in which there is no explicit mention of the 
valuation. 

Theorem 7. The following properties of a ring R are equivalent: 
(1) R is a Discrete Valuation Ring, 
(2) R is a P.I.D. with a unique maximal ideal P ::j:. 0, 
(3) R is a U.F.D. with a unique (up to associates) irreducible element t, 
( 4) R is a Noetherian integral domain that is also a local ring whose unique maximal 

ideal is nonzero and principal, 
(5) R is a Noetherian, integrally closed, integral domain that is also a local ring of 

Krull dimension 1 i.e., R has a unique nonzero prime ideal: Spec R = {0, M} . 

Proof: That ( 1 )  implies each of the other properties was proved above. 
If (2) holds then (3) is immediate since irreducible elements generate prime ideals 

in a U.F.D. (Proposition 12, Section 8.3). 
If (3) holds, then every nonzero element in R can be written uniquely in the form 

ut" for some unit u and some n 2: 0. Then every nonzero element in the fraction field 
of R can be written uniquely in the form ut" for some unit u and some n E Z. It is now 
straightforward to check that the map v (ut") = n is a discrete valuation on the field of 
fractions of R, and R is the valuation ring of 1!, and (1)  holds. 

Suppose (4) holds, let M = (t) be the unique maximal ideal of R, and let Mo = 
n�1 Mi .  Then Mo = M M0, and since R is Noetherian M0 is finitely generated. By 
hypothesis M = Jac R, so by Nakayama's Lemma Mo = 0. If I is any proper, nonzero 
ideal of R then there is some n 2: 0 such that / 5;; M" but ! cJ;. M"+ 1 . Let a E I - M"+ 1 
and write a = t"u for some u E R. Then u ¢ M, and so u is a unit in the local ring 
R. Thus (a) = (t") = M" for every a E I - M"+1 • This shows that I = (t" ) , and so 
every ideal of R is principal, which shows that (2) holds. 

We have shown that (1 ), (2), (3) and ( 4) are equivalent, and that each of these 
implies (5). To complete the proof we show that (5) implies (4), which amounts to 
showing that the ideal M in (5) is a principal ideal. Since 0 ::j:. M = Jac R and M is 
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finitely generated because R is Noetherian, by Nakayama's Lemma (Proposition 1 (4)), 
M =/:- M2. Let t E M - M2. We argue that M = (t) .  By Proposition 12 in Section 15.2, 
the assumption that M is the unique nonzero prime ideal in R implies that M = rad (t), 
and then Proposition 14 in Section 15.2 implies that some power of M is contained 
in (t) .  Proceeding by way of contradiction, assume (t) =/:- M, so that Mn � (t) but 
Mn-I CJ= (t ) for some n :::: 2. Then there is an element x E Mn-I - (t) such that 
xM � (t) .  Note that t =/:- 0 so y = xft belongs to the field of fractions of R. Also, 
y f/. R because x = ty f/. (t) .  However, by choice of x we have yM � R, and then 
one checks that yM is an ideal in R. If yM = R then 1 = ym for some m E  M. This 
leads to a contradiction because we would then have t = xm E M2, contrary to the 
choice of t .  Thus y M is a proper ideal, hence is contained in the unique maximal ideal 
of R, namely yM � M. Now M is a finitely generated R-module on which y acts by 
left multiplication as an R-module homomorphism. By the same (determinant) method 
as in the proof of Proposition 23 in Section 15 .3 there is a monic polynomial p with 
coefficients in R such that p(y)m = 0 for all m E M. Since p(y) is an element of a 
field containing R and M, we must have p(y) = 0. Hence y is integral over R. Since 
R is integrally closed by assumption, it follows that y E R, a contradiction. Hence 
M = ( t) is principal, so ( 5) implies ( 4 ), completing the proof of the theorem. 

Corollary 8. If R is any Noetherian, integrally closed, integral domain and P is a 
minimal nonzero prime ideal of R, then the localization Rp of R at P is a Discrete 
Valuation Ring. 

Proof: By results in Section 15 .4, the localization Rp is a Noetherian (Proposition 
38(4)), integrally closed (Proposition 49), integral domain (Proposition 46(2)), that is 
a local ring with unique nonzero prime ideal (Proposition 46(4)), so Rp satisfies (5) in 
the theorem. 

Examples 

(1) If R is any Principal Ideal Domain then every localization R p of R at a nonzero prime 
ideal P = (p) is a Discrete Valuation Ring. This follows immediate! y from Corollary 
8 since R is integrally closed (being a U.F.D., cf. Example 3 in Section 15.3) and 
nonzero prime ideals in a P.I.D. are maximal (Proposition 8.7). Note that the quotient 
field K of Rp is the same as the quotient field of R, so each nonzero prime p in R 
produces a valuation vp on K, given by the formula 

v (pn �) = n  

where a and b are elements of R not divisible by p. This generalizes both Examples 
1 and 2 above. 

(2) The ring Zp of p-adic integers is a Discrete Valuation Ring since it is a P.I.D. with 
unique maximal ideal p'Z'..p (cf. Exercise 1 1 , Section 7.6). The fraction field of Zp is 
called the field of p-adic numbers and is denoted <Qlp . The element p is a uniforrnizing 
parameter for Zp, so every nonzero element in <Qlp can be written uniquely in the form 
pnu for some n E Z and unit u E z; , (where u = ao + a1p + a2p2 + . . . with 
0 < ao < p as in Exercise l l(c), Section 7.6). The corresponding p-adic valuation 
Vp on <Qlp is then given by vp (pnu) = n.  
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A discrete valuation v on a field K defines an associated metric (or "distance 
function"), dv, on K as follows: fix any real number fJ > 1 (the actual value of fJ does 
not matter for verifying the axioms of a metric), and for all a , b E K define 

dv (a , b) = l l a - b l l v where l l a l l v = fJ-v(a) 

and where we set dv (a , a) = 0. It is easy to check that dv satisfies the three axioms for 
a metric: 

(i) dv (a, b) ?; 0, with equality holding if and only if a = b, 
(ii) dv (a ,  b) = dv (b, a), i.e., dv is symmetric, 
(iii) dv (a . b) :S: dv (a. c) +dv (c, b), for all a, b. c E K, i.e., dv satisfies the "triangle 

inequality." 

The triangle inequality is a consequence of axiom (iii) of the discrete valuation. Indeed, 
a stronger version of the triangle inequality holds: 

(iii)' dv (a , b) :::: max{dv (a , c) , dv (c, b) } , for all a, b, c E K. 
For this reason dv is sometimes called an ultrametric. One may now use Cauchy 
sequences to form the completion of K with respect to dv , denoted by Kv , in the same 
way that the real numbers IR are constructed from the rational numbers Q. It is not 
difficult to show that Kv is also a field with a discrete valuation that agrees with v on 
the dense subset K of K v .  

Examples 

(1) Consider the p-adic valuation Vp on Q and take fJ = p. Write I I  a l ip for I I a l l vP ' so 
that for a, b relatively prime to p, 

a 
I I P

n
b l ip = P-

n
. 

Note that integers (or rational numbers) have small p-adic absolute value if they are 
divisible by a large power of p. For example, the sequence 1 ,  p, p2 , p3 , • • .  converges 
to zero in the p-adic metric. 

It is not too difficult to see that the completion of Q with respect to the p-adic 
metric is the field Qp of p-adic numbers, and the completion of ::2:: is the ring Z::p of 
p-adic integers. One way to see this is to check that each element a of the completion 
may be represented as a p-adic Laurent series: 

co 
a = L ai/ where no E ::2:: and ai E {0, 1 ,  . . .  , p - 1 }  for all i ,  

n=no 

and then use Example 2 previously. In terms of this expansion, the p-adic valuation 
is given by vp(a) = no (when an0 =I= 0). 

(2) In a similar way, the completion of F(x) with respect to the valuation Vx in Example 
2 at the beginning of this section gives the field F((x)) with corresponding valuation 
ring F[[x]] in Example 3 in the same set of examples. 

The completion of a field K with respect to a discrete valuation v is a field Kv 
in which the elements can be easily described in terms of a uniforrnizing parameter. 
In addition, Kv is a topological space where the topology is defined by the metric dv . 
Furthermore, Cauchy sequences of elements in Kv converge to elements of Kv (i.e., Kv 
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is complete in the v-adic topology). This is similar to the situation of the completion 
lR of Q with respect to the usual Euclidean metric. This allows the application of ideas 
from analysis to the study of such rings, and is an important tool in the study of algebraic 
number fields and in algebraic geometry. 

Fractional Ideals 

We complete our discussion of Discrete Valuation Rings by giving another characteri­
zation of D. V.R.s in terms of "fractional ideals," which can be defined for any integral 
domain: 

Definition. For any integral domain R with fraction field K, a fractional ideal of R 
is an R-submodule A of K such that dA � R for some nonzero d E  R (equivalently, a 
submodule of the form d-1 I for some nonzero d E R and ideal I of R). 

The equivalence of these two definitions follows from the observation that d A is 
an R-submodule (i.e. , an ideal) of R. 

The notion of a fractional ideal in K depends on the ring R. Loosely speaking, 
a fractional ideal is an ideal of R up to a fixed "denominator" d. The ideals of R are 
also fractional ideals of R (with denominator d = 1 ) and are the fractional ideals that 
are contained in R .  For clarity these are occasionally called the integral ideals of R.  
When R is  a Noetherian integral domain, a fractional ideal of R is  the same as a finitely 
generated R-submodule of K (cf. Exercise 6). 

For any x E K the (cyclic) R-module Rx = {rx I r E R} is called the principal 
fractional ideal generated by x. 

If A and B are fractional ideals, their product, AB, is  defined to be the set of all 
finite sums of elements of the form ab where a E A and b E B. If A = d-1 I and 
B = (d')-1 J for ideals I, J in R and nonzero d, d' E R, then AB = (dd')- 1 I J where 
I J is the usual product ideal. In particular, this shows that the product of two fractional 
ideals is a fractional ideal. 

Definition. The fractional ideal A is said to be invertible if there exists a fractional 
ideal B with AB = R, in which case B is called the inverse of A and denoted A - 1 • 

If A is an invertible fractional ideal, the fractional ideal B with AB = R is unique: 
AB = AC = R implies B = B(AC) = (BA)C = C . 

Proposition 9. Let R be an integral domain and let A be a fractional ideal of R. 
(1) If A is a nonzero principal fractional ideal then A is invertible. 
(2) If A is nonzero then the set A' = {x E K I xA � R} is a fractional ideal of 

R. In general we have AA' � R and AA' = R if and only if A is invertible, in 
which case A-1 = A'. 

(3) If A is an invertible fractional ideal of R then A is finitely generated. 
(4) The set of invertible fractional ideals is an abelian group under multiplication 

with identity R. The set of nonzero principal fractional ideals is a subgroup of 
the invertible fractional ideals. 
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Proof" If A = xR is a nonzero principal fractional ideal, then taking B = x - 1 R 
shows that A is invertible, proving ( 1 ). 

One easily sees that A' is an R-submodule of K .  If A is a nonzero fractional 
ideal there is some nonzero element d E R such that dA 5:; R, so A contains nonzero 
elements of R. Let a be any nonzero element of A contained in R. Then by definition 
of A' we have aA' 5:; R, so A' is a fractional ideal. Also by definition, AA' 5:; R. If 
AA' = R then A is invertible with inverse A - l = A'. Conversely, if AB = R, then 
B 5:; A' by definition of A'. Then R = AB 5:; AA' 5:; R, showing that AA' = R, 
proving (2). 

If A is invertible, then AA' = R by (2) and so 1 = a1ai + · · · + ana� for some 
a1 , . . .  , an E A and ai_ , . . .  , a� E A'. If a E A, then a =  (aai)a1 + · · · + (aa�)an , where 
each aa; E R by definition of A'. It follows that A is generated over R by a1 , . . .  , an 
and so A is finitely generated, proving (3). 

Finally, it is clear that the product of two invertible fractional ideals is again invert­
ible. This product is commutative, associative, and RA = A for any fractional ideal. 
The inverse of an invertible fractional ideal is an invertible fractional ideal by definition, 
proving the first statement in (4). The second statement in (4) is immediate since the 
product of xR and yR is (xy)R and the inverse of xR is x- 1 R. 

Definition. If R is an integral domain, then the quotient of the group of invertible 
fractional ideals of R by the subgroup of nonzero principal fractional ideals of R is 
called the class group of R.  The order of the class group of R is called the class number 
of R. 

The class group of R is the trivial group and the class number of R is 1 if and only 
if R is a P.I.D. The class group of R measures how close the ideals of R are to being 
principal. 

Whether a fractional ideal A of R is invertible is also related to whether A is 
projective as an R-module. Recall that an R-module M is projective over R if and only 
if M is a direct summand of a free module (Proposition 30, Section 1 0.5). Equivalently, 
M is projective if and only if there is a free R-module F and R -module homomorphisms 
f : F -+ M and g : M -+ F with f o g = 1 (Proposition 25, Section 10.5). 

Proposition 10. Let R be an integral domain with fraction field K and let A be a nonzero 
fractional ideal of R.  Then A is invertible if and only if A is a projective R-module. 

Proof· Assume first that A is invertible, so I:7=1 aia; = 1 for some ai E A and 
a{ E A' as in (2) of Proposition 9. Let F be the free R-module on Yl ·  . . .  , Yn · Define 
f : F -+ A by f<L7=1 riYi ) = I:7=1 riai and g : A -+ F by f(c) = I:7=1 (ca;)Yi · It 
is immediate that both f and g are R-module homomorphisms (note that ca; E R by 
definition of A'). Since 

(f o g)(c) = f (t(ca;)Yi) = t(ca;)ai = c (taia;) = c, 
•=1  • =l 1=1 

so f o g = 1 and A is a direct summand of F, hence is projective. 
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Conversely, suppose that A is nonzero and projective, so there is a free R-module 
F and R-homomorphisms f : F --* A and g : A --* F with f o g  = 1 .  Fix any 
0 ::j:. a E A and suppose g(a) = I:7=t a;y; where a; E R and Yl · . . .  , Yn is part of a set 
of free generators for F. Define a; = f(y; ) and a; = a;/ a E K for i = 1 ,  . . .  , n. For 
any b E  A we have bg(a) = ag(b) = g(ab) since g is an R-module homomorphism. 
Write g(b) = I:7=1 b; y; + Lje..7 bj Yj where {yj } for j E .J are the remaining elements 
in the set of free generators for F. Then 

" n 

i=l i=l j e..7 

We may equate coefficients of the elements in the free R -module basis for F in this 
equation and it follows that g(b) = I:7=1 b;y; where b; E R and that ba; = ab; for 
i = 1 ,  . . .  , n.  In particular, it follows from the definition of a; that ba; = b(a;ja) = b; 
is an element of R for every element b of A. This shows that a; E A' for i = 1 , . . .  , n.  

Since f o g = 1 .  we have 

and so L�t a;a; = 1 .  It follows that AA' = R and so A is invertible by Proposition 
9, completing the proof. 

The next result shows that if the integral domain R is also a local ring, then whether 
fractional ideals are invertible determines whether R is a D.V.R. 

Proposition 11. Suppose the integral domain R is a local ring that is not a field. Then 
R is a Discrete Valuation Ring if and only if every nonzero fractional ideal of R is 
invertible. 

Proof" If R is a D.V.R. with uniformizing parameter t ,  then by Proposition 5 every 
nonzero ideal of R is of the form (t")  for some n 2: 0 and every element d in R can 
be written in the form utm for some unit u E R and some m 2: 0. It follows that every 
nonzero fractional ideal of R is of the form tN R for some N E Z, so is a principal 
fractional ideal and hence invertible by the previous proposition. 

Conversely, suppose that every nonzero fractional ideal of R is invertible. Then 
every nonzero ideal of R is finitely generated by (3) of Proposition 9, so R is Noetherian. 
Let M be the unique maximal ideal of R. If M = M2 then M = 0 by Nakayama's 
Lemma, and then R would be a field, contrary to hypothesis. Hence there is an element 
t with t E M - M2• By assumption M is invertible, and since t E M, the fractional 
ideal tM-1 is a nonzero ideal in R. If tM-1 s; M, then t E M2, contrary to the choice 
of t .  Hence t M-1 = R, so (t) = M, and M is a nonzero principal ideal. It follows by 
the equivalent condition 4 of Theorem 7 that R is a D.V.R., completing the proof. 

We end this section with an application to algebraic geometry. 
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Nonsingularity and Local Rings of Affine Plane Curves 

Let k be an algebraically closed field and let C be an irreducible affine curve over k .  
In  other words, C i s  an affine algebraic set whose coordinate ring k[ C]  i s  an integral 
domain and whose field of rational functions k (  C) has transcendence degree 1 over k 
(cf. Section 15.4) . 

Recall that, by definition, the point v on C is nonsingular if mv.cl�.c is a !­
dimensional vector space over k, where mv.c is the unique maximal ideal in the local 
ring Ov,c of rational functions on C defined at v .  

Proposition 12. Let v be a point on the irreducible affine curve C over k .  Then C is 
nonsingular at v if and only if the local ring Ov.c is a Discrete Valuation Ring. 

Proof" Suppose first that v is nonsingular. Then dim k (mv,c/rn�,c) = 1 ,  and since 
Ov,c  is Noetherian, it follows from Exercise 12  in Section 1 that ffiv,c  is principal. 
Hence Ov,c is a D.V.R. by Theorem 7(4). Conversely, suppose Ov,c  is a D.V.R. and t is 
a uniformizing element for Ov,C ·  Then every element in mv.c can be written uniquely 
in the form at for some a in Ov,c - The map from mv,c to Ov.cfrnv,c defined by 
mapping at to a mod mv.c is easily checked to be a surjective Ov,c-module homomor­
phism with kernel m�.c - Hence mv.c/m�,C  is isomorphic as an Ov ,cfmv .c-module to 
Ov.cfmv,C ·  Since Ov,cfmv,c � k (Proposition 46(5) in Section 15.4), it follows that 
dim k (mv,c/m�.c) = 1 ,  and so v is a nonsingular point on C. 

Definition. If v is a nonsingular point on C with corresponding discrete valuation Vv 
defined on k(C), then vv (f) = n for f E k(V) is the order of zero off at v (if n :=::: 0) 
or the order of the pole off at v (if n < 0). 

Using the criterion for nonsingularity for points on curves in Proposition 12  we can 
prove a result first mentioned in Section 15 .4: 

Corollary 13. An irreducible affine curve C over an algebraically closed field k is 
smooth if and only if its coordinate ring k[ C] is integrally closed. 

Proof" The curve C is smooth if and only if every localization Ov,c is a D.V.R. 
Since k[ C] has Krull dimension 1 (Exercise 1 1  in Section 1 ), the same is true for each 
Ov,C ·  It then follows by Theorem 7(5) that every localization Ov.c is a D.V.R. if and 
only if Ov,c is integrally closed. By Proposition 49 in Section 15.4, this in turn is 
equivalent to the statement that k [C] is integrally closed, which proves the corollary. 

E X E R C I S E S  

1. Suppose R is a Discrete Valuation Ring with respect to the valuation v on the fraction field 
K of R. If x, y E K with v (x) < v(y) prove that v (x + y) = min(v(x), v(y)). [Note that 
x + y = x (l + yjx).] 

2. Suppose R is a Discrete Valuation Ring with unique maximal ideal M and quotient 
F = RfM . For any n ;:::: 0 show that M" /M"+I is a vector space over F and that 
dim F ( M" I M"+1 ) = 1 .  
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3. Suppose R is an integral domain that is also a local ring whose unique maximal ideal 
M = (t) is nonzero and principal, and suppose that nn;:: l (tn) = 0. Prove that R is a 
Discrete Valuation Ring. [Show that every nonzero element in R can be written in the 
form utn for some unit u E R and some n :::: 0.] 

4. Suppose R is a Noetherian local ring whose unique maximal ideal M = (t) is  principal. 
Prove that either R is a Discrete Valuation Ring or tn = 0 for some n :::: 0. In the latter 
case show that R is Artinian. 

5. Suppose that R is a Noetherian integral domain that is also a local ring of Krull dimension 
1 .  Let M be the unique maximal ideal of R and let F = RIM, so that M I M2 is a vector 
space over F. 
(a) Prove that if dim F (MI M2) = l then R is a Discrete Valuation Ring. 
(b) If every nonzero ideal of R is a power of M prove that R is a Discrete Valuation Ring. 

6. Let R be an integral domain with fraction field K. Prove that every finitely generated R­
submodule of K is a fractional ideal of R. If R is Noetherian, prove that A is a fractional 
ideal of R if and only if R is a finitely generated R -submodule of K.  

7 .  If  R is an integral domain and A is a fractional ideal of  R, prove that if  A is projective 
then A is finitely generated. Conclude that every integral domain that is not Noetherian 
contains an ideal that is not projective. 

8. Suppose R is a Noetherian integral domain that is also a local ring with nonzero maximal 
ideal M. Prove that R is a D.V.R. if and only if the only M-primary ideals in R are the 
powers of M. 

9. Let C = Z(xz - y2 , yz - x3 , z2 - x2y) c A.3 over the algebraically closed field k. If 
v = (0, 0, 0) E C, prove that dim k (mv,clm�,c) = 3 so that v is singular on C. Conclude 
that k[C] is not integrally closed in k(C) and determine its integral closure. [cf. Exercise 
27, Section 15 .4.] 

1 6.3 DEDEKIN D  DOMAI NS 

In the previous section we showed that Discrete Valuation Rings are the local rings that 
are integrally closed Noetherian integral domains of Krull dimension 1 .  In this section 
we consider the effect of relaxing the condition that the ring be a local ring: 

Definition. A Dedekind Domain is a Noetherian, integrally closed, integral domain 
of Krull dimension 1 .  

Equivalently, R is a Dedekind Domain i f  R i s  a Noetherian, integrally closed, 
integral domain that is not a field in which every nonzero prime ideal is maximal. 

The first result shows that Dedekind Domains are a generalization of the class of 
Principal Ideal Domains. We shall see later (Theorem 22) that there is a structure 
theorem for finitely generated modules over a Dedekind Domain extending the corre­
sponding result for P.I.D.s proved in Section 1 2 . 1 .  

Proposition 14. 
(1) Every Principal Ideal Domain is a Dedekind Domain. 
(2) The ring of integers in an algebraic number field is a Dedekind Domain. 
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Proof" A P.LD. is clearly Noetherian, is integrally closed since it is a U.ED. (Ex­
ample 3, Section 15 .3), and nonzero prime ideals are maximal (Proposition 7 in Section 
8.2), which proves ( 1 ). Let OK be the ring of integers in the number field K, i.e., 
the integral closure of Z in K.  Then Corollary 25 in Section 15.3 shows that OK is 
integrally closed, OK is Noetherian by Theorem 29 in Section 15.3, and the fact that 
nonzero prime ideals in 0 K are maximal was proved in the discussion following the 
same theorem. This proves (2). 

The following theorem gives a number of important equivalent characterizations of 
Dedekind Domains. Recall that the basic properties of fractional ideals were developed 
in the previous section. 

Theorem 15. Suppose R is an integral domain with fraction field K =f R .  The following 
are equivalent conditions for R to be a Dedekind Domain: 

(1) The ring R is Noetherian, integrally closed, and every nonzero prime ideal is 
maximal. 

(2) The ring R is Noetherian and for each nonzero prime P of R the localization 
Rp is a Discrete Valuation Ring. 

(3) Every nonzero fractional ideal of R in K is invertible. 
(4) Every nonzero fractional ideal of R in K  is a projective R-module. 
(5) Every nonzero proper ideal I of R can be written as a finite product of prime 

ideals: I = P1 P2 - - - Pn (not necessarily distinct). 
When the condition in (5) holds, the set of primes {Pt • . . .  , Pn} is uniquely 

determined and so every nonzero proper ideal I of R can be written uniquely 
(up to order) as a product of powers of prime ideals. 

Proof" If R satisfies ( 1 ), then Rp is a D.V.R by Corollary 8, so ( 1 )  implies (2). 
Conversely, assume each Rp is a D.V.R Then R is integrally closed by Proposition 
49 in Section 15.4 and every nonzero prime ideal is maximal by Proposition 46(3) in 
Section 15.4, so (2) implies ( 1 ). 

Suppose now that (1)  is satisfied and that A is a nonzero fractional ideal of R. 
Let A' = {x E K I xA � R } as in Proposition 9. For any prime ideal P of R the 
behavior of R-modules under localization shows that (AA') p = Ap(A') p = Ap (Ap)' 
( cf. Exercise 4 ) . Since Rp is a D. V.R by what has already been shown, A p (A p )' = Rp 
by Proposition 1 L Hence (AA') p = Rp for all nonzero primes P of R, so AA' = R 
(Exercise 13 in Section 15 .4), and A is invertible, showing (1)  implies (3). Conversely, 
suppose every nonzero fractional ideal of R is invertible. Then every ideal in R is 
finitely generated by Proposition 9(3), so R is Noetherian. Every localization Rp of R 
at a nonzero prime P is a local ring in which the nonzero fractional ideals are invertible 
( cf. Exercise 4 ), hence is a D. V.R by Proposition 1 1 .  Hence (3) implies (2) and so ( 1 ), 
(2) and (3) are equivalent. The equivalence of these with (4) is given by Proposition 10. 

Suppose now that (1)  is satisfied, and let I be any nonzero proper ideal in R. Since 
R is Noetherian, I has a minimal primary decomposition I = Q1 n - - - n Qn as in 
Theorem 21 of Section 15.2. The associated primes Pi = rad Qi for i = 1 ,  . . .  , n are 
all distinct, and since primes are maximal in R by hypothesis, the associated primes are 
all pairwise comaximal, and it follows easily that the same is true for the Qi (Exercise 
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5). It follows that Q I n . . .  n Qn = Q I . . .  Qn (Theorem 17 in Section 7 .6) so that I is 
the product of primary ideals. The P -primary ideals of R correspond bijectively with 
the P Rp-primary ideals in the localization Rp (Proposition 42(3) in Section 15.4), and 
since Rp is a D.V.R. (because ( 1 )  implies (2)), it follows from Corollary 6 that if Q is 
a P-primary ideal in R then Q = p

m for some integer m 2: 1 .  Applying this to Q; , 
i = 1 ,  . . . • n shows that I is the product of powers of prime ideals, which gives the first 
implication in (5). 

Conversely, suppose that all the nonzero proper ideals of R can be written as a 
product of prime ideals. We first show for any integral domain that a factorization of 
an ideal into invertible prime ideals is unique, i.e., if P1 · · · Pn = P1 · · · P m are two 
factorizations of I into invertible prime ideals then n = m and the two sets of primes 
{ P1 , . . .  , Pn } and { P1 ,  . . .  , P m }  are equal. Suppose P1 is a minimal element in the set 
{P1 ,  • • •  , Pm} .  Since P1 · · · Pn £; P1 ,  the prime ideal P1 contains one of the primes 
P1 , . . .  , Pn , say P1 £; P1 .  Similarly P1 contains P; for some i = 1 ,  . . .  , m . Then 
P; £; P1 £; P1 and by the minimality of P1 it follows that P; = P1 = P1 ,  so the 
factorization becomes P1 Pz · · · Pn = P1 Pz · · · P m .  Since P1 is invertible, multiplying 
by the inverse ideal shows that Pz · · · Pn = Pz · · · P m and an easy induction finishes the 
proof. In particular, the uniqueness statement in ( 5) now follows from the first statement 
in (5) since in a Dedekind domain every fractional ideal, in particular every prime ideal 
of R, is invertible. 

We next show that invertible primes in R are maximal. Suppose then that P is an 
invertible prime ideal in R and take a E R, a fj. P. We want to show that P + aR = R. 
By assumption, the two ideals P + a R  and P + a2 R can be written as a product of 
prime ideals, say P + aR = P1 · · · Pn and P + a2 R = P1 · · · Pm .  Note that P £; P; 
for i = 1 ,  . . .  , n and also P £; Pj for j = 1 ,  . . .  , m .  In the quotient Rl P, which 
is an integral domain, we have the factorization (a) = (PdP) · · · (Pn l  P), and each 
P; 1 P is a prime ideal in R 1 P.  Since the product is a principal ideal, each P; I P is 
also an invertible Rl P-ideal (cf. Exercise 2). Similarly, (a2) = (PdP) · · · (Pm l  P) 
is a factorization into a product of invertible prime ideals. Then (a)2 = (Pd P)2 • • • 
(Pn l  P)2 = (PdP) · · · (Pml  P) give two factorizations into a product of invertible 
prime ideals in the integral domain R 1 P, so by the uniqueness result in the previous 
paragraph, m = 2n and {Pi /  P. P1 l P, . . . •  Pnl P. Pnl P} = {Pi /  P, . . . , Pml P} .  It 
follows that the set of primes P1 ,  . . . , Pm in R consists of the primes P1 , . . . , Pn , each 
repeated twice. This shows that P + a2 R = (P + aR)2 • Since P £; P + a2 R and 
(P + aR)2 £; P2 + aR, we have P £; P2 + aR, so every element x in P can be written 
in the form x = y + az where y E P2 and z E R. Then az = x - y E P and since 
a fj. P, we have z E P, which shows that P £; P2 + aP.  Clearly P2 + aP £; P 
and so P = P2 + aP = P(P + a R). Since P is assumed invertible, it follows that 
R = P + a R  for any a E R - P, which proves that P is a maximal ideal. 

We now show that every nonzero prime ideal is invertible. If P is a nonzero prime 
ideal, let a be any nonzero element in P.  By assumption, Ra = P1 · · · Pn can be 
written as a product of prime ideals, and P1 , . . .  , Pn are invertible since their product is 
principal (by Exercise 2 again). Since P1 · · · Pn = Ra £; P, the prime ideal P contains 
P; for some 1 :::: i :::: n. Since P; is maximal by the previous paragraph, it follows that 
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P = Pi is invertible. 
Finally, since every nonzero proper ideal of R is a product of prime ideals, it follows 

that every nonzero ideal of R is invertible, and since every fractional ideal of R is of 
the form (d-1 )/ for some ideal in R, also every fractional ideal of R is invertible. This 
proves that (5) implies (3), and complete the proof of the theorem. 

The following corollary follows immediately from Proposition 14: 

Corollary 16. If C:h is the ring of integers in an algebraic number field K then every 
nonzero ideal I in OK can be written uniquely as the product of powers of distinct 
prime ideals: 

where P1 , . . .  , Pn are distinct prime ideals and ei � 1 for i = 1 ,  . . .  , n .  

Remark: The development of Dedekind Domains given here reverses the historical 
development. As mentioned in Section 9.3, the unique factorization of nonzero ideals 
into a product of prime ideals replaces the failure of unique factorization of nonzero 
elements into products of prime elements in rings of integers of number fields. This 
property of rings of integers in Corollary 16 is what led originally to the definition of an 
ideal, and Dedekind originally defined what we now call Dedekind Domains by property 
5 in Theorem 15.  It was Noether who observed that they can also be characterized by 
property (1 ), which we have taken as the initial definition of a Dedekind Domain. 

The unique factorization into prime ideals in Dedekind Domains can be used to 
explicitly define the valuations v p on R with respect to which the valuation rings are 
the localizations Rp in Theorem 15(2) (cf. Exercise 6). We now indicate how unique 
factorization for ideals can be used to define a divisibility theory for ideals similar to 
the divisibility of integers in Z. 

Definition. If A and B are ideals in the integral domain R then B is said to divide A 
(and A is divisible by B) if there is an ideal C in R with A = BC. 

If B divides A then certainly A � B. If R is a Dedekind Domain, the converse is 
true: A � B implies C = AB-1 � BB-1 = R so C is an ideal in R with BC = A. 

We can also define the notion of the greatest common divisor (A , B) of two ideals 
A and B :  (A , B) divides both A and B and any ideal dividing both A and B divides 
(A , B) .  The second statement in the next proposition shows that this greatest common 
divisor always exists for integral ideals in a Dedekind Domain and gives a formula for 
it similar to the formula for the greatest common divisor of two integers. 

Proposition 17. Suppose R is a Dedekind Domain and A ,  B are two nonzero ideals 
in R, with prime ideal factorizations A = P�1 • • • P:" and B = P(1 • • • P!" (where 
e; , fi � 0 for i = 1 .  . . . , n). Then 

(1) A � B if and only if B divides A (i.e., "to contain is to divide") if and only if 
fi � e; for i = 1 , . . .  , n, 
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(2) A + B = (A , B) = P;mn(ei ./1 ) · · · P:Un(e, , f" ) , so in particular A and B are 
relatively prime, A + B = R, if and only if they have no prime ideal factors in 
common. 

Proof: We proved the first statement in ( 1 )  above. If each f; :::: e; , then taking 

C = P:1 -!I · · · P;"-t.' £:; R shows that B divides A. Conversely, if B divides A, then 
writing C as a product of prime ideals in A = B C shows that f; :::: e; for all i ,  which 
proves all of (1). Since A + B is the smallest ideal containing both A and B, (2) now 
follows from (1) .  

Proposition 18. (Chinese Remainder Theorem) Suppose R is a Dedekind Domain, 
Pt . P2 , . . . , Pn are distinct prime ideals in R and a; :=:::: 0 are integers, i = 1 ,  . . . , n .  
Then 

RIPt · · · P:" � RIPt x RIP�2 x · · · x RIP:" . 

Equivalently, for any elements rt , r2 , . . .  , rn E R there exists an element r E R, unique 
up to an element in P:1 • • • P:" , with 

Proof' This is immediate from Theorem 17 in Section 7.6 since the previous propo­
sition shows that the Pt' are pairwise comaximal ideals. 

Corollary 19. Suppose I is an ideal in the Dedekind Domain R. Then 
(1) there is an ideal J of R relatively prime to I such that the product I J = (a) is 

a principal ideal, 
(2) if I is nonzero then every ideal in the quotient Rl I is principal; equivalently, if 

It is an ideal of R containing I then It = I + Rb for some b E R, and 
(3) every ideal in R can be generated by two elements; in fact if I is nonzero and 

0 =f. a E I then I = Ra + Rb for some b E I. 

Proof' Suppose I = P:1 • • • P;n is the prime ideal factorization of I in R. For 

each i = 1 ,  . . . , n, let r; be an element of P;e; - Pt+t . By the proposition, there is an 

element a E R with a = r; mod Pt;+t 
for all i .  Hence a E P;e; - Pt;+t 

for all i ,  so the 
power of P; in prime ideal factorization of (a) is precisely e; by (1)  of Proposition 17: 

(a ) _ pel pen pen+ I pem - t · · · n n+t · · · m 
for some prime ideals Pn+t •  . . .  , Pm distinct from Pt . . . .  , Pn . Letting J = P:�t1 . .  • P::,m 
gives ( 1 ). For (2), by the Chinese Remainder Theorem it suffices to prove that every 
ideal in R 1 pm is principal in the case of a power of a prime ideal P, and this is immediate 
since Rl pm � Rp I pm Rp and the localization Rp is a P.I.D. Finally, (3) follows from 
(2) by taking I = Ra . 

The first statement in Corollary 19 shows that there is an integral ideal J relatively 
prime to I lying in the inverse class of I in the class group of R. One can even impose 
additional conditions on J, cf. Exercise 1 1 .  
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Corollary 20. If R is a Dedekind Domain then R is a P.I.D. (i.e., R has class number 
1) if and only if R is a U.F.D. 

Proof: Every P.I.D. is a U.F.D., so suppose that R is a U.F.D. and let P be any 
prime ideal in R. Then P = Ra + Rb for some a =/= 0 and b in R by Corollary 19. 
We have (a') 5;; P for one of the irreducible factors a' of a since their product is an 
element in the prime P, and then P divides (a') in R by Proposition 17(1) .  It follows 
that P = (a') is principal since (a') is a prime ideal (Proposition 12 in Section 8.3). 
Since every ideal in R is a product of prime ideals, every ideal of R is principal, i.e., R 
is a P.I.D. 

Corollary 20 shows that the class number of a Dedekind domain R gives a measure 
of the failure of unique factorization of elements. It is a fundamental result in algebraic 
number theory that the class number of the ring of integers of an algebraic number field 
is finite. For general Dedekind Domains, however, the class number need not be finite. 
In fact, for any abelian group A (finite or infinite) there is a Dedekind Domain whose 
class group is isomorphic to A. 

Modules over Dedekind Domains and the Fundamental Theorem 
of Finitely Generated Modules 

We tum next to the consideration of modules over Dedekind Domains R. Every frac­
tional ideal of R is an R-module and the first statement in the following proposition 
shows that two fractional ideals of R are isomorphic as R-modules if and only if they 
represent the same element in the class group of R.  

Proposition 21.  Let R be a Dedekind Domain with fraction field K. 
(1) Suppose I and I are two fractional ideals of R. Then I � I as R-modules 

if and only if I and I differ by a nonzero principal ideal: I = (a)I for some 
0 #- a  E K. 

(2) More generally, suppose It , h, . . .  , In and i1 , h, . . . , Im are nonzero fractional 
ideals in the fraction field K of the Dedekind Domain R. Then 

It ED h ED · · · ED In � It ED I2 ED · · · ED Im 
as R-modules if and only if n = m and the product ideals lth · · · ln and 
It h · · · In differ by a principal ideal: 

for some 0 =/= a E K. 
(3) In particular, 

lt h · · · In = (a)I1 I2 · · · In 

It ED h ED . . · ED In � R ED · . . ED R ED(lt h · · · In) 
"--v-" 

n-1 factors 

and Rn ED I � Rn ED I if and only if I and I differ by a principal ideal: I = (a) I, 
a E K. 

Proof: Multiplication by 0 =/= a  E K gives an R-module isomorphism from I to 

(a)I, so if I = (a)I we have I �  I as R-modules. For the converse, observe that we 
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may assume 1 =1- 0 and then I � 1 implies R � 1-1 1 . But this says that 1- 1 1 = aR 
is principal (with generator a given by the image of l E R), i.e., I = (a) 1, proving (1) .  

We next show that for any nonzero fractional ideals I and 1 that I ffi 1 � R ffi I 1 .  
Replacing I and 1 by isomorphic R-modules a/ and b1, if  necessary, we may assume 
that I and 1 are integral ideals that are relatively prime (cf. Exercise 12), so that 
I + 1 = R and I n 1 = I 1.  It is easy to see that the map from I ffi 1 to I + 1 = R 
defined by mapping (x , y) to x + y is a surjective R -module homomorphism with kernel 
I n 1 = I 1,  so we have an exact sequence 

o � I 1 � / ffi 1 � R � O 

of R-modules. This sequence splits since R is free, so I ffi 1 � R ffi I 1, as claimed. 
The first statement in (3) now follows by induction, and combining this statement 

with ( 1 )  shows that if It · ·  · 1, = (a)1t · · · 1, for some nonzero a E K then It ffi · · · ffi I, 
is isomorphic to 11 ffi · · · ffi 1, . This proves the "if' statement in (2). It remains to prove 
the "only if" statement in (2) since the corresponding statement in (3) is a special case. 
So suppose It ffi h ffi · · · ffi I, � 11 ffi 12 ffi · · · ffi 1m as R-modules. 

Since I 0 R K is the localization of the ideal I in K ( cf. Proposition 41 in Section 
15 .4) it follows that I 0 R K � K for any nonzero fractional ideal / of K. Since tensor 
products commute with direct sums, (ft ffi · · · ffi /,) 0R K � K" is an n-dimensional 
vector space over K. Similarly, 1t ffi · · · ffi 1m 0 R K � Km , from which it follows that 
n = m .  

Note that replacing It by  the isomorphic fractional ideal at-1 ft for any nonzero 
element a1 E It does not effect the validity of the statements in (2) . Hence we may 
assume It contains R, and similarly we may assume that each of the fractional ideals 
in (2) contains R. Let q; denote the R-module isomorphism from It ffi · · · ffi I, to 
11 ffi · · · ffi 1, . For i = 1 ,  2, . . .  , n define 

q;((O, . . .  , 0, 1 ,  0, . . .  , 0)) = (at , ; . a2, ; , . . .  , a, , ; ) E 1t ffi 12 ffi · . . ffi 1, 

where 1 E /; on the left hand side occurs in position i .  Since q; is an R-module 
homomorphism it follows that 

1j = aj. 1 h + aj,2h + · · · + aj.Ji + · · · + aj.n ln 

for each j = 1 ,  2, . . .  , n. Taking the product of these ideals for j 
follows that 

(ah , 1ajz ,2 · · · ajn ,, )h h · · · 1, � 1t h · · · 1, 
for any permutation {h , h . . . .  , j, } of { 1 , 2, . . . , n} .  Hence 

dft h  · · · 1, � 1t h · · · 1, 

1 , 2, . . . , n it 

where d is the determinant of the matrix (a;, j ) , since the determinant is the sum of 
terms E (a)al.rr (l )  · · · an.rr(n) where E (a)  is the sign of the permutation a of { 1 ,  2, . . . , n} .  
Similarly, for j = 1 , . . .  , n,  define 

q;-1 ((0, . . .  , 0, 1 ,  0, . . .  , 0)) = (bt , j . �.j • . . .  , bn ,j ) E ft ffi h ffi · · · ffi 1, 
where 1 E .lj on the left hand side occurs in position j .  The product of the two matrices 
(a;,j ) and (b;,j ) is just the identity matrix., so d =1- 0 and the determinant of the matrix 
(b;, j ) is d-1 • As above we have 
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which shows that lt h · · · In = (a)J1 J2 · · · Jn , where 0 "I a =  d-
1 

E K, completing 
the proof of the proposition. 

We now consider finitely generated modules over Dedekind Domains and prove 
a structure theorem for such modules extending the results in Chapter 12 for finitely 
generated modules over P.I.D.s. 

Recall that the rank of M is the maximal number of R -linearly independent elements 
in M, or, equivalently, the dimension of M ®R K as a K-vector space, where K is the 
fraction field of R (cf. Exercises 1-4, 20 in Section 12. 1) .  

Theorem 22. Suppose M is a finitely generated module over the Dedekind Domain R. 
Let n :::: 0 denote the rank of M and let Tor(M) be the torsion submodule of M. Then 

M � R E9 R E9 • • · E9 R E9 I E9 Tor(M) 
n factors 

for some ideal I of R, and 

Tor(M) � R/ Pf1 x R/ P? x · · · x Rf P:• 

for some s :::: 0 and powers Pt; , e1 :::: 1 , of (not necessarily distinct) prime ideals. The 
ideals Pt; for i = 1 , . . . , s are unique and the ideal I is unique up to multiplication by 
a principal ideal. 

Proof: Suppose first that M is a finitely generated torsion free module over R, 
i .e. ,  Tor(M) = 0. Then the natural R-module homomorphism from M to M ®R K 
is injective, so we may view M as an R -submodule of the vector space M ® R K. If 
M has rank n over R, then M ®R K is a vector space over K of dimension n .  Let 
x1 , • • .  , Xn be a basis for M ® R K over K and let m 1 ,  • • .  , ms be R -module generators 
for M. Each m;,  i = 1 ,  . . .  , s can be written as a K-linear combination of x1 , • • .  , Xn · 
Let 0 "I d E R be a common denominator for all the coefficients in K of these linear 
combinations, and set y; = x; jd, i = 1 ,  . . .  , n. Then 

M s; Ry1 + · · · + Ryn C K X1 + · · · + K Xn 

which shows that M is contained in a free R -submodule of rank n and every element 
m in M can be written uniquely in the form 

m = a1Y1 + · · · + llnYn 

with a1 , . • •  , an E R. The map (/) : M � R defined by lp(a1 Y1 + · · · + anYn) = an is 
an R -module homomorphism, so we have an exact sequence 

0 -----+ ker (/) -----+ M 4 I1 -----+ 0 

where I1 is the image of (/) in R, hence is an ideal in R. The submodule ker (/) is 
also a torsion free R-module whose rank is at most n - 1 (since it is contained in 
Ry1 + · · · + RYn-1), and it follows by comparing ranks that It is nonzero and that ker (/) 
has rank precisely n - 1 .  By (4) of Theorem 15,  It is a projective R-module, so this 
sequence splits: 

M � It e (ker lp) . 
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By induction on the rank, we see that a finitely generated torsion free R-module is 
isomorphic to the direct sum of n nonzero ideals of R: 

M � ft  E9 h E9 · · · E9 ln . 

Since It , . . . , In are each projective R-modules, it follows that any finitely generated 
torsion free R-module is projective. 

If now M is any finitely generated R-module, the quotient MITor(M) is finitely 
generated and torsion free, hence projective by what was just proved. The exact se-
quence 

0 ---+ Tor(M) ---+ M ---+ MITor(M) ---+ 0 

therefore splits, and so 
M � Tor(M) E9 (MITor(M)) . 

By the results in the previous paragraph M ITor(M) is isomorphic to a direct sum of n 

nonzero ideals of R, and by Proposition 21 we obtain 

M � R E9 R E9 · · · E9 R E9 I E9 Tor(M) 
n factors 

for some ideal I of R.  The uniqueness statement regarding the ideal I is also immediate 
from the uniqueness statement in Proposition 21(3) .  

It  remains to prove the statements regarding the torsion submodule Tor(M) . Sup­
pose then that N is a finitely generated torsion R-module. Let I = Ann(N) be the 
annihilator of N in R and suppose I = P:' · · · Pt' is the prime ideal factorization of I 
in R, where Pt • . . .  , P, are distinct prime ideals. Then N is a module over Rl I, and 

Rll � RIP:' X RIP;2 X · · ·  X RIP,e'. 

It follows that 

N � (NIPt1 N) X (NIP;2 N) X • • . X (NIPt' N) 

as R-modules. Each N I peN is a finitely generated module over Rl pe � Rp I pe Rp 
where Rp is the localization of R at the prime P, i.e., is a finitely generated module over 
Rp that is annihilated by pe Rp . Since R is a Dedekind Domain, each Rp is a P.I.D. 
(even a D.V.R.), so we may apply the Fundamental Theorem for Finitely Generated 
Modules over a P.I.D. to see that each N I peN is isomorphic as an Rp-module to a 
direct sum of finitely many modules of the form Rpl p! Rp where f :::::: e. It follows 
that each N I peN is isomorphic as an R -module to a direct sum of finitely many modules 
of the form Rl pf R where f :::::: e. This proves that N is isomorphic to the direct sum 
of finitely many modules of the form RIP/' for various prime ideals P; . Hence Tor(M) 
can be decomposed into a direct sum as in the statement in the theorem. 

Finally, it remains to prove that the ideals Pt; for i = 1 ,  . . . , s in the decomposition 
ofTor(M) are unique. This is similar to the uniqueness argument in the proof ofTheorem 
10 in Section 12. 1 (cf. also Exercises 1 1-12 in Section 12. 1): for any prime ideal P of 
R, the quotient pi- t Ml pi M is a vector space over the field Rl P and the difference 
dim R/P pi-I Ml pi M - dim R/P pi Ml pi+t M is the number of direct summands of M 
isomorphic to R I pi,  hence is uniquely determined by M. This concludes the proof of 
the theorem. 
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If M is a finitely generated module over the Dedekind Domain R as in Theorem 22, 
then the isomorphism type of M as an R -module is determined by the rank n, the prime 
powers Pt' for i = 1 ,  . . . , s (called the elementary divisors of M, and the class of the 
ideal I in the class group of R (called the Steinitz class of M). Note that a P.I.D. is the 
same as a Dedekind Domain whose class number is 1, in which case every nonzero ideal 
I of R is isomorphic as an R-module simply to R .  In this case, Theorem 22 reduces 
to the elementary divisor form of the structure theorem for finitely generated modules 
over P.I.D.s in Chapter 12. There is also an invariant factor version of the description 
of the torsion R-modules in Theorem 22 (cf. Exercise 14). 

The next result extends the characterization of finitely generated projective modules 
over P.I.D.s (Exercise 21 in Section 12. 1 )  to Dedekind Domains. 

Corollary 23. A finitely generated module over a Dedekind Domain is projective if 
and only if it is torsion free. 

Proof: We showed that a finitely generated torsion free R-module is projective in 
the proof of Theorem 22, so by the decomposition of M in Theorem 22, M is projective 
if and only if Tor(M) is projective (cf. Exercise 3 in Section 10.5). To complete the 
proof it suffices to show that no nonzero torsion R-module is projective, which is left 
as an exercise ( cf. Exercise 15). 

E X E R C I S E S  

1. If R is an integral domain, show that every fractional ideal of R is invertible if and only if 
every integral ideal of R is invertible. 

2. Suppose R is an integral domain with fraction field K and A1 , Az, . . .  , An are fractional 
ideals of R whose product is a nonzero principal fractional ideal: A 1 Az · · · An = Rx for 
some 0 f=- x E K .  For each i = 1 ,  . . .  , n prove that A; is an invertible fractional ideal with 
inverse (x-1 ) AI · · · Ai- I Ai+l · · · An . 

3. Suppose R is an integral domain with fraction field K and P is a nonzero prime ideal in 
R .  Show that the fractional ideals of Rp in K are the Rp-modules of the form ARp where 
A is a fractional ideal of R.  

4. Suppose R is an integral domain with fraction field K and A is a fractional ideal of R in 
K. Let A' = {x E K I xA � R} as in Proposition 9.  
(a) For any prime ideal P in R prove that the localization (A') p of A' at P is a fractional 

ideal of Rp in K.  
(b) If  A is  a finitely generated R-module, prove that (A') p = (Ap)' where (Ap)' i s  the 

fractional Rp ideal {x E K I xAp � Rp} corresponding to the localization A p .  

5 .  If Q1 i s  a P1 -primary ideal and Qz i s  a Pz-primary ideal where P1 and Pz are comaximal 
ideals in a Noetherian ring R, prove that Q 1  and Qz are also comaximal. [Use Proposition 
14 in Section 15.2.] 

6. Suppose R is a Dedekind Domain with fraction field K .  
(a) Prove that every nonzero fractional ideal of R in K can be written uniquely as the 

product of distinct prime powers Pt · · · P::" where the ai are nonzero integers, possibly 
negative. 
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(b) If 0 # x E K, let pvp (x) be the power of the prime P in the factorization of the 
principal ideal (x) as in (a) (where v p (x) = 0 if P is not one of the primes occurring). 
Prove v p is a valuation on K with valuation ring R p, the localization of R at P.  

7. Suppose R is a Noetherian integral domain that is not a field. Prove that R is a Dedekind 
Domain if and only if for every maximal ideal M of R there are no ideals I of R with 
M2 c I C M. [Use Exercise 12 in Section 1 and Theorems 7 and 15.] 

8. Suppose R is a Noetherian integral domain with Krull dimension 1 .  Prove that every 
nonzero ideal I in R can be written uniquely as a product of primary ideals whose radicals 
are all distinct. [Cf. the proof of Theorem 1 5. Use the uniqueness of the primary compo­
nents belonging to the isolated primes in a minimal primary decomposition (Theorem 21  
in  Section 1 5.2).] 

9. Suppose R is an integral domain. Prove that Rp is a D.V.R. for every nonzero prime ideal 
Pif and only if RM is a D.V.R. for every nonzero maximal ideal. 

10. Suppose R is a Noetherian integral domain that is not a field. Prove that R is a Dedekind 
Domain if and only if nonzero primes M are maximal and every M-primary ideal is a 
power of M. 

11. If I and J are nonzero ideals in the Dedekind Domain R show there exists an integral ideal 
It in R that is relatively prime to both I and J such that h i  is a principal ideal in R. 

12. If I and J are nonzero fractional ideals for the Dedekind Domain R prove there are elements 
a, {3 E K such that a/ and {)J are nonzero integral ideals in R are relatively prime. 

13. Suppose I and J are nonzero ideals in the Dedekind Domain R. Prove that there is an ideal 
It � I that is relatively prime to J. [Use Corollary 19 to find an ideal /z with [z/ = (a) 
and (/z ,  J) = R. If /z = Pt . .  · P�" , choose b E R with b E Pt' - Pt'+l and b = 1 mod P 
for every prime P dividing J. Show that (b) = lz lt for some ideal It and consider (a)lt 
to prove that It � /.] 

14. Prove that every finitely generated torsion module over a Dedekind Domain R is isomorphic 
to a direct sum Rlh ffi Rl/z ffi · · · ffi Rlln with unique nonzero ideals It . . . .  , In of R 
satisfying It � lz � · · · � In (called the invariant factors of M). [cf. Section 1 2. 1 .] 

15. If P is a nonzero prime ideal in the Dedekind Domain R prove that R 1 pn is not a projective 
R-module for any n � 1 .  [Consider the exact sequence 0 � pn 1 pn+l � Rl pn+l � 

Rl pn � 0.] Conclude that if M =/= 0 is a finitely generated torsion R-module then M is 
not projective. [cf. Exercise 3, Section 10.5.] 

16. Prove that the class number of the Dedekind Domain R is 1 if and only if every finitely 
generated projective R-module is free. 

17. Suppose R is a Dedekind Domain. 
(a) Show that I � J if and only if I � J as R-modules defines an equivalence relation 

on the set of nonzero fractional ideals of R. Let C(R) be the corresponding set 
of R-module isomorphism classes and let [/] E C(R) denote the equivalence class 
containing the fractional ideal / of R. 

(b) Show that the multiplication [I][J] = [I ffi J] gives a well defined binary operation 
with respect to which C(R) is an abelian group with identity 1 = [R] . 

(c) Prove that the abelian group C(R) in (b) is isomorphic to the class group of R. 

18. If R is a Dedekind Domain and I is any nonzero ideal, prove that R I I contains only finitely 
many ideals. In particular, show that Rl I is an Artinian ring. 

19. Suppose I is a nonzero fractional ideal in the Dedekind Domain R. Explicitly exhibit I 
as a direct summand of a free R-module to show that I is projective. [Considel; I ffi r1 
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and use Proposition 21 .] 

20. Suppose l and J are two nonzero fractional ideals in the Dedekind Domain R and that 
In = r for some n i= 0. Prove that I = J. 

21. Suppose K is an algebraic number field and 0 K is the ring of integers in K. If P is a 
nonzero prime ideal in OK prove that P = (p , rr) for some prime p E Z and algebraic 
integer rr E 0 K .  

22. Suppose K = Q( ,Ji5) i s  a quadratic extension o f  Q where D i s  a square free integer and 
0 K is the ring of integers in K. 
(a) Prove that IOK I(P) I = p2 . [Observe that OK :::= Z2 as an abelian group.] 
(b) Use Corollary 16 to show that there are 3 possibilities for the prime ideal factorization 

of (p) in OK : 
(i) (p) = P is a prime ideal with IOK/ P I = p2 , 
(ii) (p) = Pt Pz with distinct prime ideals Pt , Pz and IOK I Pt l = IOK I Pz l  = p, 
(iii) (p) = P2 for some prime ideal P with I 0 KIP I = p. 

(In cases (i), (ii), and (iii) the prime p is said to be inert, split, or ramified in 0 K, respec­
tively. The set of ramified primes is finite: the primes p dividing D if D = 1 ,  2 mod 4; 
p = 2 and the primes p dividing D if D = 3 mod4. Cf. Exercise 31 in Section 1 5.5.) 
(c) Determine the prime ideal factorizations of the primes p = 2, 3,  5 , 7, 1 1 in the ring 

of integers OK = Z[-v'-5] of K = Q(-v'-5). 

23. Let 0 be the ring of integers in the algebraic closure ij of Q. 
(a) Show that the infinite sequence of ideals in 0 (2) � ( .../2) � ( ti2) � ( V2) � · · · is 

strictly increasing, and so 0 is not Noetherian. 
(b) Show that 0 has Krull dimension 1 .  [Use Theorem 26 in Section 15.3.] 
(c) Let K be a number field and let I be any ideal in OK . Show that there is some finite 

extension L of K such that I becomes principal when extended to OL, i.e., the ideal 
IOL is principal (where L depends on /}-you may use the theorem that the class 
group of K is a finite group. [ cf. Exercise 20.] 

(d) Prove that 0 is a Bezout Domain (cf. Section 8. 1). 

24. Suppose F and K are algebraic number fields with Q � F � K, with rings of integers 
0 F and 0 K ,  respectively. Since 0 F � 0 K,  the ring 0 K is naturally a module over 0 F .  
(a) Prove OK i s  a torsion free 0 F-module of rank n = [K : F ] .  [Compute ranks over 

Z.] If 0 K is free over 0 F then 0 K is said to have a relative integral basis over 0 F.  
(b) Prove that if F has class number 1 then 0 K has a relative integral basis over 0 F .  

I f  K = Q(  .J=5, .../2 ) then the ring o f  integers 0 K i s  given by 

0 K = z + ZN + z.J=IO + Zw where {() = ( .J=W + .../2) 12. 

(c) If Ft = Q(.../2 ) prove that OK has a relative integral basis over OF1 and find an 
explicit basis {a, ,8} :  OK = 0p1 · a +  OF1 • ,8. 

(d) If Fz = Q(H),  show that P3 = (3, I +  H ) = (3, 5 - H )  is a prime ideal 
of OF2 that is not principal and that OK = OF2 • 1 + ( l /3)P3 · w. [Check that 
.J=W = -(5 - H )w/3.] Conclude that the Steinitz class of OK as a module over 
0 F2 is the nontrivial class of PJ in the class group of 0 F2 and so there is no relative 
integral basis of 0 K over 0 f2 . 

(e) Determine whether OK has a relative integral basis over the ring of integers of the 
remaining quadratic subfield F3 = Q( .J=W )  of K. 

25. Suppose C is a nonsingular irreducible affine curve over an algebraically closed field k .  
Prove that the coordinate ring k[C] is a Dedekind Domain. 
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CHAPTER 1 7  

I ntroductio n to H o m o l ogica l Alge b ra 
and G ro u p Co h o m o l ogy 

Let R be a ring with l .  In Section 10.5 we saw that a short exact sequence 

0 ----+ L � M � N ----+ 0 
of R-modules gives rise to an exact sequence of abelian groups 

rp' 1/t' 0 ----+ HomR (N, D) ----+ HomR (M, D) ----+ HomR (L , D) 

(17. 1) 

(17.2) 

for any R -module D and that the homomorphism 1/J' is in general not smjective so 
this sequence cannot always be extended to a short exact sequence. Equivalently, 
homomorphisms from L to D cannot in general be lifted to homomorphisms from M 
into D. In this chapter we introduce some of the techniques of "homological algebra," 
which provide a method of extending some exact sequences in a natural way. For 
the situation above one obtains an infinite exact sequence involving the "cohomology 
groups" Ext� (_, D) (cf. Theorem 8), and these groups provide a measure of the set 
of homomorphisms from L into D that cannot be extended to M. We then consider 
the analogous questions for the other two functors considered in Section 10.5, namely 
taking homomorphisms from D into the terms of the sequence ( 1) and tensoring the 
sequence ( 1) with D. 

In the subsequent sections we concentrate on an important special case of this 
general type of homological construction-the "cohomology of finite groups." We 
make explicit the computations in this case and indicate some applications of these 
techniques to establish some new results in group theory. In this sense, Sections 2-4 
may be considered as an explicit "example" illustrating some uses of the general theory 
in Section l .  

Cohomology and homology groups occur i n  many areas of mathematics. The for­
mal notions of homology and cohomology groups and the general area of homological 
algebra arose from algebraic topology around the middle of the 201h century in the 
study of the relation between the higher homotopy groups and the fundamental group 
of a topological space, although the study of certain specific cohomology groups, such 
as Schur's work on group extensions (described in Section 4), predates this by half a 
century. As with much of algebra, the ideas common to a number of different areas were 
abstracted into general theories. Much of the language of homology and cohomology 
reflects its topological origins: homology groups, chains, cycles, boundaries, etc. 
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1 7.1 I NTRODUCTION TO HOMOLOGICAL ALGEBRA-EXT AND TOR 

In this section we describe some general terminology and results in homological al­
gebra leading to the so called Long Exact Sequence in Cohomology. We then define 
certain (cohomology) groups associated to the sequence (2) and apply the general ho­
mological results to obtain a long exact sequence extending this sequence at the right 
end. We then indicate the corresponding development for sequences obtained by taking 
homomorphisms from D to the terms in (1 )  or by tensoring the terms with D. 

We begin with a generalization of the notion of an exact sequence, namely a se­
quence of abelian group homomorphisms where successive maps compose to zero (i.e. , 
the image of one map is contained in the kernel of the next): 

Definition. Let C be a sequence of abelian group homomorphisms: 

0 Co dl 1 cn-1 d, n dn+l 
----+ ----+ c ----+ . . . ----+ ----+ c ----+ . . • • ( 17.3) 

(1) The sequence C is called a cochain complex if the composition of any two 
successive maps is zero: dn+1 o dn = 0 for all n. 

(2) If C is a cochain complex, its nth cohomology group is the quotient group 
ker dn+If image dn . and is denoted by Hn (C) .  

There is  a completely analogous "dual" version in  which the homomorphisms are 
between groups in decreasing order, in which case the sequence corresponding to (3) is • dn+l 

C 
dn dl C 0 Th "f th 

. . f 
. 

wntten · · · -+ n -+ · · · -+ o -+ . en 1 e composttlon o any two successtve 
homomorphisms is zero, the complex is called a chain complex, and its homology 
groups are defined as Hn (C) = ker dnf image dn+1 · For chain complexes the notation 
is often chosen so that the indices appear as subscripts and are decreasing, whereas for 
cochain complexes the indices are superscripts and are increasing. We shall instead use 
a uniform notation for the maps on both, since it will be clear from the context whether 
we are dealing with a chain or a cochain complex. 

Chain complexes were the first to arise in topological settings, with cochain com­
plexes soon following. With our applications in Section 2 in mind, we shall concentrate 
on cochains and cohomology, although all of the general results in this section have 
similar statements for chains and homology. We shall also be interested in the situation 
where each en is an R-module and the homomorphisms dn are R-module homomor­
phisms (referred to simply as a complex of R -modules), in which case the groups Hn (C) 
are also R-modules. 

Note that if C is a cochain (respectively, chain) complex then C is an exact sequence 
if and only if all its cohomology (respectively, homology) groups are zero. Thus the 
nth cohomology (respectively, homology) group measures the failure of exactness of a 
complex at the nth stage. 

Definition. Let A = {An } and B = { Bn } be cochain complexes. A homomorphism 
of complexes a : A -+ B is a set of homomorphisms an : A

n 
-+ Bn such that for every 

n the following diagram commutes: 
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- An - An+t -! an ! an+l  (17.4) 

-Bn - Bn+t -

Proposition 1. A homomorphism a : A ---+ f3 of cochain complexes induces group 
homomorphisms from H11 (A) to H11 (B) for n ::=: 0 on their respective cohomology 
groups. 

Proof" It is an easy exercise to show that the commutativity of ( 4) implies that 
the images and kernels at each stage of the maps in the first row are mapped to the 
corresponding images and kernels for the maps in the second row, thus giving a well 
defined map on the respective quotient (cohomology) groups. 

Definition. Let A = { A11 } ,  f3 = { B11 } and C = {en } be cochain complexes. A short 

exact sequence of complexes 0 ---+ A � f3 .! C ---+ 0 is a sequence of homomorphisms 

of complexes such that 0 ---+ A11 � B11 !!;. C11 ---+ 0 is short exact for every n .  

One of  the main features of cochain complexes i s  that they lead to long exact 
sequences in cohomology, which is our first main result: 

Theorem 2. (The Long Exact Sequence in Cohomology) Let 0 ---+ A � f3 .! C ---+ 0 
be a short exact sequence of cochain complexes. Then there is a long exact sequence 
of cohomology groups: 

0 ---+ H0(A) ---+ H0(f3) ---+ H0(C) � H1 (A) 

---+ H 1 (f3) ---+ H 1 (C) � H2(A) ---+ . . .  
( 17.5) 

where the maps between cohomology groups at each level are those in Proposition 1 .  
The maps �11 are called connecting homomorphisms. 

Proof" The details of this proof are somewhat lengthy. For each n the verification 
that the sequence H11 (A) ---+ H11 (f3) ---+ H11 (C) is exact is a straightforward check of 
the definition of exactness of each map, similar to the proof of Theorem 33 in Section 
10.5. The construction of a connecting homomorphism �n is outlined in Exercise 2. 
Some work is then needed to show that �11 is a homomorphism, and that the sequence 
is exact at �11 • 

One immediate consequence of the existence of the long exact sequence in Theorem 
2 is the fact that if any two of the cochain complexes A, B, C are exact, then so is the 
third ( cf. Exercise 6). 
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Homomorphisms and the Groups � (A, B) 

To apply Theorem 2 to analyze the sequence (2), we try to produce a cochain complex 
whose first few cohomology groups in the long exact sequence (5) agree with the terms 
in (2). To do this we introduce the notion of a "resolution" of an R-module: 

Definition. Let A be any R-module. A projective resolution of A is an exact sequence 

� � E 
. . .  � Pn � Pn-1 � . . .  � Po � A �  0 

such that each P; is a projective R-module. 

( 17 .6) 

Every R-module has a projective resolution: Let Po be any free (hence projective) 
R-module on a set of generators of A and define an R-module homomorphism E from 
Po onto A by Theorem 6 in Chapter 10. This begins the resolution E : Po -+ A -+ 0. 
The smjectivity of E ensures that this sequence is exact. Next let Ko = ker E and let P1 
be any free module mapping onto the submodule Ko of Po ; this gives the second stage 
Pt -+ Po -+ A which, by construction, is also exact. We can continue this way, taking 
at the nth stage a free R-module Pn+l that maps sutjectively onto the submodule ker dn 
of Pn , obtaining in fact a free resolution of A. 

One of the reasons that projective modules are used in the resolution of A is  that 
this makes it possible to lift various maps ( cf. the proof of Proposition 4 following, for 
instance). 

In general a projective resolution is infinite in length, but if A is itself projective, then 

it has a very simple projective resolution of finite length, namely 0 -+ A � A -+ 0 
given by the identity map from A to itself. 

Given the projective resolution (6), we rllay form a related sequence by taking 
homomorphisms of each of the terms into D, keeping in mind that this reverses the 
direction of the homomorphisms. This yields the sequence 

( 17 .7) 

where to simplify notation we have denoted the induced maps from HomR(Pn-1 ,  D) to 
HomR(Pn ,  D) for n � l again by dn and similarly for the map induced by E (cf. Section 
10.5). This sequence is not necessarily exact, however it is a cochain complex (this 
is part of the proof of Theorem 33 in Section 10.5). The corresponding cohomology 
groups have a special name. 

Definition. Let A and D be a R-modules. For any projective resolution of A as in (6) 
let dn : HomR( Pn-l •  D) -+ HomR (Pn , D) for all n � 1 as in (7). Define 

Ext� (A , D) = ker dn+lf image dn 

where Ext� (A , D) = ker d1 . The group Ext� (A , D) is called the nth cohomology group 
derivedfrom the functor HomR L, D). When R = Z the group Exfi (A , D) is also 
denoted simply Extn (A . D) . 
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Note that the groups Ext� (A , D) are also the cohomology groups of the cochain 
complex obtained from (7) by replacing the term HomR (A, D) with zero (which does 
not effect the cochain property), i.e., they are the cohomology groups of the cochain 
complex 0 ---+ HomR (Po,  D) ---+ · • • .  

We shall show below that these cohomology groups do not depend on the choice 
of projective resolution of A. Before doing so we identify the Oth cohomology group 
and give some examples. 

Proposition 3. For any R-module A we have Ext� (A , D) � HomR (A, D). 

Proof" Since the sequence Pt � Po � A ---+ 0 is exact, it follows that the 

corresponding sequence 0 ---+ HomR (A , D) � HomR (Po ,  D) � HomR (Pt ,  D) is 
also exact by Theorem 33 in Section 10.5 (noting the first comment in the proof). 
Hence Ext� (A ,  D) = ker dt = image E � HomR (A, D), as claimed. 

Examples 

(1) Let R = /l and let A = /lfm/l for some m ;::: 2. By the proposition we have 
Ext�(/lfm/l, D) � Homz(/lfm/l, D), and it follows that Ext�(Z/mZ, D) � m D, 
where m D = {d E D I md = 0} are the elements of D that have order dividing m. 
For the higher cohomology groups, we use the simple projective resolution 

0 � /l � /l � /ljm/l � 0 

for A given by multiplication by m on /l. Taking homomorphisms into a fixed Z­
module D gives the cochain complex 

0 � Homz(/lfm/l, D) � Homz(/Z, D) � Homz(/Z, D) � 0 � · · · . 
We have D � Homz(/Z, D) (cf. Example 4 following Corollary 32 in Section 10.5) 
and under this isomorphism we have Ext� (Z/ mil, D) � D f mD for any abelian group 
D. It follows immediately from the definition and the cochain complex above that 
Extz(llfm/l, D) = 0 for all n ::: 2 and any abelian group D, which we summarize as 

Ext�(/lfm/l, D) � m D  

Ext�(/lfm/l, D) � DfmD 
Ex!Z(Ilfm/l, D) = 0, for all n ;::: 2. 

(2) The same abelian groups may be modules over several different rings R and the ExtR 
cohomology groups depend on R. For example, suppose R = Ill mil for some integer 
m ;::: 1 .  An R-module D is the same as an abelian group D with exponent dividing m, 
i.e., mD = 0. In particular. for any divisor d of m, the group llfd/l is an R-module, 
and 
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m� d m� d · · · � lljm/l � llfm/l � /lfm/l � /lfm/l � /lfd/l � 0 

is a projective (in fact, free) resolution of /lfd/l as a Z/mZ-module, where the final 
map is the natural projection mapping x mod m to x mod d. Taking homomorphisms 
into the /Zfm/Z-module D, using the isomorphism Homzjmz(/lfm/l, D) � D, and 
removing the first term gives the cochain complex 

d mfd d mfd 
o � D � D � D � D � . . . . 
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Hence 

Ext�;mz(Z/d::Z, D) � dD, 

Extz;mz(Zjd::Z, D) � (mfd)D/dD, n odd, n :::: 1 ,  

Extz;mz(Z/dZ, D) � dD/(m/d)D, n even, n :::: 2,  

where kD = {d E D I kd = 0}  denotes the set of elements of D killed by k. In 
particular, Ext�/p2z:(Z/pZ, Zjp/Z) � Zjp/Z for all n :::: 0, whereas, for example, 
Ext;z(Z/ p/Z, Z/ p::Z) = 0 for all n :::: 2. 

In order to show that the cohomology groups Ext7? (A , D) are independent of the 
choice of projective resolution of A we shall need to be able to "compare" resolutions. 
The next proposition shows that an R-module homomorphism from A to B lifts to a 
homomorphism from a projective resolution of A to a projective resolution of B - this 
lifting property is one instance where the projectivity of the modules in the resolution 
is important. 

Proposition 4. Let I : A --+ A' be any homomorphism of R-modules and take 
projective resolutions of A and A', respectively. Then for each n 2: 0 there is a lift In 
of I such that the following diagram commutes: 

( 17.8) 

where the rows are the projective resolutions of A and A', respectively. 

Proof Given the two rows and map I in (8), then since Po is projective we may 
lift the map I € : Po --+ A' to a map lo : Po --+ P6 in such a way that €1 lo = I € 
(Proposition 30(2) in Section 1 0.5). This gives the first lift of I. Proceeding inductively 
in this fashion, assume In has been defined to make the diagram commutative to that 
point. Thus image lndn+I s; ker d� . The projectivity of Pn+I implies that we may lift 
the map lndn+l : Pn+I --+ P� to a map ln+I : Pn+I --+ P�+I to make the diagram 
commute at the next stage. This completes the proof. 

The commutative diagram in Proposition 4 implies that the induced diagram 

0 - HomR (A , D) - HomR (Po, D) - HomR(PI ,  D) -t j  Jo t ft i 
0 - HomR(A , D) - HomR (P6, D) - HomR (P{ , D) -

( 17.9) 
is also commutative. The two rows of this diagram are cochain complexes, and this 
commutative diagram depicts a homomorphism of these cochain complexes. By Propo­
sition 1 we have an induced map on their cohomology groups: 
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Proposition 5. Let f : A ---+ A' be a homomorphism of R -modules and take projective 
resolutions of A and A' as in Proposition 4. Then for every n there is an induced group 
homomorphism (/)11 : Ext� (A', D) ---+ Ext� (A , D) on the cohomology groups obtained 
via these resolutions, and the maps (/)11 depend only on f, not on the choice of lifts fn 
in Proposition 4. 

Proof" The existence of the map on the cohomology groups Ext� follows from 
Proposition 1 applied to the homomorphism of cochain complexes (9). The more 
difficult part is showing these maps do not depend on the choice oflifts fn in Proposition 
4. This is easily seen to be equivalent to showing that if f is the zero map, then the 
induced maps on cohomology groups are also all zero. Assume then that f = 0. By the 
projectivity of the modules P; one may inductively define R-module homomorphisms 
Sn : Pn ---+ P�+I with the property that for all n, 

( 17 . 10) 

so the maps s11 give reverse downward diagonal arrows across the squares in (8). (The 
collection of maps {s11 } is called a chain homotopy between the chain homomorphism 
given by the fn and the zero chain homomorphism, cf. Exercise 4.) Taking homo­
morphisms into D gives diagram (9) with additional upward diagonal arrows from the 
homomorphisms induced by the s11 , and these induced homomorphisms satisfy the re­
lations in (10) (i.e., they form a homotopy between cochain complex homomorphisms). 
It is now an easy exercise using the diagonal maps added to (9) to see that any ele­
ment in HomR (P� ,  D) representing a coset in Ext� (A', D) maps to the zero coset in 
Ext� (A , D) (cf. Exercise 4). This completes the argument. 

One may also check that the homomorphism ({Jo : Ext� (A', D) ---+ Ext� (A , D) in 
Proposition 5 is the same as the map f : HomR (A', D) ---+ HomR (A , D) defined in 
Section 1 0.5 once the corresponding groups have been identified via the isomorphism 
in Proposition 3. 

Theorem 6. The groups Ext� (A , D) depend only on A and D, i .e . ,  they are independent 
of the choice of projective resolution of A .  

Proof" In the notation of Proposition 4 let A '  = A, let f : A ---+ A' b e  the 
identity map and let the two rows of (8) be two projective resolutions of A.  For any 
choice oflifts of the identity map, the resulting homomorphisms on cohomology groups 
(/)11 : Ext� (A', D) ---+ Ext� (A , D) are seen to be isomorphisms as follows. Add a third 
row to the diagram (8) by copying the projective resolution in the top row below the 
second row. Let g be the identity map from A' to A and lift g to maps g11 : P� ---+ Pn 
by Proposition 4. Let 1/111 : Ext� (A , D) ---+ Ext� (A', D) be the resulting map on 
cohomology groups. The maps g11 o fn : P11 ---+ P11 are now a lift of the identity map 
g o f, and they are seen to induce the homomorphisms (/)11 o 1/111 on the cohomology 
groups. However, since the first and third rows are identical, taking the identity map 
from Pn to itself for all n is a particular lift of g o f, and this choice clearly induces the 
identity map on cohomology groups. The last assertion of Proposition 5 then implies 
that (/Jn o 1/111 is also the identity on Ext� (A , D) . By a symmetric argument 1/111 o (/)11 is the 
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identity on Ex�(A', D). This shows the maps 'Pn and 1/ln are isomorphisms, as needed 
to complete the proof. 

For a fixed R -module D and fixed integer n � 0, Proposition 5 and Theorem 6 show 
that Ex�(_, D) defines a (contravariant) functor from the category of R-modules to 
the category of abelian groups. 

The next result shows that projective resolutions for a submodule and corresponding 
quotient module of an R-module M can be fit together to give a projective resolution 
of M. 

Proposition 7. (Simultaneous Resolution) Let 0 � L � M � N � 0 be a short 
exact sequence of R-modules, let L = A have a projective resolution as in (6) above, 
and let N have a similar projective resolution where the projective modules are denoted 
by P n ·  Then there is a resolution of M by the projective modules Pn EB P n such that 
the following diagram commutes: 

1 1 1 
0 --.  P1 --- PI EB PI  --. pi --. o  

1 1 1 
0 --.  Po ___. Po EB Po ___. Po ___. 0 ( 17. 1 1 )  

1 1 1 
o --.  L --- M __. N  --. o  

1 1 1 
0 0 0 

Moreover, the rows and columns of this diagram are exact and the rows are split. 

Proof" The left and right nonzero columns of ( 1 1 )  are exact by hypothesis. The 
modules in the middle column are projective (cf. Exercise 3, Section 1 0.5) and the row 
maps are the obvious ones to make each row a split exact sequence. It remains then to 
define the vertical maps in the middle column in such a way as to make the diagram 
commute. This is accomplished in a straightforward manner, working inductively from 
the bottom upward - the first step in this process is outlined in Exercise 5.  

Theorem 2 and Proposition 7 now yield the long exact sequence for ExtR that 
extends the exact sequence (2). 

Sec. 1 7.1 I ntroduction to Homological Algebra-Ext and Tor 783 



Theorem 8. Let 0 � L � M � N � 0 be a short exact sequence of R-modules. 
Then there is a long exact sequence of abelian groups 

�o I 0 � HomR (N, D) � HomR (M, D) � HomR (L , D) � ExtR (N, D) 

� Extk (M, D) � Extk (L ,  D) � Ext1 (N, D) � · · · 

(17. 12) 

where the maps between groups at the same level n are as in Proposition 5 and the 
connecting homomorphisms �n are given by Theorem 2. 

Proof" Take a simultaneous projective resolution of the short exact sequence as 
in Proposition 7 and take homomorphisms into D. To obtain the cohomology groups 
Ext� from the resulting diagram, as noted in the discussion preceding Proposition 3 we 
replace the lowest nonzero row in the transformed diagram with a row of zeros to get 
the following commutative diagram: 

i i i 
0 ----+ HomR (P 1 , D) ----+ HomR (P1 E9 P 1 , D) ----+ HomR (PJ , D) ----+ 0 

i i i 
0 ----+ HomR (P0 , D) ----+ HomR (Po E9 P0,  D) ----+ HomR (Po ,  D) ----+ 0 

i i i 
0 0 0 ( 17. 1 3) 

The columns of ( 1 3) are cochain complexes, and the rows are split by Proposition 29(2) 
of Section 10.5 and the discussion following it. Thus ( 13) is a short exact sequence of 
cochain complexes. Theorem 2 then gives a long exact sequence of cohomology groups 
whose terms are, by definition, the groups Ext� {_, D), for n � 0. The Oth order terms 
are identified by Proposition 3, completing the proof. 

Theorem 8 shows how the exact sequence (2) can be extended in a natural way and 
shows that the group Ext1 (N, D) is the first measure of the failure of (2) to be exact on 
the right - in fact (2) can be extended to a short exact sequence on the right if and only 
if the connecting homomorphism �o in ( 12) is the zero homomorphism. In particular, if 
Ext1 (N, D) = 0 for all R-modules N, then (2) will be exact on the right for every exact 
sequence ( 1). We have already seen (Corollary 35 in Section 10.5) that this implies the 
R -module D is injective. Part of the next result shows that the converse is also true and 
characterizes injective modules in terms of ExtR groups. 

Proposition 9. For an R-module Q the following are equivalent: 
(1) Q is injective, 
(2) Ext1 (A , Q) = 0 for all R-modules A, and 
(3) Ext� (A , Q) = 0 for all R -modules A and all n � 1 .  
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Proof: We showed (2) implies ( 1 )  above, and (3) implies (2) is trivial, so it remains 
to show that if Q is injective then Ext� (A , Q) = 0 for all R-modules A and all n 2:: 1 .  
Take a projective resolution 

· · · ------+ P, ------+ P, - 1  ------+ · · · ------+ Po ------+ A ------+ 0 

for A .  Since Q is injective, the sequence 

is still exact (Corollary 35 in Section 10.5), so all of the cohomology groups for this 
cochain complex are 0. In particular, the groups Ext� {A , Q) for n 2:: 1 are all trivial, 
which is (3). 

For a fixed R-module D, the result in Theorem 8 can be viewed as explaining what 
happens to the short exact sequence 0 � L � M � N � 0 on the right after 
applying the left exact functor HomR {_, D) . This is why the (contravariant) functors 
Ex� L. D) are called the right derived functors for the functor HomR (_, D). 

One can also consider the effect of applying the left exact functor HomR ( D, __), i.e., 
by taking homomorphisms from D rather than into D. The next theorem shows that in 
fact the same ExtR groups define the (covariant) right derived functors for HomR ( D,  __) 
as well. 

Theorem 10. Let 0 � L � M � N � 0 be a short exact sequence of R-modules. 
Then there is a long exact sequence of abelian groups 

Yo 1 
0 � HomR (D, L) � HomR (D. M) � HomR (D, N) � ExtR (D, L) 

� Extk (D. M) � Extk (D, N) � Ex� (D, L) � · · · .  

( 17 . 14) 

Proof" Let 0 � L � M � N � 0 be a short exact sequence of R-modules. 
By taking a projective resolution of D and then applying HomR (_, L), HomR (_, M) 
and HomR L. N) to this resolution one obtains the columns in a commutative diagram 
similar to ( 13), but with L, M and N in the second positions rather than the first. 
Applying the Long Exact Sequence Theorem to this array gives ( 14). 

Theorem 10 shows that the group Extk ( D, L) measures whether the exact sequence 

can be extended to a short exact sequence - it can be extended if and only if Yo is 
the zero homomorphism. In particular, this will always be the case if the module D 
has the property that Extk (D, B) = 0 for all R-modules B;  in this case it follows by 
Corollary 32 in Section 10.5 that D is a projective R-module. As in the situation of 
injective R -modules in Proposition 9, the vanishing of these cohomology groups in fact 
characterizes projective R-modules: 
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Proposition 11. For an R-module P the following are equivalent: 
(1) P is projective, 
(2) Ext1 (P, B) = 0 for all R-modules B ,  and 
(3) Ext� (P, B ) = 0 for all R-modules B and all n � 1 .  

Proof" We proved (2) implies ( 1 )  above, and (3) implies (2) is trivial, so it remains 
to prove that ( 1 )  implies (3). If P is a projective R-module, then the simple exact 
sequence 

l 
O � P � P � O  

given by the identity map on P is a projective resolution of P. Taking homomorphisms 
into B gives the simple cochain complex 

l 
0 --+  HomR (P, B) --+ HomR (P, B) --+ 0 --+  · · · --+ 0 --+  · · · 

from which it follows by definition that Ext� (P, B)  = 0 for all n � 1 ,  which gives (3). 

Examples 

(1) Since zm is a free, hence projective, Z-module, it follows from Proposition 1 1  that 

Extz(Zm . B) = o 

for all abelian groups B, all m ::=:: 1, and all n ::=:: 1 .  
(2) It is not difficult to show that Ext� (At EB Az ,  B) � Ext� (At .  B) EB Ext� (Az ,  B )  for all 

n ::=:: 0 ( cf. Exercise 10), so the previous example together with the example following 
Proposition 3 determines Ext;E(A , B) for all finitely generated abelian groups A. In 
particular, Ext;E(A , B) = 0 for all finitely generated groups A, all abelian groups B, 
and all n :::: 2. 

We have chosen to define the cohomology group Ext� (A , B) using a projective 
resolution of A.  There is a parallel development using an injective resolution of B :  

0 --+ B --+ Qo --+ Q1 --+ · · · 

where each Q; is injective. In this situation one defines Ext� (A , B) as the nth co­
homology group of the cochain sequence obtained by applying HomR (A , _) to the 
resolution for B. The theory proceeds in a manner analogous to the development of this 
section. Ultimately one shows that there is a natural isomorphism between the groups 
Ext� (A , B) constructed using both methods. 

Examples 

(1) Suppose R = Z and A and B are Z-modules, i.e., are abelian groups. Recall that a 
Z-module is injective if and only if it is divisible (Proposition 36 in Section 10.5). The 
group B can be embedded in an injective Z-module Qo (Corollary 37 in Section 10.5) 
and the quotient, Q1 , of Qo by the image of B is again injective. Hence we have an 
injective resolution 
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0 � B � Qo � Q 1 � 0 
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of B. Applying Homz (A , __) to this sequence gives the cochain complex 

0 ----+ Homz(A , B) ----+ Homz(A , Qo) ----+ Homz(A,  Q t) ----+ 0 ----+ · · · 
from which it follows immediately that 

Extz(A, B) = 0 

for all abelian groups A and B and all n � 2, showing that the result of the previous 
example holds also when A is not finitely generated. 

(2) Suppose A is a torsion abelian group. Then we have Exfl(A , ::£) � Hom(A , ::£) = 0 
since ::Z is torsion free. The sequence 0 -+ ::Z -+ Q -+ QIZ -+ 0 gives an injective 
resolution of ::£. Applying Hom( A, __) gives the cochain complex 

0 ----+ Hom(A, ::£) ----+ Hom(A , Q) ----+ Hom(A . QIZ) ----+ 0 ----+ . · · 
and since Q is also torsion free, this shows that 

Ext1 (A , ::£) � Homz (A . QIZ) . 

The group Hom(A, QIZ) is called the Pontriagin dual group to A. If A is a finite 
abelian group the Pontriagin dual of A is isomorphic to A ( cf. Exercise I4, Section 
5.2). In particular, Ext1 (A ,  Z::) � A is nonzero for all nonzero finite abelian groups A. 
We have Extn (A , Z::) = 0 for all n � 2 by the previous example. 

We record an important property of Extk , which helps to explain the name for these 
cohomology groups. Recall that equivalent extensions were defined at the beginning 
of Section 1 0.5. 

Theorem 12. For any R-modules N and L there is a bijection between Extk (N, L) 
and the set of equivalence classes of extensions of N by L. 

Although we shall not prove this result, in  Section 4 we establish a similar bijection 
between equivalence classes of group extensions of G by A and elements of a certain 
cohomology group, where G is any finite group and A is any ZG-module. 

Example 

Suppose R = Z:: and A = B = ZlpZ. We showed above thatExtk (ZipZ, ZlpZ) � ZlpZ, 
so by Theorem I2 there are precisely p equivalence classes of extensions of Z:: 1 pZ by Z:: 1 p Z. 
These are given by the direct sum ZlpZ EB ZlpZ (which corresponds to the trivial class in 
Extk (ZipZ, ZlpZ)) and the p - I extensions 

0 ----+ ZlpZ ----+ Zlp2Z � Zlp::Z ----+ 0 

defined by the map i (x) = ix mod p for i = I ,  2, . . .  , p - I . Note that while these are 
inequivalent as extensions, they all determine the same group Zl p2Z. 
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Tensor Products and the Groups To� (A,B) 

The cohomology groups Ext� (A , B) determine what happens to short exact sequences 
on the right after applying the left exact functors HomR(D, _) and HomR L. D) . One 
may similarly ask for the behavior of short exact sequences on the left after applying 
the right exact functor D ® R _ or the right exact functor _ ®  R D. This leads to the Tor 
(homology) groups (whose name derives from their relation to torsion submodules), 
and we now briefly outline the development of these left derived functors. In some 
respects this theory is "dual" to the theory for ExtR . We concentrate on the situation for 
D ® R _ when D is a right R -module. When D is a left R -module there is a completely 
symmetric theory for _ ®R D;  when R is commutative and all R-modules have the 
same left and right R action the homology groups resulting from both developments 
are isomorphic. 

Suppose then that D is a right R-module. Then for every left R-module B the 
tensor product D ® R B is an abelian group and the functor D ® _ is covariant and 
right exact, i.e., for any short exact sequence ( 1 )  of left R-modules, 

D ® L ---+ D ® M ---+ D ® N ---+ 0 

is an exact sequence of abelian groups. This sequence may be extended at the left end 
to a long exact sequence as follows. Let 

� � E 
· · · ---+ Pn ---+ Pn-1 ---+ · · · ---+ Po ---+ B � 0 

be a projective resolution of B, and take tensor products with D to obtain 

[181d, li81J1 l i81E 
· · · ---+ D ® Pn ---+ D ® Pn-1  ---+ · · · ---+ D ® Po ---+ D ® B ---+ 0. ( 17 . 15) 

It follows from the argument in Theorem 39 of Section 10.5 that (15) is a chain complex 
- the composition of any two successive maps is zero - so we may form its homology 
groups. 

Definition. Let D be a right R -module and let B be a left R -module. For any projective 
resolution of B by left R-modules as above let 1 ® dn : D ® Pn -+ D ® Pn- 1  for all 
n ::=: 1 as in ( 15). Then 

Tor� (D, B) = ker( l ® dn)/ image(l  ® dn+1 )  

where Tort (D,  B) = (D ® Po)/ image(l ®d1 ) .  The group Tor� (D, B) is called the nth 

homology group derived from the functor D ® _. When R = 2: the group Tor� (D, B) 
is also denoted simply Torn (D, B).  

Thus Tor� (D , B) is  the n1h homology group of the chain complex obtained from 
( 15) by removing the term D ® B.  

A completely analogous proof to Proposition 3 (but relying on Theorem 39 in 
Section 1 0.5) implies the following: 
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Proposition 13. For any left R -module B we have TorC (D, B) � D ® B.  

Example 

Let R = Z and let B = ZjmZ for some m :::=: 2. By the proposition, To� (D, ZjmZ) is 
isomorphic to D 0 ZjmZ, so we have To� (D, ZjmZ) ;::: Dfm D (Example 8 following 
Corollary 12 in Section 10.4). For the higher groups we apply D 0 _ to the projective 
resolution 

o �  z � z �  Zfmz � o  

of B and use the isomorphisms D 0 Z ;::: D and D 0 ZjmZ ;::: DfmD. This gives the 
chain complex 

· · · � 0 � D � D � DfmD � 0. 

It follows that Torf (D, ZjmZ) ;::: m D  is the subgroup of D annihilated by m and that 
To� (D, ZjmZ) = 0 for all n :::=: 2, which we summarize as 

Toro(D, ZjmZ) ;::: DjmD, 

Tor1 (D, ZjmZ) ;::: m D ,  

Torn (D, ZjmZ) = 0, for all n :::=: 2. 

As for Ext, the Tor groups depend on the ring R (cf. Exercise 20). 

Following a similar development to that for ExtR ,  one shows: 

Proposition 14. 
(1) The homology groups Tor� (D, B) are independent of the choice of projective 

resolution of B, and 
(2) for every R-module homomorphism f : B -+ B' there are induced maps 

1/ln : Tor� (D, B) -+ Tor� (D, B') on homology groups (depending only on f). 

There is a Long Exact Sequence in Homology analogous to Theorem 2, except that 
all the arrows are reversed, whose proof follows mutatis mutandis from the argument 
for cohomology. This together with Simultaneous Resolution gives: 

Theorem 15. Let 0 -+ L -+ M -+ N -+ 0 be a short exact sequence ofleft R -modules. 
Then there is a long exact sequence of abelian groups 

· · · -+ Torf (D, N) � Torf (D, L) -+ Torf (D, M) -+ 

R oo Tor1 (D , N) -+ D ® L -+ D ® M -+  D ® N -+ 0 

where the maps between groups at the same level n are as in Proposition 14 (and the 
maps �n are called connecting homomorphisms). 

There is a characterization of fiat modules corresponding to Propositions 9 and 1 1  
whose proof is very similar and is left as an exercise. 
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Proposition 16. For a right R-module D the following are equivalent: 
(1) D is a flat R-module, 
(2) Torf (D, B) = 0 for all left R-modules B, and 
(3) Tor: (D, B) = 0 for all left R-modules B and all n :=::: 1 .  

We have defined Tor: (A , B) as the homology of the chain complex obtained by ten­
soring a projective resolution of B on the left with A .  The same groups are obtained by 
taking the homology of the chain complex obtained by tensoring a projective resolution 
of A on the right by B. Put another way, the Tor: (A , B) groups define the (covariant) 
left derived functors for both of the right exact functors A ®R _ and _ ®R B: if D 
is a left R-module, then the short exact sequence 0 ---+ L ---+ M ---+ N ---+ 0 of right 
R -modules gives rise to the long exact sequence 

· · · ---+ Torf (N, D) � Torf (L , D) ---+ Torf (M, D) ---+ 
R Yo Tor1 (N, D) ---+ L ®R D ---+ M ®R D ---+ N ®R D ---+ 0 

of abelian groups. In particular, the left R -module D is flat if and only ifTorf (A , D) = 0 
for all right R-modules A .  

When R i s  commutative, A ® R  B � B ® R  A (Proposition 20 in Section 10.4) for 
any two R -modules A and B with the standard R -module structures, and it follows that 
Tor: (A , B) � Tor: (B, A) as R-modules. When R is commutative the Tor long exact 
sequences are exact sequences of R-modules. 

Examples 

(1) If R = Z, then since zm is free, hence flat (Corollary 42, Section 10.5), we have 
Torn (A, zm) = 0 for all n ::: 1 and all abelian groups A.  

(2) Since Tor� (A, B1 Ee Bz) � Tor: (A . B1 ) EeTor: (A , Bz) (cf. Exercise 10), the previous 
two examples together determine Tor� (A, B) for all abelian groups A and all finitely 
generated abelian groups B .  

(3) As a particular case of  the previous example, Ton (A ,  B) is a torsion group and 
Tor, (A, B) = 0 for every abelian group A, every finitely generated abelian group 
B, and all n ::: 2. In fact these results hold without the condition that B be finitely 
generated. 

(4) The exact sequence 0 � Z � Q � Q/Z � 0 gives the long exact sequence 

· · · � Tor1 (D, Q) � Tor1 (D, QjZ) � D ® Z � D ® Q � D ® QfZ � 0. 

Since Q is a flat Z-module (Example 2 following Corollary 42 in Section 10.5), the 
proposition shows that we have an exact sequence 

o �  Tor1 (D, QjZ) � D � D ® Q 

and so Tor1 (D, Q/Z) is isomorphic to the kernel of the natural map from D into D ®Q, 
which is the torsion subgroup of D (cf. Exercise 9 in Section 10.4). 

The following results show that, for R = Z, the Tor groups are closely related to 
torsion subgroups. The Tor groups first arose in applications of torsion abelian groups 
in topological settings, which helps explain the terminology. 
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Proposition 17. Let A and B be ;z>modules and let t (A) and t (B) denote their respective 
torsion submodules. Then Tor1 (A , B) � Tor1 (t (A) ,  t (B)) .  

Proof" In the case where A and B are finitely generated abelian groups this follows 
by Examples 3 and 4 above. For the general case, cf. Exercise 16. 

Corollary 18. If A is an abelian group then A is torsion free if and only ifTor1 (A , B) = 0 
for every abelian group B (in which case A is fiat as a Z-module). 

Proof" By the proposition, if A has no elements of finite order then we have 
Tor1 (A , B) = Tor1 (t (A), B) = Tor1 {0, B) = 0 for every abelian group B.  Conversely, 
if Tort (A , B) = 0 for all B ,  then in particular Tort (A , Q/Z) = 0, and this group is 
isomorphic to the torsion subgroup of A by the example above. 

The results of Proposition 17 and Corollary 1 8  hold for any P.I.D. R in place of Z 
(cf. Exercise 26 in Section 10.5 and Exercise 16). 

Finally, we mention that the cohomology and homology theories we have described 
may be developed in a vastly more general setting by axiomatizing the essential proper­
ties of R-modules and the HomR and tensor product functors. This leads to the general 
notions of abelian categories and additive functors. In the case of the abelian category 
of R-modules, any additive functor :F to the category of abelian groups gives rise to 
a set of derived functors, :Fn , also from R-modules to abelian groups, for all n :=::: 0. 
Then for each short exact sequence 0 --+ L --+ M --+ N --+ 0 of R -modules there is 
a long exact sequence of (cohomology or homology) groups whose terms are :Fn (L), 
:Fn (M) and :Fn (N), and these long exact sequences reflect the exactness properties of 
the functor :F. If :F is left or right exact then the 01h derived functor :F0 is naturally 
equivalent to :F (hence the Oth degree groups :F0(X) are isomorphic to :F(X)), and if :F 
is an exact functor then :Fn (X) = 0 for all n :=::: 1 and all R -modules X. 

E X E R C I S E S  

1. Give the details of the proof of Proposition 1 .  

2 .  This exercise defines the connecting map On in the Long Exact Sequence of Theorem 2 and 

proves it is a homomorphism. In the notation of Theorem 2 let 0 --+ A � l3 ! C --+ 0 
be a short exact sequence of cochain complexes, where for simplicity the cochain maps 
for A, l3 and C are all denoted by the same d. 
(a) If c E en represents the class x E Hn (C) show that there is some b E Bn with 

fJn (b) = c. 

(b) Show that dn+ 1 (b) E ker fJn+ 1 and conclude that there is a unique a E An+ 1 such that 
an+ I (a) = dn+I (b) . [Use c E ker dn+1 and the commutativity of the diagram.] 

(c) Show that dn+2 (a) = 0 and conclude that a defines a class a in the quotient group 
Hn+I (A). [Use the fact that an+2 is injective.] 

(d) Prove that a is independent of the choice of b, i.e., if b' is another choice and a' is its 
unique preimage in An+ I then a = ll, and that a is also independent of the choice of 
c representing the class x.  

(e) Define on (x) = a and prove that On  is  a group homomorphism from Hn (C) to 
Hn+l (A). [Use the fact that On (x) is independent of the choices of c and b to compute 
On (XI + X2) .] 
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3. Suppose 
a f3 

A ---+ B ---+ C ---+ 0 

f t a' 
g t {J' 

h t 
0 ---+ A' ---+ B' ---+ C' 

is a commutative diagram of R-modules with exact rows. 
(a) If c E ker h and {J(b) = c prove that g (b) E ker {3' and conclude that g (b) = a' (a') 

for some a' E A' . [Use the commutativity of the diagram.] 
(b) Show that 15 (c) = a' mod image f is a well defined R-module homomorphism from 

ker h to the quotient A' 1 image f. 
(c) (The Snake Lemma) Prove there is an exact sequence 

� 
ker f ----+ ker g ----+ ker h ----+ coker f ----+ coker g ----+ coker h 

where coker f (the cokernel of f) is A' /(image f) and similarly for coker g and 
coker h.  

(d) Show that if  a is  injective and {J' is  smjective (i.e., the two rows in the commutative 
diagram above can be extended to short exact sequences) then the exact sequence in 
(c) can be extended to the exact sequence 

� 0 ----+ ker f ----+ ker g ----+ ker h ----+ coker f ----+ coker g ----+ coker h ----+ 0 

4. Let A = {An } and B = {Bn }  be cochain complexes, where the maps An � An+l 

and Bn � Bn+l in both complexes are denoted by dn+l for all n. Cochain complex 
homomorphisms a and {3 from A to B are said to be homotopic if for all n there are 
module homomorphisms Sn : An+l � Bn such that the maps an - f3n from An to Bn 
satisfy 

The collection of maps {sn } is called a cochain homotopy from a to {3 .  One may similarly 
define chain homotopies between chain complexes. 
(a) Prove that homotopic maps of cochain complexes induce the same maps on cohomol­

ogy, i.e., if a and {3 are homotopic homomorphisms of cochain complexes then the 
induced group homomorphisms from Hn (A) to Hn (B) are equal for every n ::: 0. 
(Thus "homotopy" gives a sufficient condition for two maps of complexes to induce 
the same maps on cohomology or homology; this condition is not in general neces­
sary.) [Use the definition of homotopy to show (an - f3n) (z) E image dn for every 
z E ker dn+J .] 

(b) Prove that the relation a � {3 if a and {3 are homotopic is an equivalence relation on 
any set of cochain complex homomorphisms. 

S. Establish the first step in the Simultaneous Resolution result of Proposition 7 as follows: 
assume the first two nonzero rows in diagram ( 1 1 )  are given, except for the map from 
Po EB Po to M (where the maps along the row of projective modules are the obvious 
injection and projection for this split exact sequence). Let J-L : Po � M be a lifting to Po 
of the map Po � N (which exists because Po is projective). Let A. be the composition 
Po � L � M in the diagram. Define 

n : Po Ell Po � M by n(x ,  y) = A.(x) + J-L (y) .  

Show that with this definition the first two nonzero rows of  ( 1 1 )  form a commutative 
diagram. 
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6. Let 0 --+ A � 13 ! C --+ 0 be a short exact sequence of cochain complexes. Prove that 
if any two of A, 13, C are exact, then so is the third. [Use Theorem 2.] 

7. Prove that a finitely generated abelian group A is free if and only if Ext1 (A , Z) = 0. 
8. Prove that if 0 --+ L --+ M --+ N --+ 0 is a split short exact sequence of R-modules, then 

for every n :::: 0 the sequence 0 � Ext� (N, D) � Ext� (M, D) --+ Ext'R (L , D) --+ 0 is 
also short exact and split. [Use a splitting homomorphism and Proposition 5.] 

9. Show that 

d mW d mW 0 ----+ ZjdZ ----+ ZjmZ ----+ ZjmZ ----+ ZjmZ ----+ ZjmZ ----+ · · · 

is an injective resolution of ZjdZ as a Z/mZ-module. [Use Proposition 36 in Section 
10.5.] Use this to compute the groups Extz;mz (A, ZjdZ) in terms of the dual group 
Homz;mz(A,  ZjmZ) .  In particular, if m = p2 and d = p, give another derivation of the 
result ExtZ/p2z (Z/pZ, ZjpZ) � ZjpZ. 

10. (a) Prove that an arbitrary direct sum ffi;EI P; of projective modules P; is projective and 
that an arbitrary direCt product njEJ Qj Of injectiVe moduleS Qj iS injectiVe. 

(b) Prove that an arbitrary direct sum of projective resolutions is again projective and use 
this to show Ext'R CffiiE/  A; , B) � niEI Ext� (A; , B) for any collection of R-modules 
A; (i E 1). [cf. Exercise 12 in Section 10.5.] 

(c) Prove that an arbitrary direct product of injective resolutions is an injective resolution 
and use this to show Ext'R (A , njEJ Bj ) � njEJ Ext'R (A , Bj ) for any collection of 
R-modules Bj (j E J). [cf. Exercise 12  in Section 10.5.] 

(d) Prove that Tor� (A. EF!jEJBj )  � ffijEJTor� (A . Bj ) for any collection of R-modules 
Bj (j E 1). 

11. (Bass ' Characterization of Noetherian Rings) Suppose R is a commutative ring. 
(a) If R is Noetherian, and I is any nonzero ideal in R show that the image of any R­

module homomorphism f : I � EF!jEJ Qj from I into a direct sum of injective 
R-modules Qj (j E 3) is contained in some finite direct sum of the Qj . 

(b) If R is Noetherian, prove that an arbitrary direct sum ffijEJ Qj of injective R-modules 
is again injective. [Use Baer's Criterion (Proposition 36) and Exercise 4 in Section 
10.5 together with (a) .] 

(c) Let lt � h � . . .  be an ascending chain ofideals of R with union I and let / jl; --+ Q; 
for i = 1, 2, . . .  be an injection of the quotient If I; into an injective R-module Q; (by 
Theorem 38 in Section 1 0.5). Prove that the composition of these injections with the 
product of the canonical projection maps I --+ I; gives an R -module homomorphism 
f : I --+ ffi;=t ,2, . . . Q; . 

(d) Prove the converse of (b): if an arbitrary direct sum EFljEJ Qj of injective R-modules 
is again injective then R is Noetherian. [If the direct sum in (c) is injective, use Baer's 
Criterion to lift f to a homomorphism F : R --+ ffii=l,2, . . .  Q; . If the component of 
F(l )  in Q; is 0 for i :::: n prove that I = In and the ascending chain of ideals is finite.] 

12. Prove Proposition 13 :  TorC (D, A) � D ® R A. [Follow the proof of Proposition 3.] 
13. Prove Proposition 16  characterizing flat modules. 
14. Suppose 0 --+  A --+ B --+ C --+ 0 is a short exact sequence of R-modules. Prove that if 

C is a flat R-module, then A is flat if and only if B is also flat. [Use the Tor long exact 
sequence.] Give an example to show that if A and B are flat then C need not be flat. 
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15. (a) If I is an ideal in R and M is an R-module, prove that Torf (M, RJ I) is isomorphic 
to the kernel of the map M ®R I ---+ M that maps m ® i to mi for i E I and m E  M.  
[Use the Tor long exact sequence associated to  0 ---+ I ---+ R ---+ R/ I ---+ 0 noting that 
R is flat.] 

(b) (A Flatness Criterion using Tor) Prove that the R-module M is flat if and only if 
Torf (M, RJI) = 0 for every finitely generated ideal / of R. [Use Exercise 25 in 
Section 10.5.] 

16. Suppose R is a P.I.D. and A and B are R-modules. If t (B) denotes the torsion submodule 
of B show that Torf (A, t (B)) � Torf (A , B) and deduce that Torf (A,  B) is isomorphic 
to Torf (t (A) , t (B)) . [Use Exercise 26 in Section 10.5 to show that Bft (B) is flat over 
R, then use the Tor long exact sequence with D = A applied to the short exact sequence 
0 ---+ t (B) ---+ B ---+ B Jt (B) ---+ 0 and the remarks following Proposition 16.] 

17. Let A = ZJ2Z $ ZJ3Z $ ZJ4Z $ · · · . Prove that Ext1 (A,  B) � (BJ2B) x (BJ3B) x 
(B J4B) x · · · for any abelian group A. [Use Exercise 10.] Prove that Ext1 (A , B) = 0 if 
and only if B is divisible. 

18. Prove that Zj2Z is a projective Z/6Z-module and deduce that Tor�16z 
(Z/2Z, Zj2Z) = 0. 

19. Suppose r # 0 is not a zero divisor in the commutative ring R. 
(a) Prove that multiplication by r gives a free resolution 0 ---+ R � R ---+ Rjr R ---+ 0 of 

the quotient RjrR. 
(b) Prove that Ext� (RjrR,  B) = rB is the set of elements b E B with rb = 0, that 

Ext1 (RjrR ,  B) � BjrB, and that Ext'R (RjrR , B) = 0 for n � 2 for every R­
module B. 

(c) Prove that Tor� (A , RJrR) = AjrA, that Torf (A , RjrR) = rA is the set ofelements 
a E A with ra = 0, and that Tor: (A , RjrR) = 0 for n � 2 for every R-module A. 

20. Prove that Tor�/mZ(A , ZjdZ) � A  fdA, that Tor�/mZ(A , ZjdZ) � dA/(mjd)A for n odd, 

n � 1, and that Tor�fmZ(A , ZjdZ) � (mfd) A/dA for n even, n � 2. [Use the projective 
resolution in Example 2 following Proposition 3.]  

21. Let R = k[x , y] where k is a field, and let I be the ideal (x , y) in R. 
(a) Let a : R ---+ R2 be the map a(r) = (yr, -xr) and let f3 : R2 ---+ R be the map 

f3((r1 , r2)) = r1x + r2y.  Show that 

a 2 f3 0 --+ R --+ R  --+ R --+ k --+ 0  

where the map R -4 RJ I =  k is the canonical projection, gives a free resolution of k 
as an R -module. 

(b) Use the resolution in (a) to show that Torf (k , k) � k. 
(c) Prove that Torf (k, /) � k. [Use the long exact sequence corresponding to the short 

exact sequence 0 ---+ I ---+ R ---+ k ---+ 0 and (b).]-
(d) Conclude from (c) that the torsion free R-module I is not flat (compare to Exercise 

26 in Section 10.5). 

22. (Flat Base Change for Tor) Suppose R and S are commutative rings and f :  R � S is a 
ring homomorphism making S into an R-module as in Example 6 following Corollary 12 
in Section 10.4. Prove that if  S is flat as  an R-module, then Tor: (A,  B) � Tor�(S®R A ,  B) 
for all R -modules A and all S-modules B. [Show that since S is flat, tensoring an R -module 
projective resolution for A with S gives an S-module projective resolution of S ®R A.] 
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23. (Localization and Tor) Let v-1R be the localization of the commutative ring R with 
respect to the multiplicative subset D of R .  Prove that localization commutes with Tor, 
i.e., v-1 Tor� (A , B) � Tor�- 'R (v-1A , v-1B) for all R-modules A and B and all n ::: 0. 
[Use the previous exercise and the fact that v-1R is flat over R, cf. Proposition 42(6) in 
Section 15.4.] 

24. (Flatness is local) Suppose R is a commutative ring. Prove that an R-module M is flat if 
and only if every localization Mp is a flat Rp-module for every maximal (hence also for 
every prime) ideal in R.  [Use the previous exercise together with the characterization of 
flatness in terms of Tor.] 

25. If R is an integral domain with field of fractions F, prove that Torf (F I R, B) � t (B) for 
any R-module B, where t (B) denotes the R-torsion submodule of B .  

An R-module M i s  said to be finitely presented i f  there i s  an exact sequence 

Rs ---+ R1 ---+ M ---+ 0 

of R-modules for some integers s and t. Equivalently, M is finitely generated by t elements 
and the kernel of the corresponding R -module homomorphism R1 � M can be generated by 
s elements. 

26. (a) Prove that every finitely generated module over a Noetherian ring R is finitely pre­
sented. [Use Exercise 8 in Section 15 . 1 .] 

(b) Prove that an R-module M is finitely presented and projective if and only if M is a 
direct summand of Rn for some integer n ::: 1 .  

27. Suppose that M i s  a finitely presented R-module and that 0 � A � B � M � 0 is 
an exact sequence of R-modules. This exercise proves that if B is a finitely generated 
R -module then A is also a finitely generated R -module. 

(a) Suppose Rs .i R1 � M � 0 and e1 , . . .  , e1 is an R -module basis for R1 • Show that 
there exist ht , . . .  , b1 E B so that tJ (bi ) = cp(ei ) for i = I ,  . . .  , t .  

(b) If f is the R-module homomorphism from R1 to B defined by f(ei ) = hi for 
i = 1 , . . .  , t , show that f ( 1/1 ( Rs)) s; ker tJ.  [Use cp o 1/1 = 0.] Conclude that there is 
a commutative diagram 

1/1 cp 
Rs - R1 _ M _ O 

g ! a 
f! tJ I I 

O _ A _ B _ M _ O 
of R-modules with exact rows. 

(c) Prove that A/ image g � B 1 image f and use this to prove that A is finitely generated. 
[For the isomorphism, use the Snake Lemma in Exercise 3. Then show that image g 
and A/ image g are both finitely generated and apply Exercise 7 of Section 1 0.3.] 

(d) If I is an ideal of R conclude that R/ I is a finitely presented R-module if and only if 
I is a finitely generated ideal. 

28. Suppose R is a local ring with unique maximal ideal m and M is a finitely presented 
R-module. Suppose m1 , . . .  , ms are elements in M whose images in MfmM form a basis 
for MfmM as a vector space over the field Rfm. 
(a) Prove that m1 , . . .  , ms generate M as an R-module. [Use Nakayama's Lemma.] 

(b) Conclude from (a) that there is an exact sequence 0 � ker cp � Rs � M � 0 that 
maps a set of free generators of R" to the elements m 1 , . . .  , m s . Deduce that there is 
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an exact sequence 

Torf (M. R/m) � (ker qJ)jm(ker qJ) � 0. 

[Use the Tor long exact sequence with respect to tensoring with Rjm, using the fact 
that N ® Rjm � N jmN for any R-module N (Example 8 following Corollary 12  in 
Section lOA] and the fact that qJ : (R/mf � M/mM is an isomorphism by the choice 
of m t , . . .  , ms -1 

(c) Provethat ifTorf (M , Rjm) = O then m t ,  . . .  , ms are a setoffree R-modulegenerators 
for M. [Use the previous exercise and Nakayama's Lemma to show that ker qJ = 0.] 

29. Suppose R is a local ring with unique maximal ideal m. This exercise proves that a finitely 
generated R-module is fiat if and only if it is free. 
(a) Prove that M = F I K is -the quotient of a finitely generated free module F by a 

submodule K with K £ mF. [Let F be a free module with F jmF � M jmM .] 
(b) Suppose x E K and write x = a tet + - - - + anen where et , . . .  , en are an R-basis 

for F. Let I =  (at , . . .  , an ) be the ideal of R generated by at • . . .  , an )- Prove that 
if M is fiat, then I = mi and deduce that K = 0, so M is free. [Use Exercise 25(d) 
of Section 10.5 to see that x E I K £ mi F and conclude that I £ mi. Then apply 
Nakayama's Lemma to the finitely generated ideal / .] 

30. Suppose R is a local ring with unique maximal ideal m, M is an R-module, and consider 
the following statements: 

(i) M is a free R-module, 
(ii) M is a projective R-module, 

(iii) M is a fiat R-module, and 
(iv) Torf (M, R/m) = 0. 

(a) Prove that (i) implies (ii) implies (iii) implies (iv). 
(b) Prove that (i) , (ii), and (iii) are equivalent if M is finitely generated. (Exercise 34 

below shows (iii) need not imply (i) or (ii) if M is finitely generated but R is not locaL) 
[Use the previous exercise.] 

(c) Prove that (i), (ii), (iii), and (iv) are equivalent if M is finitely presented. (Exercise 
35 below shows that (iv) need not imply (i), (ii) or (iii) if M is finitely generated but 
not finitely presented.) [Use Exercise 28.] 

Remark: It is a theorem of Kaplansky (cf. Projective Modules, Annals of Mathematics, 
68(1958), pp. 372-377) that (i) and (ii) are equivalent without the condition that M be 
finitely generated. 

31. (Localization and Hom for Finitely Presented Modules) Suppose v-tR is the localization 
of the commutative ring R with respect to the multiplicative subset D of R, and let M be 
a finitely presented R-module. 
(a) For any R-modules A and B prove there is a unique v-tR-module homomorphism 

from v-tHomR (A, B) to Homn-'R (D-tA ,  v-tB) that maps 'P E HomR (A, B) to 
the homomorphism from v- 1A to v-tB induced by 'P-

(b) For any R-module N and any m ::=:: 1 show that HomR (Rm , N) � Nm as R-modules 
and deduce that v-t HomR(Rm , N) � (D-tN)m as v-tR-modules. 

(c) Suppose Rs � R1 � M � 0 is exact. Prove there is a commutative diagram 

0--+ v-t HomR (M, N) --+ v-tHomR (R1 , N) --+ v-tHomR (Rs , N) 

t t t 
0 --+  Homn- 'R (D-tM, v-1N) --+ Homn-'R ((D-tR)1 , v-tN) �omn-tR ((D-tR)s , D-1N) 

796 

of v- tR-modules with exact rows. [For the first row first take R-module homomor-
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phisms from the terms in the presentation for M into N using Theorem 33 of Section 
10.5 (noting the first comment in the proof) and then tensor with the flat R-module 
D-1R, cf. Propositions 41 and 42(6) in Section 15 .4. For the second row first ten­
sor the presentation with D-1R and then take D-1R-module homomorphisms into 
D-1N.] 

(d) Use (b) to prove that localization commutes with taking homomorphisms when M 
is finitely presented, i.e., D-1HomR (M, N) � Homv-1R (D- 1M, D-1N) as D-1R­
modules. [Show the second two vertical maps in the diagram above are isomorphisms 
and deduce that the left vertical map is also an isomorphism.] (This result is not true 
in general if M is not finitely presented.) 

32. (Localization and Extfor Finitely Presented Modules) Suppose D-1R is the localization 
of the commutative ring R with respect to the multiplicative subset D of R. Prove that 
if M is a finitely presented R-module then D-1Ext� (M, N) � Ext�_1R(D- 1M, D-1N) 
as D- 1R-modules for every R-module N and every n ::: 0. [Use a projective resolution 
of N and the previous exercise, noting that tensoring the resolution with D-1R gives a 
projective resolution for the D-1R-module D-1N.] 

33. Suppose R is a commutative ring and M is a finitely presented R-module (for example a 
finitely generated module over a Noetherian ring, or a quotient, R/ I ,  of R by a finitely 
generated ideal I ,  cf. Exercises 26 and 27). Prove that the following are equivalent: 
(a) M is a projective R-module, 
(b) M is a flat R-module, 
(c) M is locally free, i.e., each localization Mp is a free Rp-module for every maximal 

(hence also for every prime) ideal P of R .  

In particular show that finitely generated projective modules are the same as finitely pre­
sented flat modules. [Exercises 24 and 30 show that (b) is equivalent to (c). Use the Ext 
criterion for projectivity and Exercises 30 and 32 to see that (a) is equivalent to (c).] 

34. (a) Prove that every R-module for the commutative ring R is flat if and only if every 
finitely generated ideal I of R is a direct summand of R, in which case every finitely 
generated ideal of R is principal and projective (such a ring is said to be absolutely fiat). 
[Use Exercise 15, the previous exercise applied to the finitely presented R-module 
R/ I, and the remarks following Proposition 16.] 

(b) Prove that every Boolean ring is absolutely flat. [Use Exercise 24 in Section 7.4, 
noting that if I =  Rx then x is an idempotent so R = Rx E!1 R(l - x).] 

(c) Let R be the direct product and I the direct sum of countably many copies of 7lf27L 
Prove that I is an ideal of the Boolean ring R that is not finitely generated and that 
the cyclic R-module M = R/ I is flat but not projective (so finitely generated flat 
modules need not be projective). 

35. Let R be the local ring obtained by localizing the ring of C00 functions on the open interval 
( - 1 ,  1 )  at the maximal ideal of functions that are 0 at x = 0 ( cf. Exercise 45 of Section 
15.2), let m = (x) be the unique maximal ideal of R and let P be the prime ideal nn2:1 m" . 
Set M = RfP. 
(a) Prove that Torf (M, R/m) = 0. [Use Exercise 19 applied with r = x, noting that 

R/ P is an integral domain.] 
(b) Prove that M is not flat (hence not projective). [Let F be as in Exercise 45 of Section 

15  .2. Show that the sequence 0 -+ R -+ R -+ R I (F) -+ 0 induced by multiplication 
by F is exact, but is not exact after tensoring with M.] 
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1 7.2 THE COHOMOLOGY OF GROUPS 

In this section we consider the application of the general techniques of the previous 
section in an important special case. 

Let G be a group. 

Definition. An abelian group A on which G acts (on the left) as automorphisms is 
called a G-module. 

Note that a G-module is the same as an abelian group A and a homomorphism 
q; : G -+  Aut(A) of G into the group of automorphisms of A .  Since an abelian group 
is the same as a module over Z, it is also easy to see that a G-module A is the same as 
a module over the integral group ring,ZG, of G with coefficients in Z. When G is an 
infinite group the ring ZG consists of all the finite formal sums of elements of G with 
coefficients in Z. 

As usual we shall often use multiplicative notation and write ga in place of g ·a for 
the action of the element g E G on the element a E A .  

Definition. If A is a G-module, let A c = { a  E A 1 g a  = a for all g E G} be the 
elements of A fixed by all the elements of G _ 
Examples 

(1) If ga = a for all a E A and g E G then G is said to act trivially on A .  In this case 
A c = A. The abelian group IZ will always be assumed to have trivial G-action for 
any group G unless otherwise stated. 

(2) For any G-module A the fixed points A G of A under the action of G is clearly a 
ZG-submodule of A on which G acts trivially. 

(3) If V is a vector space over the field F of dimension n and G = GLn (F) then V is 
naturally a G-module. In this case vc = {0} since any nonzero element in V can be 
taken to any other nonzero element in V by some linear transformation. 

(4) A semidirect product E = A  >:1 G as in Section 5.5 in the case where A is an abelian 
normal subgroup gives a G-module A where the action of G is given by the homo­
morphism rp : G � Aut( A) .  The subgroup A c consists of the elements of A lying 
in the center of E. More generally, if A is any abelian normal subgroup of a group 
E, then E acts on A by conjugation and this makes A into a £-module and also an 
E I A-module. In this case A E = A E/ A also consists of the elements of A lying in the 
center of E. 

(5) If KIF is an extension of fields that is Galois with Galois group G then the additive 
group K is naturally a G-module, with KG = F. Similarly, the multiplicative group 
K x  of nonzero elements in K is a G-module, with fixed points (K x )G = Fx . 

The fixed point subgroups in this last example played a central role in Galois Theory 
in Chapter 14. In general, it is easy to see that a short exact sequence 

0 ----+ A ----+ B ----+ C ----+ 0 

of G-modules induces an exact sequence 
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that in general cannot be extended to a short exact sequence (in general a coset in the 
quotient C that is fixed by G need not be represented by an element in B fixed by G). 
One way to see that ( 1 5) is exact is to observe that A G can be related to a Hom group: 

Lemma 19. Suppose A is a G-modu1e and HomzG (Z, A) is the group of all ZG-modu1e 
homomorphisms from Z (with trivial G-action) to A. Then AG � HomzG (Z, A).  

Proof Any G-module homomorphism a from Z to A is uniquely determined by 
its value on 1 .  Let aa denote the G-module homomorphism with a( 1) = a.  Since aa is 
a G-modu1e homomorphism. a = aa ( l )  = aa (g · 1) = g · aa (l)  = g · a  for all g E G, 
so that a must lie in A G . Likewise, for any a E A G it is easy to check that the map 
aa �---+ a gives an isomorphism from HomzG (Z, A) to A G. 

Combined with the results of the previous section, the lemma not only shows that 
the sequence ( 15) is exact, it shows that any projective resolution of Z considered as 
a ZG-module will give a long exact sequence extending ( 1 5). One such projective 
resolution is the standard resolution or bar resolution of Z: 

dn d1 aug 
· · · � Fn ----+ Fn-1 ---+ • • • ----+ Fo ----+ Z ----+ 0. (17. 16) 

Here F;, = ZG 0z ZG 0z · · · 0z ZG (where there are n + 1 factors) for n 2: 0, which 
is a G-module under the action defined on simple tensors by g · (go 0 g1 0 · · · 0 g11) = 
(ggo) 0 g1 0 · · · 0 g11 • It is not difficult to see that Fn is a free ZG-module of rank I G I" 
with ZG basis given by the elements 1 0 g1 0 g2 0 · · · 0 g11 , where g; E G. The map 
aug : Fo ---+ Z is the augmentation map aug(LgeG agg) = LgeG ag, and the map d1 
is given by d1 ( 1  0 g) = g - 1 . The maps dn for n 2: 2 are more complicated and their 
definition, together with a proof that ( 16) is a projective (in fact, free) resolution can be 
found in Exercises 1-3 .  

Applying (ZG-module) homomorphisms from the terms in ( 16)  to the G-module A 
(replacing the first term by 0) as in the previous section, we obtain the cochain complex 

� � � 0 ----+ HomzG (Fo, A) ----+ HomzG <Ft .  A) ----+ HomzG (F2,  A) ----+ · · · ,  (17 . 17) 

the cohomology groups of which are, by definition, the groups ExtzG (Z, A). Then, as 
in Theorem 8, the short exact sequence 0 ----+ A ----+ B ----+ C ----+ 0 of G-modules 
gives rise to a long exact sequence whose first terms are given by ( 1 5) and whose higher 
terms are the cohomology groups ExtzG (Z, A). 

To make this more explicit, we can reinterpret the terms in this cochain complex 
without explicit reference to the standard resolution of Z, as follows. The elements 
of HomzG (F11 , A) are uniquely determined by their values on the ZG basis elements 
of F11 , which may be identified with the n-tuples (g1 , g2, . . .  , g11 ) of elements g; of G.  
It follows for n 2: 1 that the group HomzG (F11 ,  A) may be identified with the set of 
functions from G x · · · x G (n copies) to A .  For n = 0 we identify HomzG (ZG, A) 
with A. 

Definition. If G is a finite group and A is a G-module, define C0(G, A) = A and for 
n 2: 1 define C" (G, A) to be the collection of all maps from en = G x . · · x G (n 
copies) to A. The elements of C11 (G, A) are called n-cochains (ofG with values in A). 
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Each C" (G,  A) is an additive abelian group: for C0(G, A) = A given by the 
group structure on A;  for n ::: 1 given by the usual pointwise addition of functions: 

Ut + fz)(g. , gz , . . . , g, ) = ft (gt .  gz , . . .  , g, ) + fz(g. , gz , . . . , g, ) .  Under the iden­
tification of Hom;w (F, ,  A) with C" (G , A) the cochain maps d, in ( 17) can be given 
very explicitly (cf. also Exercise 3 and the following comment) : 

Definition. For n ::: 0, define the nth coboundary homomorphism from C" (G, A) to 
C"+1 (G , A) by 

d, (f)(gt . . . . , g,+t ) = gt · f(gz , . . . , gn+1 ) 
n 

i=1 

(17. 1 8) 

where the product g;g;+t occupying the ;th position of f is taken in the group G. 

It is immediate from the definition that the maps d, are group homomorphisms. It 
follows from the fact that (17) is a projective resolution that d, o dn-1 = 0 for n ::: 1 (a 
self contained direct proof just from the definition of d, above can also be given, but is 
tedious). 

Definition. 
(1) Let Z" (G, A) = ker dn for n ::: 0. The elements of Z" (G, A) are called n­

cocycles. 
(2) Let B" (G, A) = image dn-1 for n ::: 1 and let B0(G, A) = 1 .  The elements of 

B" (G, A) are called n-coboundaries. 

Since d, o dn-1 = 0 for n ::: 1 we have image dn-1 � ker d, , so that B" (G, A) is 
always a subgroup of Z" (G, A). 

Definition. For any G-module A the quotient group Z" (G, A)/B" (G, A) is called the 
n1h cohomology group ofG with coefficients in A and is denoted by H" (G , A), n ::: 0. 

The definition of the cohomology group H" (G,  A) in terms of cochains will be 
particularly useful in the following two sections when we examine the low dimensional 
groups H 1 ( G, A) and H2 ( G, A) and their application in a variety of settings. It should 
be remembered, however, that H" (G , A) � Ext" (Z, A) for all n ::: 0. In particular, 
these groups can be computed using any projective resolution of Z. 

Examples 

(1) For f = a E C0(G , A) we have do (f) (g) = g · a  - a  and so ker do is the set 
{a E A I g ·a = a  for all g E G}, i.e., Z0 (G , A) =  AG and so 

800 
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for any group G and G-module A. 

Chap. 17 I ntroduction to Homological Algebra 



(2) Suppose G = 1 is the trivial group. Then on = {(1 , 1 ,  . . .  , 1 ) }  is also the trivial group, 
so f E cn (G, A) is completely determined by f ( l ,  1 ,  . . .  , 1 ) = a  E A. Identifying 
f = a  we obtain cn (G, A) = A for all n ;:: 0. Then, if f = a E A, 

� ; n+I { 0 if n is even 
dn (/) ( 1 ,  1 ,  . . .  , 1) = a +  L.., (- 1)  a +  (-1)  a =  . . , 

�1 1 rl n � o� 

so dn = 0 if n is even and dn = 1 is the identity if n is odd. Hence 

H0( 1 , A) = A0 = A  

Hn ( 1 ,  A) = 0 for all n ::: 1 .  

Example: (Cohomology of a Finite Cyclic Group) 

Suppose G is cyclic of order m with generator a .  Let N = 1 + a  + a2 + · · · + am- 1 E ZG. 
Then N(a - 1) = (a - 1)N = am - 1 = 0, and so we have a particularly simple free 
resolution 

a-1 N a-1  N a-1  aug 
. . .  � za � za �  . . .  � za � za � z � o  

where aug denotes the augmentation map (cf. Exercise 8). Taking ZG-module homomor­
phisms from the terms of this resolution to A (replacing the first term by 0) and using the 
identification Homzc (ZG, A) = A gives the chain complex 

a - 1  N a -1 N 
O � A � A � A � A �  . . .  

whose cohomology computes the groups Hn (G, A) : 

o G n { A G / N A if n is even, n > 2 
H (G, A) = A  , and H (G, A) = -

NA/(a - l)A if n is odd, n ::: 1 
where N A = {a E A I N a = 0} is the subgroup of A annihilated by N, since the kernel of 
multiplication by a - 1 is A G . 

If in particular G = ( a  ) acts trivially on A, then N · a  = ma, so that in this case 
H0(G, A) = A, with Hn (G, A) = AjmA for even n ::: 2, and Hn (G, A) = m A, the 
elements of A of order dividing m,  for odd n ::: 1 .  Specializing even further to m = 1 gives 
Example 2 previously. 

Proposition 20. Suppose mA = 0 for some integer m :::: 1 (i.e., the e-module A has 
exponent dividing m as an abelian group).  Then 

mzn (e, A) =  m Bn (e, A) = m Hn (e, A) = 0 for all n :::: 0. 

In particular, if A has exponent p for some prime p then the abelian groups zn (e, A), 
Bn (e, A) and Hn (e , A) have exponent dividing p and so these groups are all vector 
spaces over the finite field IF P = 'llf p7L 

Proof" If f E cn (e, A) is an n-cochain then f E A (if n = 0), in which case 
mf = 0, or f is a function from en to A (if n :::: 1) ,  in which case mf is a function 
from en to mA = 0, so again mf = 0. Hence mzn (e , A) = mBn (e, A) = 0 since 
these are subgroups of cn (e , A) .  Then m Hn (e, A) = 0 since mzn ce.  A) =  0, and 
the remaining statements in the proposition are immediate. 

By Example 1 ,  the long exact sequence in Theorem 10  written in terms of the 
cohomology groups Hn (e, A) becomes 
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Theorem 21. (Long Exact Sequence in Group Cohomology) Suppose 

0 -----+ A -----+ B -----+ C -----+ 0 

is a short exact sequence of G-modules. Then there is a long exact sequence: 

0 -----+ AG -----+ Be -----+ Cc � H1 (G, A) -----+ H1 (G, B) -----+ H1 (G, C) � · · ·  

. . .  � Hn (G, A) -----+ Hn (G, B) -----+ Hn(G. C) � Hn+1 (G, A) -----+ . . .  

of abelian groups. 

Among many other uses of the long exact sequence in Theorem 21 is a technique 
called dimension shifting which makes it possible to analyze the cohomology group 
Hn+1 (G, A) of dimension n + 1 for A by instead considering a cohomology group of 
dimension n for a different G-module. The technique is based on finding a G-module 
almost all of whose cohomology groups are zero. Such modules are given a name: 

Definition. A G-module M is called cohomologically trivial for G if Hn ( G, M) = 0 
for all n :::: 1 .  

Corollary 22. (Dimension Shifting) Suppose 0 -+ A -+ M -+ C -+ 0 i s  a short exact 
sequence of G-modules and that M is cohomologically trivial for G. Then there is an 
exact sequence 

and 

Proof" Since M is cohomologically trivial for G, the portion 

of the long exact sequence in Theorem 21 reduces to 

0 -----+ Hn (G, C) -----+ Hn+1 (G, A) -----+ 0 

which shows that Hn (G, C) � Hn+1 (G, A) for n :::: 1 .  Similarly, the first portion of 
the long exact sequence in Theorem 2 1  gives the first statement in the corollary. 

We now indicate a natural construction that produces a G-module given a module 
over a subgroup H of G . When H = 1 is the trivial group this construction produces 
a cohomologically trivial module M and an exact sequence as in Corollary 22 for any 
G-module A. 
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Definition. If H is a subgroup of G and A is an H -module, define the induced G­
module MZ(A) to be Hom�m (ZG, A). In other words, MZ(A) is the set of maps f 
from G to A satisfying f (hx) = hf (x) for every x E G and h E H. 

The action of an element g E G on f E MZ(A) is given by (g · f)(x) = f(xg) for 
x E G ( cf. Exercise 10  in Section 10.5). 

Recall that if H is a subgroup of G and A is an H -module, then the module 
ZG ®zH A obtained by extension of scalars from ZH to ZG is a G-module. For a finite 
group G, or more generally if H has finite index in G, we have MZ (A) � ZG®zH A ( cf. 
Exercise 10). When G is infinite this need no longer be the case (cf. Exercise 1 1 ). The 
module ZG ®zH A is sometimes called the induced G-module and the module MZ(A) 
is sometimes referred to as the coinduced G-module. For finite groups. associativity 
of the tensor product shows that MZ<Mf/ (A)) = Mf(A) for subgroups K :'S H :'S G, 
and the same result holds in general (this follows from the definition using Exercise 7). 

Examples 

(1) If H is a subgroup of G and 0 � A � B � C � 0 is a short exact sequence of 
H-modules then 0 � MZ (A) � MZ (B) � MZ (C) � 0 is a short exact sequence 

of G-modules, since MZ (A) � ZG ®zu A and 7/.,G is free, hence flat, over ZH. 

(2) When G is finite and A is the trivial H-module 7/.,, the module MZ (Z) is a free 7/.,­
module of rank m = 1 G : H I .  There is a basis b1 , . . .  , bm such that G permutes 
these basis elements in the same way it permutes the left cosets of H in G by left 
multiplication, i.e., if we let b; � g; H then gb; = b1 if and only if gg; H = g1 H. The 

module MZ ('7/.,) is the permutation module over 7/., for G with stabilizer H. A special 
case of interest is when G = Sm and H = Sm-I where Sm permutes { 1 ,  2, . . .  , m} as 
usual. Permutation modules and induced modules over fields are studied in Part VI. 

(3) Any abelian group A is an H -module when H = 1 is the trivial group. The corre­
sponding induced G-module Mf (A) is just the collection of all maps f from G into 

A. For g E G the map g ·  f E Mf(A) satisfies (g · f) (x) = f(xg) for x E G .  
(4) Suppose A is a G-module. Then there i s  a natural map 

cp : A ---+ Mf (A) 
from A into the induced G-module Mf (A) in the previous example defined by mapping 
a E A to the function fa with fa (x) = xa for all x E G. It is clear that cp is a group 
homomorphism, and f8a (x) = x(ga) = (xg)a = fa (xg) = (g·fa) (x) shows that cp is 
a G-module homomorphism as well. Since la O)  = a, it follows that fa is the zero 
function on G if and only if a = 0 in A, so that cp is an injection. Hence we may 
identify A as a G-submodule of the induced module Mf (A) . 

(5) More generally, if A is a G-module and H is any subgroup of G then the function 
fa (x) in the previous example is an element in the subgroup MZ(A) since we have 
fa (hx) = (hx)(a) = h(xa) = hfa (x) for all h E H. The associated map from A to 
MZ(A) is an injective G-module homomorphism. 

(6) The fixed points (MZ (A))G are maps f from G to A with gf = f for all g E G, i.e. , 

with (gf)(x)  = f(x) for all g, x E G. By definition of the G-action on MZ(A), this 
is the equation f(xg) = f(x) for all g, x E G. Taking x = 1 shows that f is constant 
on all of G :  f(g) = f(l)  = a E A. The constant function f = a is an element of 
MZ(A) if and only if a =  f(hx) = hf(x) = ha for all h E  H, so (MZ (A ))G � AH

. 
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An element fa (x) in the previous example is contained in the subgroup (M� (A))G if 
and only if xa is constant for x E G, i.e., if and only if a E A G .  

One of the important properties of the G-module M�(A) induced from the H­
module A is that its cohomology with respect to G is the same as the cohomology of A 
with respect to H :  

Proposition 23. (Shapiro 's Lemma) For any subgroup H of G and any H-module A 
we have Hn (G, M� (A)) � Hn (H, A) for n :::_ 0. 

Proof: Let · · · --+ P
n 

--+ · · · --+ Po --+ Z --+ 0 be a resolution of Z by pro­
jective G-modules (for example, the standard resolution). The cohomology groups 
Hn (G, M�(A)) are computed by taking homomorphisms from this resolution into 

M� (A) = Hom:m (ZG, A). Since ZG is a free ZH-module it follows that this G­
module resolution is also a resolution of Z by projective H -modules, hence by taking 
homomorphisms into A the same resolution may be used to compute the cohomol­
ogy groups Hn (H, A). To see that these two collections of cohomology groups are 
isomorphic, we use the natural isomorphism of abelian groups 

4> : Homzc (P
n . HomzH (ZG, A)) � HomzH (P

n . A) 

given by 4>(/)(p) = f(p)( l) ,  for all f E Homzc (P
n

. HomzH (ZG, A)) and p E P
n

. 
The inverse isomorphism is defined by taking \II (f')(p) to be the map from ZG to A that 
takes g E G to the element f'(gp) in A for all f' E HomzH (P

n
, A) and p E P

n
, i.e., 

(\ll (f')(p))(g) = f'(gp) . Note this is well defined because P
n 

is a G-module. (These 
maps are a special case of an Adjoint Associativity Theorem, cf. Exercise 7.) Since 
these isomorphisms commute with the cochain maps, they induce isomorphisms on the 
corresponding cohomology groups, i.e., Hn (G, M�(A)) � Hn (H, A), as required. 

Corollary 24. For any G-module A the module Mf (A) is cohomologically trivial for 

G, i.e., Hn(G, Mf(A)) = 0 for all n :::_ 1 .  

Proof" Thi s  follows immediately from the proposition applied with H = 1 together 
with the computation of the cohomology of the trivial group in Example 2 preceding 
Proposition 20. 

By the corollary, the fourth example above gives us a short exact sequence of 
G-modules 

o � A � M � c � o  

where M = Mf (A) is cohomologically trivial for G and where C is the quotient of 

Mf (A) by the image of A. The dimension shifting result in Corollary 22 then becomes: 

Corollary 25. For any G-module A we have Hn+1 (G, A) � Hn (G, Mf(A)/A) for 
all n :::_ 1 .  

804 Chap. 1 7  I ntroduction to Homologica l Algebra 



We next consider several important maps relating various cohomology groups. 
Some applications of the use of these homomorphisms appear in the following two 
sections. 

In general, suppose we have two groups G and G' and that A is a G-module and 
A' is a G' -module. If q; : G' ---+ G is a group homomorphism then A becomes a 
G' -module by defining g' · a  = q;(g')a for g' E G' and a E A.  If now 1/1 : A ---+ A' 
is a homomorphism of abelian groups then we consider whether 1/1 is a G' -module 
homomorphism: 

Definition. Suppose A is a G-module and A' is a G' -module. The group homo­
morphisms q; : G' ---+ G and 1/1 : A ---+ A' are said to be compatible if 1/1 is a 
G' -module homomorphism when A is made into a G' -module by means of q;, i.e., if 
1/f(q;(g')a) = g'1/f(a) for all g' E G' and a E A. 

The point of compatible homomorphisms is that they induce group homomorphisms 
on associated cohomology groups, as follows. 

If q; :  G' ---+ G and 1/1 : A ---+ A' are homomorphisms, then q; induces a homomor­
phism q;n : (G')n ---+ en , and so a homomorphism from en (G , A) to en (G' , A) that 
maps f to f o q;n . The map 1/1 induces a homomorphism from en ( G', A) to en ( G' , A') 
that maps f to 1/1 o f.  Taken together we obtain an induced homomorphism 

An : en (G , A) ---+ en (G' , A') 

J f----'; 1/1 o J 0 (/Jn • 
If in addition q; and 1/1 are compatible homomorphisms, then it is easy to check that 

the induced maps An commute with the coboundary operator: 

An+l o dn = dn 0 An 
for all n � 0. It follows that An maps cocycles to cocycles and coboundaries to 
coboundaries, hence induces a group homomorphism on cohomology: 

An : Hn (G, A) ---+ Hn (G', A') 

for n ?.  0. 
We consider several instances of such maps: 

Examples 

(1) Suppose G = G' and ({! is the identity map. Then to say that the group homomorphism 
1/J : A � A' is compatible with ({! is simply the statement that 1/J is a G-module 
homomorphism. Hence any G-module homomorphism from A to A' induces a group 
homomorphism 

Hn (G, A) - Hn (G, A') for n :::: 0. 

In particular, if 0 � A � B � C � 0 is a short exact sequence of G-modules we 
obtain induced homomorphisms from Hn (G, A) to Hn (G, B) and from Hn (G, B) to 
Hn ( G, C) for n :::: 0. These are simply the homomorphisms in the long exact sequence 
of Theorem 21 .  

(2) (The Restriction Homomorphism) If  A i s  a G-module, then A i s  also an H -module for 
any subgroup H of G. The inclusion map ({! : H � G of H into G and the identity 
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map 1/f : A � A are compatible homomorphisms. The corresponding induced group 
homomorphism on cohomology is called the restriction homomorphism: 

Res : Hn (a, A) - Hn (H, A), n :::: 0. 

The terminology comes from the fact that the map on cochains from cn (a, A) to 
cn (H, A) is simply restricting a map f from an to A to the subgroup Hn of an . 

(3) (The Inflation Homomorphism) Suppose H is a normal subgroup of a and A is a 
a-module. The elements A H of A that are fixed by H are naturally a module for the 
quotient group a; H under the action defined by (gH) ·a = g ·a . It is then immediate 
that the projection rp : a � a 1 H and the inclusion 1/f : A H � A are compatible 
homomorphisms. The corresponding induced group homomorphism on cohomology 
is called the inflation homomorphism: 

lnf : Hn (ajH, A11) - Hn (a, A) , n :::: 0. 

(4) (The Corestriction Homomorphism) Suppose that H is a subgroup of a of index m 
and that A is a a-module. Let g1 • . . .  , gm be representatives for the left cosets of H 
in a. Define a map 

1/1 : M� (A) - A by 
m 

t � L: g; · t<gi1 > ·  
i=l 

Note that if we change any coset representative g; by g; h, then (g;h)f((g;h)-1 ) = 
g; hf(h-I g;-1 ) = g; hh- I f(gj1 ) = g; f(g;- 1 ) so the map 1/f is independent of the 
choice of coset representatives. It is easy to see that 1/f is a a-module homomor­
phism (and even that it is surjective), so we obtain a group homomorphism from 
Hn (a, MZ (A)) to Hn (a, A), forall n :::: 0. Since A is also an H-module, by Shapiro's 
Lemma we have an isomorphism Hn (a, MZ (A)) � Hn (H, A). The composition of 
these two homomorphisms is called the corestriction homomorphism: 

Cor : Hn (H, A) - Hn (a. A) , n :::: 0. 

This homomorphism can be computed explicitly by composing the isomorphism 111 
in the proof of Shapiro's Lemma for any resolution of Z by projective a-modules Pn 
(note these are a-modules and not simply H-modules) with the map 1/J, as follows. 
For a cocycle f E Homzm (Pn , A) representing a cohomology class c E Hn (H, A), a 
cocycle Cor {f) E Hom;w (Pn , A) representing Cor (c) E Hn (a, A) is given by 

m m 

i=l i= l 
for p E Pn . When n = 0 this is particularly simple since we can take Po = za. In 
this case f E Homtlm (Za, A) = M� (A) is a cocycle if f = a is constant for some 
a E A H and then Cor {f) is the constant function with value I:?'= I g; · a E A G : 

Cor : H0(H, A) = AH - AG = H0 (G, A) 

The next result establishes a fundamental relation between the restriction and core­
striction homomorphisms. 
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Proposition 26. Suppose H is a subgroup of G of index m. Then Cor o Res = m, i.e., 
if e is a cohomology class in Hn (G, A) for some G-module A, then 

Cor(Res(e)) = me E Hn (G, A) for all n 2:: 0. 

Proof" This follows from the explicit formula for corestriction in Example 4 above, 
as follows. If f E Hom;;m (Pn , A) were in Hom;w (Pn , A), i.e., if f were also a G­
module homomorphism, then gd (gj1 p) = g;gj1 f(p) = f(p), for 1 ::S i ::S m. Since 
restriction is the induced map on cohomology of the natural inclusion of Hom;w ( Pn , A) 
into Hom;;m (Pn , A), for such an f we obtain 

Res Cor 
Hom;w (Pn , A) ---+ Hom;;ZH (Pn , A) ---+ Hom;w (Pn , A) 

f �----+ f 1---+ m f. 

It follows that Res o Cor is multiplication by m on the cohomology groups as well. 

Corollary 27. Suppose the finite group G has order m. Then m Hn (G, A) = 0 for all 
n 2:: 1 and any G-module A. 

Proof" Let H = 1 ,  so that [G : H] = m, in Proposition 26. Then for any class 
e E Hn (G, A) we have me = Cor(Res(e)). Since Res(e) E Hn (H, A) = Hn ( 1 ,  A), 
we have Res(e) = 0 for all n 2:: 1 by the second example preceding Proposition 20. 
Hence me = 0 for all n 2:: 1, which is the corollary. 

Corollary 28. If G is a finite group then Hn (G, A) is a torsion abelian group for all 
n 2:: 1 and all G-modules A. 

Proof" This is immediate from the previous corollary. 

Corollary 29. Suppose G is a finite group whose order is relatively prime to the 
exponent of the G-module A. Then Hn ( G,  A) = 0 for all n 2:: 1 .  In particular, if A is 
a finite abelian group with ( IG I ,  lA I ) = 1 then Hn (G, A) = 0 for all n 2:: 1 .  

Proof" This follows since the abelian group Hn (G, A )  is annihilated b y  I G I  b y  the 
previous corollary and is annihilated by the exponent of A by Proposition 20. 

Note that the statements in the preceding corollaries are not in general true for 
n = 0, since then H0 ( G,  A) = A G, which need not even be torsion. 

We mention without proof the following result. Suppose that H is a normal sub­
group of G and A is a G-module. The cohomology groups Hn (H, A) can be given 
the structure of G j H -modules ( cf. Exercise 17). It can be shown that there is an exact 
sequence 

0 -+  H1 (GjH, AH) � H1(G, A) � H\H, A)GJH � H2 (GjH, AH) � H2 (G, A) 

where H 1 (H, A)GfH denotes the fixed points of H1 (H, A) under the action of GjH 
and Tra is the so-called transgression homomorphism. This exact sequence relates the 
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cohomology groups for G to the cohomology groups for the normal subgroup H and 
for the quotient group G I H. Put another way, the cohomology for G is related to the 
cohomology for the factors in the filtration 1 ::::: H ::::: G for G. More generally, one 
could try to relate the cohomology for G to the cohomology for the factors in a longer 
filtration for G. This is the theory of spectral sequences and is an important tool in 
homological algebra. 

Galois Cohomology and Profinite Groups 

One important application of group cohomology occurs when the group G is the Galois 
group of a field extension KIF. In this case there are many groups of interest on which 
G acts, for example the additive group of K, the multiplicative group K x , etc. The 
Galois group G = Gal(KI F) is the inverse limit � Gal(LI F) of the Galois groups 
of the finite extensions L of F contained in K and is a compact topological group 
with respect to its Krull topology (i.e., the group operations on G are continuous with 
respect to the topology defined by the subgroups Gal(KI L) of G of finite index), cf. 
Section 14.9. In this situation it is useful (and often essential) to take advantage of the 
additional topological structure of G. For example the subfields of K containing F 
correspond bijectively with the closed subgroups of G = Gal(K I F), and the example 
of the composite of the quadratic extensions of Q discussed in Section 14.9 shows 
that in general there are many subgroups of G that are not closed. Fortunately, the 
modifications necessary to define the cohomology groups in this context are relatively 
minor and apply to arbitrary inverse limits of finite groups (the profinite groups). If G 
is a profinite group then G = � GIN where the inverse limit is taken over the open 
normal subgroups N of G (cf. Exercise 23). 

Definition. If G is a profinite group then a discrete G-module A is a G-module A 
with the discrete topology such that the action of G on A is continuous, i.e., the map 
G x A �  A mapping (g , a) to g -a  is continuous. 

Since A is given the discrete topology, every subset of A is open, and in particular 
every element a E A is open. The continuity of the action of G on A is then equivalent 
to the statement that the stabilizer G a of a in G is an open subgroup of G, hence is 
of finite index since G is compact (cf. Exercise 22). This in tum is equivalent to the 
statement that A =  UAH where the union is over the open subgroups H of G. 

Some care must be taken in defining the cohomology groups Hn (G, A) of a profi­
nite group G acting on a discrete G-module A since there are not enough projectives 
in this category. For example, when G is infinite, the free G-module ZG is not a 
discrete G-module ( G does not act continuously, cf. Exercise 25). Nevertheless, the 
explicit description of Hn (G, A) given in this section (occasionally referred to as the 
discrete cohomology groups) can be easily modified - it is only necessary to require 
the cochains cn (G , A) to be continuous maps from en to A. The definition of the 
coboundary maps dn in equation ( 18) is precisely the same, as is the definition of the 
groups of cocycles, coboundaries, and the corresponding cohomology groups. It is 
customary not to introduce a separate notation for these cohomology groups, but to 
specify which cohomology is meant in the terminology. 
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Definition. If G is a profinite group and A is a discrete G-module, the cohomol­
ogy groups Hn (G, A) computed using continuous cochains are called the profinite or 
continuous cohomology groups. When G == Gal(K I F) is the Galois group of a field 
extension KIF then the Galois cohomology groups Hn (G, A) will always mean the 
cohomology groups computed using continuous cochains. 

When G is a finite group, every G-module is a discrete G-module so the discrete 
and continuous cohomology groups of G are the same. When G is infinite, this need 
not be the case as shown by the example mentioned previously of the free G-module 
7LG when G is an infinite profinite group. All the major results in this section remain 
valid for the continuous cohomology '  groups when "G-module" is replaced by "discrete 
G-module" and "subgroup" is replaced by "closed subgroup." For example, the Long 
Exact Sequence in Group Cohomology remains true as stated, the restriction homomor­
phism requires the subgroup H of G to be a closed subgroup (so that the restriction of 
a continuous map on en to Hn remains continuous), Proposition 26 requires H to be 
closed, etc. 

We can write G = �(GIN) and A = UA N where N runs over the open normal 
subgroups of G (necessarily of finite index in G since G is compact) . Then AN is a 
discrete GIN -module and it is not difficult to show that 

Hn (G, A) = � Hn (GIN, AN) ( 17 . 19) 
N 

where the cohomology groups are continuous cohomology and the direct limit is taken 
over the collection of all open normal subgroups N of G (cf. Exercise 24). Since 
GIN is a finite group, the continuous cohomology groups Hn (GIN, AN) in this direct 
limit are just the (discrete) cohomology groups considered earlier in this section. The 
computation of the continuous cohomology for a profinite group G can therefore always 
be reduced to the consideration of finite group cohomology where there is no distinction 
between the continuous and discrete theories. 

E X E R C I S E S  

1. Let Fn = ZG ®z 7l..G ®z - - - ®z 7l..G (n + 1 factors) for n � 0 with G-action defined on 
simple tensors by g · (go ® g1 ® · · · ® gn ) = (ggo) ® g1 ® · · · ® gn . 
(a) Prove that Fn is a free ZG-module of rank I G In with ZG basis 1 ® gr ® gz ® · · · ® gn 

with g; E G. 

Denote the basis element 1 ® gr ® gz ® · · · ® gn in (a) by (gr , g2 , . . . , gn) and define the 
G-module homomorphisms dn for n � 1 on these basis elements by dr (gr ) = gr - 1 and 

n-l  
dn (gr , . . .  , gn) = gr · (gz , - . .  , gn) + :�:)- 1)i (gr , . . .  , g;- r , g; g;+I ·  gi+2 · . .  - ,  gn) 

i=l 
+ (- 1)n (gr , . . .  , gn- J) , 

for n � 2. Define the 7l..-module contracting homomorphisms 
S-t So St S2 

z �  Fo �  Fr � Fz � · · ·  

on a Z  basis by L r (l)  = 1 and sn (go ® · · · ® gn ) = 1 ® go ®  . . . ® gn . 
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(b) Prove that 

ES-1 = 1 , d1 so + S-If' = 1 , dn+1Sn + Sn- 1dn = 1 ,  for all n � 1 
where the map aug : Fo � Z is the augmentation map aug(LgeG cx8g) = LgeG cx8 . 

(c) Prove that the maps s, are a chain homotopy (cf. Exercise 4 in Section 1) between 
the identity (chain) map and the zero (chain) map from the chain 

d, dn- 1 d1 aug 
· · · � F, � Fn-1 � · · ·  � Fo � z � o  

of Z-modules to itself. 
(d) Deduce from (c) that all Z-module homology groups of (*) are zero, i.e., (*) is an 

exact sequence of Z-modules. Conclude that ( *) is a projective G-module resolution 
of Z. 

2. Let P, denote the free Z-module with basis (go . g1 . g2 , . . . , g,) with g; E G and define 
an action of G on P, by g · (go , g1 . . . .  , g,) = (ggo , gg1 • . . . , gg,) .  For n � 1 define 

n 
d, (go , g1 , g2 • . . . •  g, ) = L:<- 1i (go • . . . •  g; , . . . . g, ) ,  

i=O 
where (go , . . .  , g; , . . .  , g, ) denotes the term (go . g1 . g2 , . . .  , g, ) with g; deleted. 
(a) Prove that P, is a free ZG-module with basis ( 1 , g1 , g2 • . . .  , g,) where g; E G. 
(b) Prove that dn-1 o d, = 0 for n � 1 .  [Show that the term (go ,  . . . , ii , . . . , ik . . . . , g,) 

missing the entries gj and gk occurs twice in dn-1 o d, (go ,  g1 .  g2 , . . . , g,) , with 
opposite signs.] 

(c) Prove that <p : P, � F, defined by 

<p((go , g1 , g2 , . .  · • g, )) = go ® (g()1 g1 ) ® (g11g2) · · · ® (g;;�1g, ) 
is a G-module isomorphism with inverse 1ft : P, � F, given by 

1/t(go ® g1 ® . . .  ® g, ) = (go , gog1 . gog1g2 • . . .  , gog1g2 · · · g,) . 
(d) Prove that if t<(go) = 1 for all go E G then 

is a free G-module resolution of Z. [Show that the isomorphisms in (c) take the 
G-module resolutions (**) and (*) of the previous exercise into each other.] 

3. Let F, and P, be as in the previous two exercises and let A be a G-module. 
(a) Prove that HomzG (F, ,  A) can be identified with the collection C" (G, A) of maps 

from G x G x · · · x G (n copies) to A and that under this identification the associated 
coboundary maps from C" (G, A) to C"+1 (G , A) are given by equation ( 18). 

(b) Prove that HomzG (P, , A) can be identified with the collection of maps f from n + 1 
copies G x G x · · · x G to A that satisfy f(ggo , gg1 • . . .  , gg,) = gf(go . g1 • . . .  , g,) . 

The group C" ( G, A) is sometimes called the group of inhomogeneous n-cochains of G in A, 
and the group in (b) of the previous exercise is called the group of homogeneous n-cochains 
of G in A. The inhomogeneous cochains are easier to describe since there is no restriction 
on the maps from G" to A, but the coboundary map d, on homogeneous cochains is less 
complicated (and more naturally suggested in topological contexts) than the coboundary map 
on inhomogeneous cochains. The results of the previous exercises show that the cohomology 
groups H" ( G, A) defined using either homogeneous or inhomogeneous cochains are the same 
and indicate the origin of the coboundary maps d, used in the text. Historically, H" (G, A) was 
originally defined using homogeneous cochains. 
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4. Suppose H is a normal subgroup of the group G and A is a G-module. For every g E G 
prove that the map f (a) = ga for a E A H defines an automorphism of the subgroup A H .  

5. Suppose the G-module A decomposes as a direct sum A = A t  EfJ A2 of G-submodules. 
Prove that for all n � 0, Hn (G, A) � Hn (G, At)  (fJ Hn (G, A2) .  

6.  Suppose 0 -+ A -+ Mt  -+ M2 -+ · · · -+ Mk -+ C -+ 0 i s  an  exact sequence of  G­
modules where Mt , M2 • . . .  , Mk are cohomologically trivial. Prove that Hn+k (G, A) � 
Hn ( G, C) for all n � 1 .  [Decompose the exact sequence into a succession of short exact 

sequences and use Corollary 22. For example, if 0 -+ A � Mt ..! M2 � C -+ 0 is 
exact, show that 0 -+  A -+  Mt -+ B -+  0 and 0 -+  B -+  M2 -+ C -+  0 are both exact, 
where B = Mt / image a = Mt / ker � � image � = ker y .] 

7. (Adjoint Associativity) Let R, S and T be rings with 1 ,  let P be a left S-module, let N be 
a (T, S)-bimodule, and let A be a left T -module. Prove that 

cJ> :  Homs(P,  Homr (N, A)) � Homr (N 0s P, A) 

defined by ct> (.f) (n 0 p) = f(p)(n) is an isomorphism of abelian groups. (See also 
Theorem 43 in Section 10.5). 

8. Suppose G is cyclic of order m with generator a and let N = 1 +a +a2 + · +am-I E ZG . 
(a) Prove that the augmentation map aug(L�=(/ a; ai ) = L�(/ a; is a G-module homo­

morphism from ZG to 7L. 
(b) Prove that multiplication by N and by a - I in ZG define a free G-module resolution 

of Z: . . .  � 7LG � 7LG � . . . � 7LG � 7LG � 7L � 0. 

9. Suppose G is an infinite cyclic group with generator a . 
(a) Prove that multiplication by a - I E '7/.,G defines a free G-module resolution of 

Z: 0 � 7LG � 7LG � 7L � 0. 
(b) Show that H0(G, A) � AG, that H1 (G, A) � Aj(a - I)A, and that Hn (G, A) = O for 

all n � 2. Deduce that H 1 (G, '7/.,G) � '7/., (so free modules need notbe cohomologically 
trivial). 

10. Suppose H is a subgroup of finite index m in the group G and A is an H-module. Let 
XI , . . .  , Xm be a set of left coset representatives for H in G: G = Xt H U · · · U Xm H. 
(a) Prove that ZG = Efj�=l x;'7LH = E9�1 7LHx;- l and '7/.,G 0zH A = E9�1 (x; 0 A) as 

abelian groups. 
(b) Let /;,a be the function from '7/.,G to A defined by 

. X _ { ha if X = hxi-l with h E H 
J,,a ( ) -

0 th · o erw1se. 

Prove that !i,a E M� (A) = HomzH (7LG, A), i.e., .fi.a (h'x) = h'.fi.a (X)  for h' E H. 
(c) Prove that the map cp(.f) = L�l x; 0 f(x;- 1 ) from M� (A) to 7LG 0w A is a G­

module homomorphism. [Write X;- l  g = h;xj:1 for i = I ,  . . .  , m and observe that 
x; 0 f(x;-l g) = x; 0 h; J(xj:1 )  = x;h; 0 f(xj:1 ) = gx;' 0 f(x;-;-1 ) .] 

(d) Prove that cp gives a G-module isomorphism cp : M� (A) � 7LG 0zH A. [For the 
injectivity observe that an H-module homomorphism is 0 if and only if f(x;-1 ) = 0 
for i = I ,  . . .  , m. For the smjectivity prove that cp(fi ,a )  = x; 0 a.] 

11. Prove that the isomorphism M� (A) � 7LG 0zu A in (d) of the previous exercise need not 
hold if H is not of finite index in G. [If G is an infinite cyclic group show that Shapiro's 
Lemma implies H 1 (G, Mf (Z) ) = 0 while H1 (G, ZG) � 7L by Exercise 9.] 

Sec. 17.2 The Cohomology of Groups 81 1  



12. If H is a subgroup of G and A is an abelian group let Mc;H (A) denote the abelian group 
of all maps from the left cosets g H of H in G to A. 
(a) Prove that Mf (A) � Mf (Mc;H (A)) as H-modules. [If [g; } iei is a choice of left 

coset representatives of H in G define the correspondence between f E Mf (A) and 
F :  H --+  Mc;H (A) by F(h) (g; H) = f(g;h), and check that this is an isomorphism 
of H-modules.] 

(b) A G-module A such that Hn (H, A) = 0 for all n ::: I and all subgroups H of G is 
called cohomologically trivial. Prove that Mf (A) is a cohomologically trivial for any 
abelian group A. 

(c) If G is finite, prove that ZG 0z A is cohomologically trivial for all abelian groups A. 
13. Suppose A is a G-module and H is a subgroup of G. Prove that the group homomorphism 

from Hn (G, A) to Hn (G, M�(A)) for all n ::: 0 induced from the G-module homo­
morphism from A to M�(A) in Example 3 following Corollary 22 composed with the 
isomorphism Hn (G, M�(A)) � Hn (H, A) of Shapiro's Lemma is the restriction homo­
morphism from Hn (G, A) to Hn (H, A) . 

14. Suppose q; : H --+ G is the inclusion map of the subgroup H of G into G. If A is an H­
module and M�(A) the associated induced G-module, define the group homomorphism 
1/1 : M�(A) --+ A by mapping f to its value at 1 :  1/1(/) = f(l) .  
(a) Prove that q; and 1/1 are compatible homomorphisms. 
(b) Prove that the induced group homomorphism from Hn (G, M�(A)) to Hn (H, A) for 

n ::: 0 is the isomorphism in Shapiro's Lemma. 

15. Suppose H is a normal subgroup of G and A is a G-module. For fixed g E G, let 1/1 (a) = ga 
and q;(h) = g-1 hg for h E  H. 
(a) Prove that q; and 1/1 are compatible homomorphisms. 
(b) For each n ::: 0, prove that the homomorphism Bg from Hn (H, A) to Hn (H, A) 

induced by the compatible homomorphisms q; and 1/1 is an automorphism of Hn (H, A) . 
[Observe that both q; and 1/1 have inverses.] 

(c) Show that Bg acting on H0(H, A) is the automorphism in Exercise 4. 

16. Let A be a G-module and for g E G let Bg denote the automorphism of Hn (G, A) defined 
in the previous exercise. 
(a) Prove that Bg acting on H0(G, A) = A G is the identity map. 
(b) Prove that Bg acting on Hn (G, A) is the identity map for n ::: l .  [By induction on n and 

dimension shifting. For n = 1, use the exact sequence in Corollary 22, together with 
(a) applied to Bg on cG. For n ::: 2 use the isomorphism Hn+l (G, A) � Hn (G, C) 
in Corollary 22.] 

17. Suppose that H is a normal subgroup of G and A is a G-module. For n ::: 0 prove 
that Hn (H, A) is a G/H-module where gH acts by the automorphism Bg induced by 
conjugation by g on H and the natural action of g on A as in Exercise 15.  [Use the 
previous exercise to show this action of a coset is well defined.] 

18. Suppose that G is cyclic of order m, that H is a subgroup of G of index d, and that Z is a 
trivial G-module. Use the projective G-module resolution in Exercise 8 to prove 
(a) that Cor : Hn (H, Z) --+ Hn (G, Z) is multiplication by d from Z to Z for n = O, from 

Zf(mfd)Z to ZjmZ if n is odd, and from 0 to 0 if n is even, n ::: 2, and 
(b) that Res : Hn (G, Z) --+ Hn (H, Z) is the identity map from Z to Z for n = 0, and 

is the natural projection map from ZjmZ to Zj(mfd)Z or from 0 to 0, depending on 
·the parity of n ::: 1 .  

19. Let p b e  a prime and let P b e  a Sylow p-subgroup of the finite group G. Show that for 
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any G-module A and all n ;:: 0 the map Res : Hn (G, A) � Hn (P, A) is injective on the 
p-primary component of H 1 (G, A) . Deduce that if IA I  = pa then the restriction map is 
injective on Hn (G, A). [Use Proposition 26.] 

20. Let p be a prime, let G = ( a ) be cyclic of order pm and let W be a vector space of 
dimension d > 0 over F P on which a acts as a linear transformation. Assume W has a 
basis such that the matrix of a is a d  x d elementary Jordan block with eigenvalue 1 .  
(a) Prove that d ::: pm . [Use facts about the minimal polynomial o f  an elementary Jordan 

block.] 
(b) Prove that dim JF WG = 1 .  p 
(c) Prove that dim JF/a - 1) W = d - 1 .  
(d) If  N = 1 + a + ·  · · + a Pm-l is the usual norm element, prove that N W  is of dimension 

1 if d = pm (respectively, of dimension 0 if d < pm) and that the dimension of 
NW is d - 1 (respectively, d). [Let R be the group ring ll"p G. and show that every 
nonzero R-submodule of R contains N. Note that W is a cyclic R-module and let 
rp : R � W be a surjective homomorphism. Conclude that if rp is not an isomorphism 
then N E ker rp.] 

(e) Deduce that if d = pm then Hn (G, W) = 0, and if d < pm then Hn (G, W) has order 
p, for all n ;:: 1 (i.e., these cohomology groups are zero if and only if W is a free 
F p G-module). 

21. Let p be a prime, let G = ( a  ) be cyclic of order pm and let V be a G-module of exponent 
p. Let V = Vt EB Vz EB · · • EB Vk be a decomposition of V giving the Jordan Canonical 
Form of a ,  where each \1j is a-invariant and a matrix of a on \1j is an d; x d; elementary 
Jordan block with eigenvalue 1 ,  d; ;:: 1 (cf. Section 12.3). Prove that I VG I = pk and 
iHn (G, V)l = ps where s is the number of V; of dimension less than pm over Fp. for all 
n ;:: 1 .  [Use the preceding exercise and Exercise 5.] 

22. Suppose G is a topological group, i.e., there is a topology on G such that the maps 
G x G � G defined by (gt , gz) 1-+ g1 gz and G � G defined by g r+ g -1 are continuous. 
(a) If H is an open subgroup of G and g E G, prove that the cosets gH and Hg and the 

subgroup g-1 Hg are also open. 
(b) Prove that any open subgroup is also closed. [The complement is the union of cosets 

as in (a).] 
(c) Prove that a closed subgroup of finite index is open. 
(d) If G is compact prove that every open subgroup H is of finite index. 

23. Suppose G is a compact topological group. Prove the following are equivalent: 
(i) G is profinite, i.e., G = ijm G; is the inverse limit of finite groups G; . 

(ii) There exists a family {N; }  (i E I) of open normal subgroups N; in G such that 
n; N; = 1 and in this case G � ijm(GI N; ) .  

(iii) There exists a family {Hj } (j E :1) of open subgroups Hj in G such that nj Hj = 1 .  

[To show (iii) implies (ii), let H be open in G and use (d) of the previous exercise to show 
that N = ngEGg-1 Hg is a finite intersection and conclude that N £ H £ G and N is 
open and normal in G.] 

24. Suppose N and N' are open normal subgroups of the profinite group G and N' £ N. Prove 
that the projection homomorphism rp : G 1 N' � G 1 N and the injection 1/1 : AN � AN' 

are compatible homomorphisms and deduce there is an induced homomorphism from 
Hn (GIN, AN) to Hn (GIN', AN'

). 

25. If G is an infinite profinite group show that G does not act continuously on A = ZG. 
[Show that the stabilizer of a E A is not always of finite index in G.] 

Sec. 1 7.2 The Cohomology of Groups 81 3  



1 7.3 CROSSED HOMOMORPHISMS AND H1 (G,A) 

In this section we consider in greater detail the cohomology group H1 (G, A) where 
G is a group and A is a G-module. From the definition of the coboundary map d1 in 
equation ( 1 8), if f E C1 (G, A) then 

d1 UH8t . 82) = 8t . /(82) - /(8182) + /(8d-
Thus any function f : G --+ A i s  a 1 -cocycle if  and only if  it satisfies the identity 

f(8h) = /(8) + 8/(h) for all 8, h E G. (17.20) 

Equivalently, a 1 -cocycle is determined by a collection {ag }geG of elements in A satis­
fying agh = ag + 8ah for 8· h E G (and then the 1 -cocycle f is the function sending 8 
to ag) . Note that if 1 denotes the identity of G,  then /(1) = /(12) = f(l )  + 1 ·  f(l) = 

2/( 1 ) , so f(l) = 0 is the identity in A.  Thus 1 -cocycles are necessarily "normalized" 
at the identity. It then follows from the cocycle condition that /(8- 1 )  = -8-1 /(8) for 
all 8 E G. 

If A is a G-module on which G acts trivially, then the cocycle condition (20) is 
simply f(8h) = /(8)+ f(h) ,  i .e. , f is simply a homomorphism from the multiplicative 
group G to the additive group A. Because of this the functions from G to A satisfying 
(20) are called crossed homomorphisms. 

A 1-cochain f is a 1 -coboundary if there is some a E A such that 

/(8) = 8 · a - a  for all 8 E G, ( 17.21 )  

(equivalently, ag = 8a -a in the notation above). Note that since -a E A, the co bound­
ary condition in (2 1 )  can also be phrased as f (8) = a - 8 · a for some fixed a E A and 
all 8 E G. The 1 -coboundaries are called principal crossed homomorphisms. With this 
terminology the cohomology group H1 ( G, A) is the group of crossed homomorphisms 
modulo the subgroup of principal crossed homomorphisms. 

Example: (Hilbert's Theorem 90) 

Suppose G = Gal(K I F) is the Galois group of a finite Galois extension KIF of fields. 
Then the multiplicative group K x is a G-module and H 1 ( G, K x )  = 0. To see this, let 
{aa } be the values f(a) of a 1-cocycle f, so that aa E K x  and aar = aaa (ar )  (the 
cocycle condition written multiplicatively for the group Kx ) . By the linear independence 
of automorphisms (Corollary 8 in Section 14.2), there is an element y E K such that 

f3 = ,E ar< (y) 
reG 

is nonzero, i.e., f3 E K x .  Then for any a E G we have 

a (f3) = L a (ar )  ar (y)  = a;;:- 1 L aa.- ar (y) = a;;:- 1 {3 
reG reG 

where the second equality comes from the cocycle condition. Hence aa = f31a (f3) ,  which 
is the multiplicative form of the coboundary condition (21 ) (for the element a = {3-1 ) . 
Since every 1-cocycle is a 1 -coboundary, we have H 1 ( G, K x )  = 0. The same result holds 
for infinite Galois extensions by equation ( 19) in the previous section since H1 (G, K x )  is 
the direct limit of trivial groups. 
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As a special case, suppose KIF is a Galois extension with cyclic Galois group G 
having generator a .  The cohomology groups for G were computed explicitly in the pre.. 
vious section, and in particular, H 1 (G, A) = N AI(a - 1)A for any G-module A (written 
additively). Since this group is trivial in the present context, we see that an element a in 
K is in the kernel of the norm map, i.e., NK;F(a) = 1 if and only if a =  a (f3)1f3 for some 
f3 E K. (For a direct proof of this result in the cyclic case, cf. Exercise 23 in Section 14.2.) 

This famous result for cyclic extensions was first proved by Hilbert and appears as 
"Theorem 90" in his book (known as the "Zahlbericht") on number theory in 1 897. As a 
result, the more general result H 1 (G, K x )  = 0 is referred to in the literature as "Hilbert's 
Theorem 90." In general, the higher dimensional cohomology groups H" (G, K x )  for 
n =:::: 2 can be nontrivial (cf. Exercise 1 3). 

Example 

Suppose G = Gal(K I F) is the Galois group of a finite Galois extension K 1 F of fields as 
in the previous example. Then the additive group K is also a G-module and H" ( G, K) = 0 
for all n =:::: 2. The proof of this in general uses the fact that there is a normal basis for K over 
F, i.e., there is an element a E K whose Galois conjugates give a basis for K as a vector 
space over F, or, equivalently, K � ZG ®z F as G-modules. The latter isommphism 
shows that K is induced as a G-module, and then H" (G, K) = 0 follows from Corollary 
24 in Section 2. For a direct proof in the case where G is cyclic, cf. Exercise 26 in Section 
1 4.2. 

If G acts trivially on A, then g · a - a = 0, so 0 is the only principal crossed 
homomorphism, i.e., B 1 ( G, A) = 0. This proves the following result: 

Proposition 30. If A is a G-module on which G acts trivially then H 1 (G, A) 
Hom(G, A), the group of all group homomorphisms from G to H. 

If G is a profinite group, then the same result holds for the continuous cohomology 
group H 1 (G, A) provided one takes the group of continuous homomorphisms from G 
into A.  

Examples 

(1) If G acts trivially on A then H 1 (G, A) = H 1 (GI[G, G], A) since any group homo­
mmphism from G to the abelian group A factors through the commutator subgroup 
[G, G] (cf. Proposition 7(5) in Section 5.4), so computing H 1 for trivial G-action 
reduces to computing H 1 for some abelian group. 

(2) If G is a finite group acting trivially on Z, then H 1 (G, Z) = 0 because Z has no 
nonzero elements of finite order so there is no nonzero group homommphism from G 
to Z. 

(3) If A is cyclic of prime order p and G is a p-group then G must act trivially on A 
(since the autommphism group of A has order p - 1), so in this case one always has 
H 1 (G, A) = Hom(G, A).  

(4) IfG is a finitegroupthat acts trivially on <Q1Z then H 1 (G, <QIZ) = Hom(G, <QIZ) = G 
is the dual group of G ( cf. Exercise 14 in Section 5 .2. ). Since <QIZ is abelian, any homo­
mmphism of G into <QIZ factors through the commutator quotient Gab = G I[ G, G] 
of G, so Hom(G, <QIZ) = Hom( Gab, <QIZ) . It follows that Hom(G, <QIZ) � dab 

(which by cf. Exercise 14 again is noncanonically isommphic to Gab). 
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If 0 � A � B � C � 0 is a short exact sequence of G-modules then the long 
exact sequence in group cohomology in Theorem 21 of the previous section begins with 
terms 

The connecting homomorphism 80 is given explicitly as follows: if c E cG then there is 
an element b E B mapping to c and then 80( c) is the class in H 1 ( G, A) of the 1-cocycle 
given by 

8o(c) : G � A  

g 1-----+ g . b - b. 

Note that g · b - b is (the image in B of) an element of A for all g E G since c E CC: 
To verify directly that f = 8o(c) satisfies the cocycle condition in (20), we compute 

f(gh) = gh . b - b = (g . b - b) + g . (h . b - b) = f(g) + gf(h) .  

From the explicit expression f = g · b - b it is also clear that 80(c) E H 1 {G, A )  
maps to 0 i n  the next term H 1 ( G, B)  of the long exact sequence above since f i s  the 
coboundary for the element b E B. 

Example: (Kummer Theory) 

Suppose that F is a field of characteristic 0 containing the group 1-Ln of all nth roots of 
unity for some n 2: 1 .  Let K be an algebraic closure of F and let G = Gal(KI F) . 
The group G acts trivially on 1-Ln since 1-Ln c F by assumption, i.e., 1-Ln ;;: 7L.In7L. as G­
modules. Hence the Galois cohomology group H1 (G, J-Ln) is the group Holllc (G, 7L.In7L.) 
of continuous homomorphisms of G into 71..1 n7L.. If x is such a continuous homomorphism, 
then ker x � G is a closed normal subgroup of G, hence corresponds by Galois theory to 
a Galois extension L x I  F. Then Gal(L x I  F) ;;: image x ,  so L x is a cyclic extension of F 
of degree dividing n. Conversely, every such cyclic extension of F defines an element in 
Holllc (G, 7L.In7L.), so there is a bijection between the elements of the Galois cohomology 
group H 1 ( G, 1-Ln) and the cyclic extensions of F of degree dividing n.  

The homomorphism of  raising to the nth power i s  smjective on K x  (since we can 
always extract nth roots in K) and has kernel 1-Ln . Hence the sequence 

1 � 1-Ln � K x  � K x  � 1 

is an exact sequence of discrete G-modules. The associated long exact sequence in Galois 
cohomology gives 

1 � 1-L� � (K x )G � (K x ) G 
� Hl (G, J-Ln) � Hl (G, K x )  � . . . .  

We have J-L� = J-Ln and (K x )G = F x by Galois theory, and H1 (G, K x )  = 0 by Hilbert's 
Theorem 90, so this exact sequence becomes 

1 � 1-Ln � Fx ...!'__,. F x � H 1 (G, J-Ln) � 0, 

which in turn is equivalent to the isomorphism 
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where pxn denotes the group of nth powers of elements of px . This isomorphism is made 
explicit using the explicit form for the connecting homomorphism given above: for every 
a E px and a E G, the element :;fii in K x maps to a in the exact sequence and 

a (  :;fii ) 
x (a) = :;fii 

defines an element in H 1 (G, J-Ln) (cf. Exercise 1 1). The kernel of this homomorphism x 
is the field F( :;j(i ). By the results of the previous paragraph, when F contains the nth 

roots of unity an extension L f F is Galois with cyclic Galois group of order dividing n if 
and only if L = F( :;j(i )  for some a E F x . Furthermore, the class of a in px fFxn is 
unique, i.e., a is unique up to an nth power of an element in F. Such an extension is called 
a Kummer extension, cf. Section 14.7 and Exercise 12. 

If the characteristic of F is a prime p, the same argument applies when n is not 
divisible by p, replacing the algebraic closure of F with the separable closure of F (the 
largest separable algebraic extension of F). 

Example: (The Transfer Homomorphism) 

Suppose G is a finite group and H is a subgroup. The corestriction defines a homomorphism 
from H1 (H, Q/Z) to H1 (G, Q/Z), which by Example 4 above gives a homomorphism 
from Eiab to cfab. This gives a homomorphism 

Ver : Gab � Hab 

called the transfer (or Verlagerungen) homomorphism (cf. Exercise 14).  To make this 
homomorphism explicit, consider the exact sequence 

(17.22) 

defined by the homomorphism mapping a E Q/Z to fa E Mf (Q/Z) in Example 4 
preceding Proposition 23 in the previous section (so fa (g) = g · a  for g E G). This 
is a short exact sequence of G-modules and hence also of H -modules. The first portions 
of the associated long exact sequences for the cohomology with respect to H and then G 
give the rows in the commutative diagram 

lio 
· · · � cH � t Cor 

lio · · · � cG � 

H1 (H, Q/Z) � 0 t Cor 

H1 (G, Q/Z) � 0 

since H1 (H, Mf (Qf'll.)) = H1 (G, Mf (Qf'll.)) = 0 (cf. Exercise 12 in Section 2). Let 
x E H1 (H, Q/Z) and suppose that c E cH is an element mapping to x by the surjective 
connecting homomorphism 8o in the first row of the diagram above. By the commutativity, 
x '  = Cor (x) is the image under the connecting homomorphism 8o of c' = Cor (c) E cG 
in the second row of the diagram. By our explicit formula for the coboundary map 8o, if 
F E Mf (Q/Z) is any element mapping to c' in (22) then g · F - F = fa' for a unique 
a' E Q/Z, and we have x'(g) = 8o(c') (g) = a' for g E  G. Since fa' (x) = x · a' = a' for 
any x E G because G acts trivially on Qf'll., the function g · F - F in fact has the constant 
value a', and so can be evaluated at any x E G to determine the value of x' (g). 
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Since c' = L:7'=t g; · c E cG where g1 , . . .  , gm are representatives of the left cosets 
of H in G (cf. Example 4 preceding Proposition 26), such an element F is given by 

m 

i=l  

where I E Mf (Q/7!.) is any element mapping to c in (22). This I can be used to compute 
the explicit co boundary of c as before: h · I - f = Ia for a unique a E Q/7!. and x (h) = a 
for h E H. As before, the function h · f - f = Ia has the constant value a and so can be 
evaluated at any element x of G to determine the value of x (h) . 

Computing g · F - F on the element 1 E G it follows that 

For i = 1 ,  . . . , m, write 

m m 
x' <g) = I:  t<ggi ) - I: l<g; ) .  

i=l i=l 

gg; = g.; h (g ,  g; ) with h (g , g; ) E H, 

noting that the resulting set of g.; is some permutation of {gt , . . .  , gm } .  Then 
m m m m 

I: l<gg; ) - I: l<g; )  = .L:u<g.;h (g, g; )) - 1<.�;)] = I: x <h <g. g; )) 
i=l i=l i=l i=l 

since as noted above, x (h) = f(xh) - l(x) for any x E G. Hence 
m 

x' (g) = x <n h (g, g; )) 
i=l 

and so the transfer homomorphism is given by the formula 
m 

Ver(g) = n h(g, gi ) 
i=l 

(17.23) 

(1 7.24) 

with the elements h(g, g; ) E H defined by equation (23). Note that this proves in particular 
that the map defined in (24) is a homomorphism from Gab to H3b that is independent of the 
choice of representatives g; for H in G in (23). Proving that this map is a homomorphism 
directly is not completely trivial. The same formula also defines the transfer homomorphism 
when G is infinite and H is a subgroup of finite index in G. 

As an example ofthe transfer, suppose H = n'll and G = 7l and choose 0, 1 ,  2,  . . .  , n-1  
as  coset representatives for H in G.  If  g = 1 ,  then all the elements h (g , g; ) are 0 for 
i = 1 ,  2 ,  . . . , n - 1 and h ( l ,  n - 1 )  = n. Hence the transfer map from 7l to n'll maps 1 
to n, so is simply multiplication by the index. Sitnilarly, the transfer map from any cyclic 
group G to a subgroup H of index n is the n1h power map. See also Exercise 8. 

For the cyclic group IF; for an odd prime p and subgroup {±1 }, it follows that the 
transfer map is the homomorphism Ver : IF; --+ {±1}  given by 

Ver(a) = a = - = 
(p-I)/Z ( a ) { +1 if a is a square 

p - 1  i f  a is not a square 

(the symbol (�) is called the Legendre symbol or the quadratic residue symbol). If instead 
p 

we take the elements 1 ,  2, . . .  , (p - 1 )/2 as coset representatives for {±1 } in IF; we see 
that 
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where m(a) is the number of elements among a, 2a . . . .  , (p - 1 )a/2 whose least positive 
remainder modulo p is greater than (p - 1)  /2 (in which case the element differs by -1  from 
one of our chosen coset representatives and contributes one factor of - 1  to the product in 
(24)). This result is known as Gauss ' Lemma in elementary number theory and can be used 
to prove Gauss' celebrated Quadratic Reciprocity Law (cf. also Exercise 15). 

Next we give two important interpretations of H1 (G, A) in terms of semidirect 
products. If A is a G-module, let E be the semidirect product E = A )<! G, where A 
is normal in E and the action of G (viewed as a subgroup of E) on A by conjugation 
is the same as its G-module action: gag-1 = g · a . In the notation of Section 5.5, 
E = A )<!"' G, where rp is the homomorphism of G into Aut(A) given by the G-module 
action. In particular, E will be the direct product of A and G if and only if G acts 
trivially on A. As in Section 5 .5, we shall write the elements of E as (a , g) where 
a E A and g E G, with group operation 

(a. , g1) (a2 , g2) = (aJ + g1 · a2 , g1g2) .  
Note that A i s  written additively, while G and E are written multiplicatively. 

Definition. Let X be any group and let Y be a normal subgroup of X. The stability 
group of the series 1 ::::) Y ::::) X is the group of all automorphisms of X that map Y to 
itself and act as the identity on both of the factors Y and X f Y, i.e., 

Stab(l ::::) Y ::::) X) = {a E Aut(X) I a (y) = y for all y E Y, 

and a(x) = x mod Y for all x E X}. 

In the special case where Y is an abelian normal subgroup of X, conjugation by 
elements of Y induce (inner) automorphisms of X that stabilize the series 1 ::::) Y ::::) X, 
and in this case Y 1 C y (X) is isomorphic to a subgroup of Stab(l ::::) Y ::::) X) (where 
Cy (X) is the elements of Y in the center of X). 

Proposition 31. Let A be a G-module and let E be the semidirect product A )<! G. For 
each cocycle f E Z1 (G, A) define a1 : E -+  E by 

af ((a ,  g)) = (a + f(g) , g) . 
Then the map f -+  a1 is a group isomorphism from Z1 (G, A) onto Stab( l  ::::) A ::::) E).  
Under this isomorphism the subgroup B 1 (G , A) of coboundaries maps onto the sub­
group A/ C A (E) of the stability group. 

Proof" It is an exercise to see that the cocycle condition implies a1 is an automor­
phism of E that stabilizes the chain 1 :<:J A ::::) E.  Likewise one checks directly that 
a f• + fz = a J1 o a fz ,  so the map f r+ a f is a group homomorphism. By definition of a f 
this map is injective. Conversely, let a E Stab(l :<::] A ::::) E) . Since a acts trivially on 
E I A, each element (0, g) in this semidirect product maps under a to another element 
(a , g) in the same coset of A; define fa : G -+  A by letting fa (g) = a. If we identify 
A with the elements of the form (a , l) in E, then the group operation in E shows that 

Ja (g) = a((O, g))(O, g)-1 • 
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Because C1 is a stability automorphism of E, it is easy to check that fa satisfies the 
cocycle condition. It follows immediately from the definitions that fa1 = f, so the 
map f �----+ CTJ is an isomorphism. 

Now f is a co boundary if and only if there is some x E A such that f (g) = x - g · x 
for all g E G. Thus f is a coboundary if and only ifuf ((a , g)) = (a + x - g · x , g) . But 
conjugation in E by the element (x ,  1 )  maps (a , g) to the same element (a + x - g · x ,  g), 
so the automorphism CTJ is conjugation by (x , 1) .  This proves the remaining assertion 
of the proposition. 

Corollary 32. In the notation of Proposition 3 1  let <tJa denote the automorphism of E 
given by conjugation by a for any a E A. Then the cocycles ft and h are in the same 
cohomology class in H 1 (G, A) if and only if CTJ1 = <tJa o CTJ2 '  for some a E A. 

The proposition and corollary show that 1-cocycles may be computed by finding 
automorphisms of E that stabilize the series 1 :::) A :::) E, and vice versa. The first 
cohomology group is then given by taking these automorphisms modulo inner auto­
morphisms, i.e. , is the group of "outer stability automorphisms" of this series. 

Example 

Let G = Z2 act by inversion on A = Z/4Z. The corresponding semidirect product 
E = A >:1 G is the dihedral group of order 8, which has automorphism group isomorphic 
to Dg ; viewing E as a normal (index 2) subgroup of D16. conjugation in the latter group 
restricted to E exhibits 8 distinct automorphisms of E (cf. Proposition 17 in Section 4.4). 
The subgroup A of E is characteristic in E, hence every automorphism of E sends A to 
itself, and therefore also acts on E/ A (necessarily trivially since I E/ AI = 2) . Half the 
automorphisms of E invert A and half centralize A; in fact, the cyclic subgroup of order 8 
in D16 (which contains A) maps to a cyclic group of order 4 of automorphisms centralizing 
A. Thus Stab(l :":) A :":)  E) � Z4 � z1 {G, A).  Since the center of E is a  subgroup of A of 
order 2, I A/Z{E) I = 2 = I B 1 (G, A) I .  This proves I H 1 (G, A) I =  2. 

In the semidirect product E the subgroup G is a complement to A, i.e., E = AG 
and A n  G = 1 ;  moreover, every £-conjugate of G is  also a complement to A. But A 

may have complements in E that are not conjugate to G in E. Our second interpretation 
of H1 (G, A) shows that this cohomology group characterizes the £-conjugacy classes 
of complements of A in E. 

Proposition 33. Let A be a G-module and let E be the semidirect product A )<J G. For 
each 1 -cocycle f let 

GJ = {(f(g),  g) I g E G}.  

Then G f is a subgroup complement to A in E. The map f �----+ G f is a bijection from 
Z1 (G, A) to the set of complements to A in E. Two complements are conjugate in 
E if and only if their corresponding 1-cocycles are in the same cohomology class in 
H 1 ( G, A), so there is a bijection between H 1 ( G, A) and the set of £-conjugacy classes 
of complements to A. 

Proof" By the cocycle condition, 

(f(g) ,  g)(f(h) ,  h) = (f(g) +gf(h)g-1 , gh) = (f(g) +g · f(h) ,  gh) = (f(gh) ,  gh) ,  
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and it follows that G 1 is closed under the group operation in E. As observed earlier, each 
cocycle necessarily has f(l) = 0, so G1 contains the identity (0, 1 ) of E. The inverse 
to (f(g) , g) in E is (f(g-1 ), g-1 ) , so G1 is closed under inverses. This proves G1 is a 
subgroup of E. Since the distinct elements of G f represent the distinct cosets of A in 
E, G 1 is a complement to A in E. Distinct cocycles give different coset representatives, 
hence they determine different complements. 

Conversely, if C is any complement to A in G, then C contains a unique coset 
representative ag g of Ag for each g E G. Since C is closed under the group operation 
the element (agg) (ahh) = (aggahg-1)gh represents the coset Agh , and so agh is 
aggahg-1 

= ag (g ·ah) (written additively in A this becomes agh = ag + (g ·ah)). This 
shows that the map f : G -+ A given by f (g) = ag is a cocycle, and so C = G f .  
Hence there i s  a bijection between 1 -cocycles and complements to A in  E.  

Since Stab(l � A � E) normalizes A it permutes the complements to A in  E.  
In  the notation of Proposition 3 1 ,  for 1-cocycles f1 and h it follows immediately 
from the definition that a 1, ( G h )  = G It +  h .  This shows that the permutation action of 
Stab(l � A � E) on the set of complements to A in E is the (left) regular representation 
of this group. Furthermore, if a E A and (/Ja is the stability automorphism conjugation 
by a, then 

( 17 .25) 

where f3a is the 1-coboundary f3a : g t--* a - g · a . Since Gt is a complement to A, any 
e E E may be written as ag for some a E A and g E Gt . Then eGte-1 = aGta-1 , 
i.e., the £-conjugates of G1 are the just the A-conjugates of Gt . Now the complements 
Gt, and Gh are conjugate in E if and only if Gh = aGJ,a-1 = Gt, +f3a for some 
a E A by (25). This shows two complements are conjugate in E if and only if their 
corresponding cocycles differ by a coboundary, i.e., represent the same cohomology 
class in H1 ( G, A), which completes the proof. 

Corollary 34. Under the notation of Proposition 33, all complements to A are conjugate 
in E if and only if H1 (G, A) = 0. 

Corollary 35. If A is a finite abelian group whose order is relatively prime to I G I  then 
all complements to A in any semidirect product E = A >l G are conjugate in E. 

Examples 

(1) Let A = ( a  ) and G = ( g ) both be cyclic of order 2. The group G must act trivially 
on A, hence A >l G = A x G is a Klein 4-group. Here A >l G is abelian, so every 
subgroup is conjugate only to itself, and since H 1 (G, A) = Hom(Zz,  Z/2Z) has order 
2, there are precisely two complements to A in E, namely ( g )  and ( ag ) . 

(2) H A = ( a  ) is cyclic of order 2 and G = ( x ) x ( y ) is a Klein 4-group, then as before 
G must act trivially on A, so H 1 (G , A) = Hom(Zz x Zz , Z/2Z) has order 4. The 
four complements to A in A x G are G, ( ax ,  y ) , ( x ,  ay ) and ( ax , ay ) . 

(3) Proposition 33 can also be used to compute H 1 ( G, A). Let A = ( r )  be cyclic of 
order 4 and let G = ( s )  be cyclic of order 2 acting on A by inversion: srs-1 = r-1 
as in the Example following Corollary 32. Then A >l G is the dihedral group Ds of 
order 8. The subgroup A has four complements in Dg, namely the groups generated 
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by each of the four elements of order 2 not in A: ( s  ), ( r2s ), ( rs )  and ( r3s ) . The 
former pair and the latter pair are conjugate in Ds (in both cases via r ), but ( s ) is 
not conjugate to ( r s ) . Thus A has 2 conjugacy classes of complements in A :><1 G 
and hence H1 (Z2 , Zj4Z) has order 2. This also follows from the computation of the 
cohomology of cyclic groups in Section 2. 

E X E R C I S E S 

1. Let G be the cyclic group of order 2 and let A be a G-module. Compute the isomorphism 
types of z1 (G, A), B 1 (G, A) and H1 (G , A) for each of the following: 
(a) A = Zj4Z (trivial action), 
(b) A =  Zj2Z x Zj2Z (trivial action), 
(c) A = Zj2Z x Zj2Z (any nontrivial action). 

2. Let p be a prime and let P be a p-group. 
(a) Show that H1 (P, lFp) ;::: P fc!J (P),  where c!J(P) is the Frattini subgroup of P (cf. the 

exercises in Section 6 . 1  ). 
(b) Deduce that the dimension of H 1 ( P, lF p)  as a vector space over lFp equals the minimum 

number of generators of P. [Use Exercise 26( c), Section 6. 1 .] 

3. If G is the cyclic group of order 2 acting by inversion on Z show that IH 1 (G, Z) l = 2. 
[Show that in E = Z :><1 G every element of E - Z has order 2, and there are two conjugacy 
classes in this coset.] 

4. Let A be the Klein 4-group and let G = Aut( A) ;::: S3 act on A in the natural fashion. Prove 
that H1 (G, A) = 0. [Show that in the sernidirect product E = A :><1 G, G is the normalizer 
of a Sylow 3-subgroup of E. Apply Sylow's Theorem to show all complements to A in E 
are conjugate.] 

5. Let G be the cyclic group of order 2 acting on an elementary abelian 2-group A of order 
2n . Show that H1 (G, A) = 0 if and only if n  = 2k and lAc I =  2k . [In E = A  :><1 G show 
that (a , x) is an element of order 2 if and only if a E A c ,  where G = ( x ) . Then compare 
the number of complements to A with the number of £-conjugates of x .] 

6. (Thompson Transfer Lemma) Let G be a finite group of even order, let T be a Sylow 
2-subgroup of G, let M :::: T with I T  : Ml = 2, and let x be an element of order 2 in 
G. Show that if G has no subgroup of index 2 then M contains some G-conjugate of x as 
follows: 
(a) Let Ver : Gj[G, G] � T f[T, T] be the transfer homomorphism. Show that 

Ver(x) = n g-1xg mod [T, T] 
g 

where the product is over representatives of the cosets gT that are fixed under left 
multiplication by x.  

(b) Show that under left multiplication x fixes an odd number of left co sets of T in G. 
(c) Show that if G has no subgroup of index 2 then Ver(x) E M j[T, T]. Deduce that for 

some g E G we must have g-1xg E M. [Consider the product Ver(x) in the group 
T/M of order 2.] 

7. Let H be a subgroup of G and let x E G. The transfer Ver : Gj[G, G] � Hj[H, H] 
may be computed as follows: let Ot . Oz, . . . , ok be the distinct orbits of X acting by 
left multiplication on the left cosets of H in G, let 0; have length n; and let g; H be any 
representative of 0; . 
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(a) Show that 0; = {g; H, xg; H, x2g; H, . . .  , xn, - I  g; H }  and that gjt xn, g; E H. 
(b) Show that Ver(x) = n}=I gjixn' g; mod [H, H].  

8. Assume the center, Z (G), of G is of index m.  Prove that Ver(x) = xm , for all x E G, 
where Ver is the transfer homomorphism from GI[G, G] to Z(G). [Use the preceding 
exercise.] 

9. Let p be a prime, let n :::: 3, and let V be an n-dimensional vector space over IF' P with 
basis Vt . vz , . . .  , Vn · Let V be a module for the symmetric group Sn , where each rr E Sn 
permutes the basis in the natural way: rr (v; ) = V:n:(i l · 
(a) Show that I H t (Sn . V) l = . . [Use Shapiro's Lemma.] 

{ 0, if p # 2 
2, If p = 2 

(b) Show that H I  (An . V) = 0 for all primes p. 

10. Let V be the natural permutation module for Sn over IF'z, n :::: 3, as described in the 
preceding exercise, and let W = {at VI + · · · + anvn 1 a t + · · · + an = 0} (the "trace 
zero" submodule of V). Show that if n is even then H I (An , W) # 0. [Show that in the 
sernidirect product V ><l An the element VI induces a nontrivial outer automorphism on 
E = W ><l An that stabilizes the series 1 � W � E.] 

11. Let F be a field of characteristic not dividing n and let a be any nonzero element in F. 
Let K be a Galois extension of F containing the splitting field of xn - a,  and let :yla be 
a fixed nth root of a in K. 
(a) Prove that a (  :y/a)l :yla is an nth root of unity. 
(b) Prove that the function f (a ) = a ( :yla )  I :yla is a 1-cocycle of G with values in the 

group 11-n of nth roots of unity in K (note 11-n is not assumed to be contained in F). 
(c) Prove that the 1 -cocycle obtained by a different choice of nth root of a in K differs 

from the 1 -cocycle in (b) by a 1 -coboundary. 

12. Let F be a field of characteristic not dividing n that contains the nth roots of unity, and 
suppose Ll F is a Galois extension with abelian Galois group of exponent dividing n.  
Prove that L is the composite of cyclic extensions of F whose degrees are divisors of n 
and use this to prove that there is a bijection between the subgroups of the multiplicative 
group px I px n 

and such extensions L. 
13. The Galois group of the extension CIIR is the cyclic group G = ( T )  of order 2 generated 

by complex conjugation T . Prove that H2 ( G, C x )  � IR x IIR+ � 7ll27l where JR+ denotes 
the positive real numbers. 

14. For any group G let G = Hom(G, Ql'll) denote its dual group. 
(a) If f/J : G I � G2 is a group homomorphism prove that composition with f/J induces a 

homomorphism cp : Gz � GI on their dual groups. 
(b) For any fixed g in G, show that evaluation at g gives a homomorphism f/Jg from G to 

Ql'll. 
(c) Prove that th�ap taking g E G to f/Jg in (b) defines a homomorphism from G to its 

double dual (G). 
(d) Prove that if G is a finite abelian group then the homomorphism in (c) is an iso­

morphism of G with its double dual. (By Exercise 14 in Section 5.2 the group G is 
(noncanonically) isomorphic to its dual G. This shows that G is canonically isomor­
phic to its double dual - the isomorphism is independent of any choice of generators 
for G.) 

(e) If 1/1 : G2 � GI is a homomorphism where G t  and Gz ar e  finite abelian groups, 
then by (a) and (d) there is an induced homomorphism f/J : GI � Gz.  Prove that 
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q.>(gt ) = gz if x (gz) = x'(gt ) for x' = 1/r(x) .  
15. Use Gauss' Lemma in  the computation of the transfer map for IF; to  {± 1 }  to  prove that 

2 is a square modulo the odd prime p if and only if p = ± 1  mod 8. [Count how many 
elements in 2, 4, . . . , p - 1 are greater than (p - 1)/2.] 

1 7.4 GROUP EXTENSIONS, FAUOR SETS AND H2(G,A) 

If A is a G-module then from the definition of the coboundary map dz in equation ( 1 8) 
a function f from G x G to A is a 2-cocycle if it satisfies the identity 

f(g ,  h) + f(gh . k) = g . f(h , k) + f (g , hk) for all g , h , k E G. ( 17.26) 

Equivalently, a 2-cocycle is determined by a collection of elements {ag,h }g,hEG of el­
ements in A satisfying ag.h + agh.k = g · ah.k + ag,hk for g, h , k E G (and then the 
2-cocycle f is the function sending (g , h) to a8,h). 

A 2-cochain f is a coboundary if there is a function ft : G -+ A such that 

f(g , h) =  gft (h) - ft (gh) + ft (g) , for all g , h E G ( 17.27) 

i.e. , f is the image under d1 of the 1-cochain ft · 
One of the main results of this section is to make a connection between the 2-

cocycles Z2 (G, A) and the factor sets associated to a group extension of G by A, which 
arise when considering the effect of choosing different coset representatives in defining 
the multiplication in the extension. In particular, we shall show that there is a bijection 
between equivalence classes of group extensions of G by A (with the action of G on A 
fixed) and the elements of H2 (G, A). 

We first observe some basic facts about extensions. Let E be any group extension 
of G by A, 

1 -+ A � E � G -+ 1 . ( 17.28) 

The extension (28) determines an action of G on A, as follows .  For each g E G let e8 
be an element of E mapping onto g by rr (the choice of such a set of representatives 
for G in E is called a set-theoretic section of rr). The element e8 acts by conjugation 
on the normal subgroup t (A) of E, mapping t (a)  to e8t (a)e;1 • Any other element in 
E that maps to g is of the form e8t (a t )  for some a1 E A, and since t (A) is abelian, 
conjugation by this element on t (A) is the same as conjugation by e8 , so is independent 
of the choice of representative for g .  Hence G acts on L (A),  and so also on A since l 
is injective. Since conjugation is an automorphism, the extension (28) defines A as a 
G-module. 

Recall from Section 10.5 that two extensions 1 -+ A 4 £1 � G -+ 1 and 

1 -+ A -4 Ez � G -+ 1 are equivalent if there is a group isomorphism ,8 : £1 -+ Ez 
such that the following diagram commutes: 

1 ----+ A �  }ct 
l ----+ A �  
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In this case we simply say f3 is the equivalence between the two extensions. As noted 
in Section 10.5, equivalence of extensions is reflexive, symmetric and transitive. We 
also observe that 

equivalent extensions define the same G-module structure on A. 

To see this assume (29) is an equivalence, let g be any element of G and let eg be any 
element of Et mapping onto g by 7rt . The action of g on A given by conjugation in 
Et maps each a to t)t (egL t (a)e_;-t ) . Let e� = fJ(eg) . Since the diagram commutes, 
rr2(e�) = g, so the action of g on A in the second extension is given by conjugation 
by e� . This conjugation maps a to t2t (e�L2 (a)e� -t ) .  Since L t , t2 and f3 are injective, 
the two actions of g on a are equal if and only if they result in the same image in £2, 
i.e., f3 o L t (t)t (egL t (a)e_;-t )) = e�t2 (a)e� -t . This equality is now immediate from the 
definition of e� and the commutativity of the diagram. 

We next see how an extension as in (28) defines a 2-cocycle in Z2 (G, A). For 
simplicity we identify A as a subgroup of E via L and we identify G as E I A via rr. 

Definition. A map J1 : G -+ E with rr o JL(g) = g and JL(l) = 0, i.e., so that for 
each g E G, J1 (g) is a representative of the coset Ag of E and the identity of E (which 
is the zero of A)  represents the identity coset, is called a normalized section of rr .  

Fix a section J1 of rr in (28). Each element of E may be written uniquely in the 
form aJL(g) , where a E A and g E G .  For g,  h E  G the product JL(g)JL(h) in E lies in 
the coset Ag h, so there is a unique element f (g , h) in A such that 

JL(g)JL(h) = f(g, h)JL(gh) for all g,  h E  G. (17.30) 

If in addition J1 is normalized at the identity we also have 

f(g ,  1 )  = 0 = f(l ,  g) for all g E G. (17.3 1 )  

Definition. The function f defined by equation (30) i s  called the factor set for the 
extension E associated to the section Jl. If f also satisfies (3 1 )  then f is called a 
normalized factor set. 

We shall see in the examples following that it is possible for different sections J1 to 
give the same factor set f. 

We now verify that the factor set f is in fact a 2-cocycle. First note that the group 
operation in E may be written 

(at JL(g))(a2JL(h)) = (at + JL(g)a2Jl(g)-t )JL(g)JL(h) 
= (at + g · a2) (JL(g)JL(h)) (17.32) 

= (at + g · a2 + f(g ,  h))JL(gh) 
where g · a2 denotes the G-module action of g on a2 given by conjugation in E. Now 
use (32) and the associative law in E to compute the product JL(g)JL(h)JL(k) in two 
different ways: 

(JL(g)JL(h))JL(k) = (f(g ,  h) + f(gh, k))JL(ghk) 
JL(g) (JL(h)JL(k)) = (gf(h, k) + f(g, hk))JL(ghk) .  
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It follows that the factors in A of the two right hand sides in (33) are equal for every 
g, h ,  k E G, and this is precisely the 2-cocycle condition (26) for f. This shows that 
the factor set associated to the extension E and any choice of section f.L is an element 
in Z2(G, A).  

We next see how the factor set f depends on the choice of section f.L. Suppose f.L1 is 
another section for the same extension E in (28), and let f' be its associated factor set. 
Then for all g E G both f.L (g) and f.L1 (g) lie in the same coset Ag, so there is a function 
ft : G -+ A such that f.L1 (g) = ft (g)f.l,(g) for all g. Then 

f.L1 (g)f.l,1 (h) = j' (g, h)f.l,1 (gh) = (J' (g, h) + ft (gh))/L(gh) . 
We also have 

f.l,1(g)f.l,'(h) = (ft (g)f.l, (g) ) CJt (h)f.l,(h)) = (ft (g) + g . ft (h)) (f.l, (g)f.l,(h)) 
= Ut (g) + g · it (h) + J(g, h))f.L(gh) . 

Equating the factors in A in these two expressions for f.L'(g)f.l,'(h) shows that 

J'(g, h) = f(g, h) + (gft (h) - ft (gh) + ft (g)) for all g ,  h E G, 

in other words f and f' differ by the 2-coboundary of ft as in (27). 
We have shown that the factor sets associated to the extension E corresponding to 

different choices of sections give 2-cocycles in Z2(G, A) that differ by a coboundary 
in B2(G, A).  Hence associated to the extension E is a  well defined cohomology class 
in H2 ( G, A) determined by the factor set in (30) for any choice of section f.L. 

If the extension E of G by A !s a split extension (which is to say that E = A ><l G 
is the semidirect product of G by A with the given conjugation action of G on A), then 
there is a section f.L of G that is a homomorphism from G to E. In this case the factor 
set f in (30) is identically 0: f(g ,  h) = 0 for all g, h E G. Hence the cohomology 
class in H2(G, A) defined by a split extension is the trivial class. 

Suppose now that f3 is an equivalence between the extension in (28) and an extension 
E':  

I ---+ A �  E �  G ---+ I }d l/3 }d 
I ---+ 

t' 
A ---+ E' � G ---+ I .  

If f.l is a section of rr ,  then f.L1 = f3 o f.L is a section of rr ', so what we have just proved can 
be used to determine the cohomology class in H2 ( G, A) corresponding to E' . Applying 
the homomorphism f3 to equation (30) gives 

{3(f.l,(g))f3(f.L(h)) = {3(/(g , h) ){J (f.l,(gh)) for all g, h E G. 

Since f3 restricts to the identity map on A, this is 

f.l1(g)f.l,'(h) = J(g, h)f.1,1 (gh) for all g, h E G, 

which shows that the factor set for E' associated to f.L' is the same as the factor set for 
E associated to f.L. This proves that equivalent extensions define the same cohomology 
class in H2 (G, A).  

' 
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We next show how this procedure may be reversed: Given a class in H2 (G, A) 
we construct an extension E 1 whose corresponding factor set is in the given class in 
H2 (G, A). The process generalizes the semidirect product construction of Section 5.5 
(which is the special case when f is the zero cocycle representing the trivial class). 

Note first that any 2-cocycle arising from the factor set of an extension as above 
where the section Jl is normalized satisfies the condition in (3 1 ) . 
Definition. A 2-cocycle f such that f (g , 1 )  = 0 = f ( 1 ,  g) for all g E G is called a 
nonnalized 2-cocycle. 

The construction of E1 is a little simpler when f is a normalized cocycle and for 
simplicity we indicate the construction in this case (the minor modifications necessary 
when f is not normalized are indicated in Exercise 4). 

We first see that any 2-cocycle f lies in the same cohomology class as a normalized 
2-cocycle. Let d1 ft be the 2-coboundary of the constant function f1 on G whose value is 
f ( l ,  1) .  Then f{l ,  1) = dt f1 { 1 , l ) , and one easily checks from the 2-cocycle condition 
that f - d1 ft is normalized. 

We may therefore assume that our cohomology class in H2(G, A) is represented 
by the normalized 2-cocycle f. Let E 1 be the set A x G, and define a binary operation 
on E1 by 

(a1 , g) (a2, h) = (a1 + g · a2 + f(g, h) , gh) ( 17.34) 

where, as usual, g · a2 denotes the module action of G on A. It is straightforward to 
check that the group axioms hold: Since f is normalized, the identity element is (0, 1 )  
and inverses are given by 

( 17.35) 

The cocycle condition implies the associative law by calculations similar to (32) and 
(33) earlier - the details are left as exercises. 

Since f is a normalized 2-cocycle, A* = { (a ,  1) I a E A} is a subgroup of E1, and 
the map t* : a t-+ (a , 1) is an isomorphism from A to A*. Moreover, from (34) and 
(35) it follows that 

{0, g)(a ,  1 ) {0, g)- 1 = (g · a , 1) for all g E G and all a E A . ( 17.36) 

Since E 1 is generated by A* together with the set of elements (0, g) for g E G, (36) 
implies that A* is a normal subgroup of E1 . Furthermore, it is immediate from (34) 
that the map rr* : (a , g) t-+ g is a surjective homomorphism from E1 to G with kernel 
A* ,  i.e., E1jA* � G. Thus 

( 17 .37) 

is a specific extension of G by A, where (36) ensures also that the action of G on 
A by conjugation in this extension is the module action specified in determining the 
2-cocycle f in H2 (G , A). The extension sequence (37) shows that this extension has 
the normalized section Jl(g) = (0, g) whose corresponding normalized factor set is f.  
Note that this proves not only that every cohomology class in H2 (G , A) arises from 
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some extension E, but that every normalized 2-cocycle arises as the normalized factor 
set of some extension. 

Finally, suppose f' is another normalized 2-cocycle in the same cohomology class 
in H2(G, A) as f and let Er be the corresponding extension. If f and /' differ by the 
coboundary of ft :  G � A  then f(g, h) - f'(g, h) = gft (h) - /t (gh) + ft (g) for 
all g ,  h E  G. Setting g = h = 1 shows that ft ( 1 )  = 0. Define 

fJ :  E1 ----+ Er by {J((a , g)) = (a + ft (g), g). 
It is immediate that fJ is a bijection, and 

fJ((at .  g) (a2 , h)) = fJ((at + g · a2 + f(g, h), gh)) 
= (at + g · a2 + f(g ,  h) + ft (gh) ,  gh)) 
= (at + ft (g) + g · (a2 + /t (h)) + f'(g, h) , gh) 
= (at + ft (g) , g) (a2 + ft (h) ,  h) = fJ((at ,  g)){J ((a2 , h)) 

shows that fJ is an isomorphism from E f to E f' . 
The restriction of fJ to A is given by fJ((a ,  1))  = (a + ft (1) ,  1 )  = (a , 1) ,  so fJ is 

the identity map on A. Similarly fJ is the identity map on the second component of 
(a, g), so fJ induces the identity map on the quotient G. It follows that fJ defines an 
equivalence between the extensions E 1 and E f' . This shows that the equivalence class 
of the extension Et depends only on the cohomology class of f in H2(G, A). 

We summarize this discussion in the following theorem. 

Theorem 36. Let A be a G-mod;Jle. Then 
(1) A function f : G x G � A is a normalized factor set of some extension E of 

G by A (with conjugation given by the G-module action on A) if and only if f 
is a normalized 2-cocycle in Z2 (G, A). 

(2) There is a bijection between the equivalence classes of extensions E as in ( 1 )  
and the cohomology classes in  H2(G. A) .  The bijection takes an extension E 
into the class of a normalized factor set f for E associated to any normalized 
section f.l of G into E, and takes a cohomology class c in H2(G, A) to the 
extension E 1 defined by the extension (37) for any normalized cocycle f in the 
class c. 

(3) Under the bijection in (2), split extensions correspond to the trivial cohomology 
class. 

Corollary 37. Every extension of G by the abelian group A splits if and only if 
H2(G, A) = 0. 

Corollary 38. If A is a finite abelian group and ( I  A I ,  IG I )  = 1 then every extension of 
G by A splits. 

Proof: This follows immediately from Corollary 29 in Section 2. 

We can use Corollary 38 to prove the same result without the restriction that A be 
an abelian group. 
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Theorem 39. (Schur's Theorem) If E is any finite group containing a normal subgroup 
N whose order and index are relatively prime, then N has a complement in E.  

Remark: Recall that a subgroup whose order and index are relatively prime is  called 
a Hall subgroup, so Schur's Theorem says that every normal Hall subgroup has a 
complement that splits the group as a semidirect product. 

Proof" We use induction on the order of E. Since we may assume N ::j:. 1 ,  let p be 
a prime dividing I N I  and let P be a Sylow p-subgroup of N. Let Eo be the normalizer 
in E of P and let No = N n E0. By Frattini's Argument (Proposition 6 in Section 6. 1)  
E = E0N. It  follows from the Second Isomorphism Theorem that No is  a (normal) 
Hall subgroup of Eo and ! Eo : No I = I E  : Nl (cf. Exercise 10 of Section 3.3). 

If Eo < E, then by induction applied to No in Eo we obtain that Eo contains a 
complement K to No. Since I K I  = ! Eo : N0 1 ,  K is also a complement to N in E, as 
needed. Thus we may assume Eo = E, i.e., P is normal in E. 

Since the center of P,  Z(P), is characteristic in P ,  it is normal in E (cf. Section 
4.4 ). If Z (P) = N, then N is abelian and the theorem follows from Corollary 38. Thus 
we may assume Z(P) ::j:. N. Let bars denote passage to the quotient group E/Z(P).  
Then N is a normal Hall subgroup of E.  By induction it  has a complement K in E.  
Let Et be the complete preirnage of K in E.  Then ! Et l = I K I I Z(P) I = I E/N I I Z(P) ! .  
s o  Z(P) is a normal Hall subgroup of Et . B y  induction Z(P) has a complement in 
£1 which is seen by order considerations to also . be a complement to N in E. This 
completes the proof. 

Examples 

(1) If G = Z2 and A =  Z/2Z then G acts trivially on A and so H2 (G, A) = AG jN A =  

Z/2Z by the computation of the cohomology of cyclic groups in Section 2, so by 
Theorem 36 there are precisely two inequivalent extensions of G by A. These are 
the cyclic group of order 4 and the Klein 4-group, the latter being split and hence 
corresponding to the trivial class in H2 . 

(2) If G = { g )  � Z2 and A = { a ) � Zj47l. is a group of order 4 on which G acts 
trivially, then H2 (G, A) = Aj2A � Z/2Z by the computation of the cohomology 
of cyclic groups. As in the previous example there are two inequivalent extensions 
of G by A; evidently these are the groups Zs and Z4 x Z2 . the latter split extension 
corresponding to the trivial cohomology class. 

If E = ( r } x ( s ) denotes the split extension of G by A, where lr  I = 4 and 
Is I = 2, then J.Li (g) = ri s for i = 0, . . . , 3 give the four normalized sections of G in 
E.  The sections J.Lo , J.L2 both give the zero factor set f. The sections J.Lt , J.L3 both give 
the factor set f' with f'(g, g) = a2 E A. Both f and f' give normalized 2-cocycles 
lying in the trivial cohomology class of H2(G, A). The extension E.r corresponding 
to the zero 2-cocycle f is the group with the elements (a , 1) and ( 1 ,  g) as the usual 
generators (of orders 4 and 2, respectively) for Z4 x Z2 . In Ef' • however, (a, 1 )  has 
order 4 but so does ( 1 , g) since ( 1 , g)2 = (f'(g, g) , g2) = (a2� 1) . The 2-cocycles f 
and f' differ by the coboundary ft with ft ( 1 )  = 1 and ft (g) = r. The isomorphism 
{3 (a,  g) = (a + ft (g) , g) from Er to Er' maps the generators (a , 1) and ( 1 ,  g) of E.r 
to the generators (a , 1 )  and (a , g) of Er' and gives the explicit equivalence of these 
two extensions. 

The situation where G acts on A by inversion is handled in Exercise 3.  
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(3) Suppose G = Zz and A is the Klein 4-group. If G acts nontrivially on A then G 
interchanges two of the nonidentity elements, say a and b, of A and fixes the third 
nonidentity element c. Then AG = N A =  { 1 , c} and so H2(G, A) = 0, and so every 
extension E of G by A splits. This can be seen directly, as follows. Since the action 
is nontrivial, such a group must be nonabelian, hence must be Dg . From the lattice of 
Dg in Section 2.5 one sees that for each Klein 4-group there is a subgroup of order 2 
in Dg not contained in the 4-group and that subgroup splits the extension. 

If G acts trivially on A then H2 (G, A) = Aj2A � A, so there are 4 inequivalent 
extensions of G by A in this case. These are considered in Exercise 1 . 

Example: (Groups of Order 8 and H2(Z2 X z2. Z/2Z)) 
Let G = { 1 , a , b, c} be the Klein 4-group and let A = Z/2Z. The 2-group G must act 
trivially on A. The elements of H2 (G, A) classify extensions E of order 8 which has a 
quotient group by some Z2 subgroup that is isomorphic to the Klein 4-group. Although 
there are, up to group isomorphism, only four such groups, we shall see that there are eight 
inequivalent extensions. 

Since G x G has 16 elements, we have IC2 (G, A ) i  = 216 . The cocycle condition (26) 
here reduces to 

f(g, h) +  f(gh , k) = f(h, k) + f(g, hk) for all g, h , k E G. 

The following relations hold for the subgroup Z2 (G, A) of cocycles : 
(l) f(g,  1 ) = f(l , g) = f(l , 1) ,  for all g E G 
(2) f(g, 1) + f(g,  a) + f(g, b) + f(g , c) = 0, for all g E G 
(3) f(l , h) + f(a ,  h) + f(b, h) +  f(c, h) = 0, for all h E G. 

( 17.38) 

The first of these come from (38) by setting h = k = 1 and by setting g = h = 1 .  The other 
two relations come from (38) by setting g = h and h = k, respectively, using relations (1)  
and (2). I t  follows that every 2-cocycle f can be represented by a vector (a ,  {3, y,  o ,  E) in 
IFz where 

a =  f(l ,  g) =  f(g , 1 ) , for all g E G, 
f3 = f(a,  a) ,  y = f(a,  b) , o = f(b, a) ,  E = f(b, b) 

because the relations above then determine the remaining values of f:  

f(a,  c) = a  + f3 + y 
f(c, b) = a + y + E 

f(b, c) = a + o + E 

f(c, c) = a + f3 + y + E. 

f(c, a) =  a + f3 + o 

It follows that I Z2 (G, A) i  ::S 25 . Although one could eventually show that every function 
satisfying these relations is a 2-cocycle (hence the order is exactly 32), this will follow 
from other considerations below. 

A cocycle f is a coboundary if there is a function ft : G -+ A such that 

f(g, h) = ft (h) - ft (gh) + ft (g) , for all g, h E  G. 

This coboundary condition is easily seen to be equivalent to the conditions: 
(i) f(g , 1 ) = f(l , g) = f(g, g) for all g E G, and 
(ii) f (g, h) = f (g' , h') whenever g, h are distinct nonidentity elements and so are g' , h'.  

These relations are equivalent to a = f3 = E and y = o .  Thus B2 (G. A) consists of the 
vectors (a , a , y, y, a) , and so H2 (G, A) has dimension at most 3 (i.e., order atmost23 = 8). 
It is easy to see that { (0, f3, y, 0. E)}  with f3, y, and E in IF 2 gives a set of representatives 
for Z2(G, A)jB2(G, A), and each of these representative cocycles is normalized. We 
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now prove I H2(G, A) I = 8 (and also that I Z2(G, A) I = 25) by explicitly exhibiting eight 
inequivalent group extensions, 

Suppose E is an extension of G by A, where for simplicity we assume A :::=: E. If 
J.L : G � E is a section, the factor set for E associated to J.L satisfies 

J.L(g)J.L(h) = f(g, h)J.L(gh). 

The group E is generated by J.L(a ) ,  J.L(b) and A, and A is contained in the center of E since 
G acts trivially on A. Hence E is abelian if and only if J.L(a)J.L(b) = J.L(b)J.L(a), which by 
the relation above occurs if and only if f(a ,  b) = f(b, a) .  If g is a nonidentity element in 
G, we also see from the relation above that J.L(g) is an element of order 2 in E if and only if 
f(g, g) = 0. Because A is contained in the center of E, both elements in any nonidentity 
coset AJ.L(g) have the same order (either 2 or 4). 

There are four groups of order 8 containing a normal subgroup of order 2 with quotient 
group isomorphic to the Klein 4-group: Zz X Zz X Zz, z4 X Zz, Dg, and Qg. 

The group E � Zz x Zz x Zz is the split extension of G by A and has f = 0 as factor 
set. 

When E � Qg, in the usual notation for the quaternion group A = ( - 1  ) . In this (non­
abelian) group every nonidentity coset consists of elements of order 4, and this property is 
unique to Qs, so the resulting factor set f satisfies f (g , g) i= 0 for all nonidentity elements 
in G. 

When E � Z4 x Zz = ( x ) x ( y ) we must have A = ( x2 ) • The cosets Ax and Axy 
both consist of elements of order 4, and the coset Ay consists of elements of order 2, so 
exactly one of 11(a), J.L(b) or 11(c) is an element of order 2 and the other two must be of 
order 4. This suggests three homomorphisms from E to G, defined on generators by 

.Tl'J (Y) = a  .Tl'J (X) = b 
.rrz (y) = b .rrz (x) = a  . 
.Tl'J (Y) = c .Tl'J (X) = a  

Each of these homomorphisms maps suijectively onto G, has A as kernel, and has J.L(a) 
(respectively, J.L(b), J.L(c)) an element oforder 2 in E. Any isomorphism of E with itself that 
is the identity on A must take the unique nonidentity coset Ay of A consisting of elements 
of order 2 to itself. Hence any extension equivalent to the extension Et defined by .Tl'J also 
maps y to a (since the equivalence is the identity on G). It follows that the three extensions 
defined by .Tl'J ,  .rrz and .Tl'J are inequivalent. 

The situation when E � Ds = ( r, s ) is similar. In this case A = ( r2 ) , the cosets As 
and Asr consist of elements of order 2, and the coset Ar consists of elements of order 4. 
In this case exactly one of J.L(a), J.L(b) or J.L(c) is an element of order 4 and the other two 
are of order 2, suggesting the three homomorphisms defined on generators by 

.rrt (r) = a  .Tl'J (S) = b 
.rrz (r) = b .rrz(s) = a  . 
.rr3 (r) = c .rr3 (s) = a  

As before, the corresponding extensions are inequivalent. 
The existence of 8 inequivalent extensions of G by A proves that I H2(G, A) l = 8, 

and hence that these are a complete list of all the inequivalent extensions. In particular, 
the extension E� � Z4 x Zz defined by the homomorphism .rr� mapping y to a and x to c 
must be equivalent to the extension Et above (and similarly for the other two extensions 
isomorphic to Z4 x Zz and the three extensions for Dg). This proves the existence of 
certain outer automorphisms for these groups, cf. Exercise 9. 
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Remark: For any prime p the cohomology groups of the elementary abelian group E pm with 
coefficients in the finite field lF P may be determined by relating them to the cohomology 
groups of the factors in the direct product as mentioned at the end of Section 2. In general, 
H2(Epm . lFp) is a vector space over lFp of dimension �m(m + 1 ) .  When p = 2 and m = 2 
this is the result H2 (Z2 x Z2, Z/2Z) � (Z/2Z)3 above. 

Crossed Product Algebras and the Brauer Group 

Suppose F is a field. Recall that an F -algebra B is a ring containing the field F in its 
center and the identity of B is the identity of F, cf. Section 10. 1 .  

Definition. An F -algebra A is said to be simple i f  A contains no nontrivial proper 
(two sided) ideals. A central simple F -algebra A is a simple F -algebra whose center 
is F.  

Among the easiest central simple F-algebras are the matrix algebras Mn (F) of 
n x n matrices with coefficients in F. 

If KIF is a finite Galois extension of fields with Galois group G = Gal(K I F), 
then we can use the normalized 2-cocycles in Z2(G, Kx ) to construct certain central 
simple K -algebras. The construction of these algebras from 2-cocycles and their clas­
sification in terms of H2(G, Kx )  (cf. Theorem 42 below) are important applications 
of cohomological methods in number theory. Their construction in the case when G is 
cyclic was one of the precursors leading to the development of abstract cohomology. 

Suppose f = {aa, r  }a. rEG is a normalized 2-cocycle in Z2 (G, Kx ) .  Let Bt be the 
vector space over L having basis Ua for cr E G:  

Bt = { L aa U a  I aa E K } . 
aEG 

(17.39) 

Define a multiplication on Bt by 

Ua a =  cr (a) Ua (17.40) 

for a E L and cr, r E G. The second equation shows that the aa, r give a "factor 
set" for the elements Ua in Bt and is one reason this terminology is used. Using this 
multiplication we find 

and 

Since aa, r Gar,p = cr (ar,p) aa,rp is the multiplicative form of the cocycle condition (26), 
it follows that the multiplication defined in (40) is associative. 

Since the cocycle is normalized we have a1 .a = aa, i = 1 for all cr E G and it 
follows from (40) that the element u 1  is an identity in Bt · Identifying K with the 
elements au1 in Bt , we see that Bt is an F-algebra containing the field K and having 
dimension n2 over F if n = [K : F] = I G I . 
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Proposition 40. The F -algebra B f with K -vector space basis Ua in (39) and multipli­
cation defined by (40) is a central simple F -algebra. 

Proof" It remains to show that the center of B 1 is F and that B 1 contains no 
nonzero proper ideals. Suppose x = LaEG aaua is an element in the center of B1. 
Then xf3 = f3x for {3 E K shows that a (f3) = f3 if aa =1= 0. Since there is an element 
f3 E K not fixed by a for any a =1= 1 ,  this shows that aa = 0 for all a =1= 1 ,  so x = a 1 u 1 . 
Then xur = UrX if and only if r (a r ) = a r , so if this is true for all r then we must have 
ar  = a  E K. Hence x = au r  and the center of Bt is F. 

To show that B1 is simple, suppose I is a nonzero ideal in B1 and let 

be a nonzero element of I with the minimal number m of nonzero terms. If m > 1 there 
is an element f3 E Kx with a, (f3) =1= a,_ 1  ({3) .  Then the elementx - a, (f3) x {3-1 would 
be an element of the ideal I with the nonzero element ( 1 - a, (f3 ) a, _ r  (f3r 1)  aam-l as 
coefficient of Uam-l , and would have fewer nonzero terms than x since the coefficient 
of Uam is 0. It follows that m = 1 and x = a Ua for some a E K and some a. This 
element is a unit, with inverse a - 1 (a- 1 ) ua 1 , so I =  Bt, completing the proof. 

Definition. The central simple F-algebra Bt defined by (39) and (40) is called the 
crossed product algebra for the factor set {aa, r } . 

If f' = a� r is a normalized cocycle in the same cohomology class in H2(G, Kx)  
a s  aa, r then there are elements ba E Kx  with 

a�. r = Oa, r (a (b-e )b;;� ba ) 

(the multiplicative form of the coboundary condition (27)). If Br is the F-algebra 
with K -basis Va defined from this cocycle as in (39) and ( 40), then the K -vector space 
homomorphism ffJ defined by mapping u� to ba Ua satisfies 

({J(U� u� ) = ({J(a�. r u�r ) = a�, rbar  Uar = ba a (b-c )  UaUr 

= (ba Ua ) (brUr) = (/J(U� )({J(U� ) .  

It follows that ffJ i s  an F -algebra isomorphism from B f' to B f .  
We have shown that every cohomology class c in H2(G, Kx) defines an isomor­

phism class of central simple F -algebras, namely the isomorphism class of any crossed 
product algebra for a normalized cocycle {aa,r }  representing the class c. The next 
result shows that the trivial cohomology class corresponds to the isomorphism class 
containing Mn (F). 

Proposition 41. The crossed product algebra for the trivial cohomology class in 
H2(G, Kx )  is isomorphic to the matrix algebra Mn (F) where n = [K : F] . 

Proof" If a E K then multiplication by a defines a linear transformation Tc, of 
K viewed as an n-dimensional vector space over F. Similarly, every automorphism 
a E G defines an F -linear transformation Ta of K, and we may view both Ta and Ta as 
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elements of Mn (F) by choosing a basis for K over F. If B0 denotes the crossed product 
algebra for the trivial factor set (aa,r = 1 for all a, T E G), consider the additive map 
cp :  Bo --+ Mn (F) defined by cp(<:Wa) = TaTa . Since Taa = aTa for a E F, the map cp 
is an F -vector space homomorphism. If x E K, we have 

Ta Ta (x) = Ta (ax) = a (ax) = a (a) a (x) = Ta(a) Ta , 
so Ta Ta = Ta(a) Ta as linear transformations on K. It then follows from Ua Ur  = Uar 
that 

cp((aua)(fJur)) = cp(aa (fJ) Uar) = Taa<fi) Tar = Ta Ta(f3) Ta Tr 

= Ta Ta T13 Tr = cp(aua) cp(fJur )  

which shows that cp i s  an F-algebra homomorphism from Bo to Mn (F). Since ker cp 
is an ideal in Bo and cp =f. 0, it follows from Proposition 40 that ker cp = 0 and cp is 
an injection. Since both Bo and Mn (F) have dimension n2 as vector spaces over F, it 
follows that cp is an F -algebra isomorphism, proving the proposition. 

Example 

If K = <C and F = JR., then G = Gal(<C/IR) is of order 2 and generated by complex 
conjugation T .  We have 1 H2 ( G, <C x )  1 = 2. The central simple IR.-algebra Bo corresponding 
to the trivial class is <Cut E9 <Cur with ur (a + bi) = (a - bi)ur and u; = u 1 . This is 
isomorphic to the matrix algebra Mz(IR) under the map 

qJ((a + bi)u t + (c + di)ur ) = al + b7i + cTr + d1iTr = ( ::  � �
b 
�c

d ) . 

A normalized cocycle f representing the nontrivial cohomology class is defined by the 
values a1 , 1 = a1, r = ar, 1 = 1 and ar, r = - 1 .  The corresponding central simple IR.-algebra 
Bt is given by <Cvt E9 <Cvr . The element VI is the identity of Bt , and we have the relations 
Vr (a + bi) = (a - bi)vr and v; = -v1 . Letting VI = 1 and Vr = j we see that Bt is 
isomorphic as an IR.-algebra to the real Hamilton Quaternions JR. + IR.i + IR.j + IRk. 

There is a rich theory of simple algebras and we mention without proof the following 
results. Let A be a central simple F -algebra of finite dimension over F. 

I. If F 5; B 5; A where B is a simple F -algebra define the centralizer Be of B in A to 
be the elements of A that commute with all the elements of B. Define the opposite 
algebra Bopp to be the set B with opposite multiplication, i.e., the product btbz in 
B0PP is given by the product b2bt in B. Both Be and Bopp are simple F -algebras 
and we have 

a. (dim FB) (dim FBe) = dim FA 
b. A ®F Bopp � Mr (Be) as F-algebras, where r = dim FB 
c.  B ® F Be � A if B is a central simple F -algebra. 

II. If A' is an Artinian (satisfies D.C.C. on left ideals) simple F -algebra, then A ®F A' 
is an Artinian simple F -algebra with center (A'Y. 

III. We have A � Mr (!l) for some division ring tJ. whose center is F and some integer 
r ::=: 1 .  The division ring tJ. and r are uniquely determined by A. The same 
statement holds for any Artinian simple F -algebra. 

The last result is part of Wedderburn's Theorem described in greater detail in the 
following chapter. 
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Definition. If A is a central simple F -algebra then a field L containing F is said to 
split A if A ®F L � Mm (L) for some m :=:: 1 .  

It follows from (II) that every maximal commutative subalgebra of f'.. is a field E 
with E = £C = £OPP ; if [E : F] = m we obtain dim F f'.. = m

2 . Applying (II) to 
A =  f'.. and B = E we also see that f'.. ®F E � Mm (E) . It can also be shown that a 
maximal subfield E of the central simple F -algebra A also satisfies E = Ec = Eopp 
and so again by (II) it follows that A ® F E � Mr (E) (r2 = dim FA). 

If A = M7 (f"..) then the field L splits A if and only if L splits f".., as follows. If 
f'.. ®F L � Mn (L) then 

A ®F L � M7 (f'..) ®F L � Mr (l'l ®F L) � Mr (Mn (L)) � Mrn (L) . 

Conversely if A ®F L � Mn (L) then 

Mn (L) � M7 (f"..) ®F L � Mr (l'l ®F L) . 

By (Il) and (III), f'.. ®F L � Ms (f'..') for some division ring f"..' .  Together with the 
previous isomorphism, the uniqueness statement in (III) shows that f"..' � L and then 
the isomorphism f'.. ®F L � Ms (L) shows that L splits f".. . 

We see from the discussion above that a maximal commutative subfield of f'.. splits 
both f'.. and A � M7 (f"..) for any r ::: 1 .  It is not too difficult to show from this that 
every central simple F -algebra of finite dimension over F can be split by a finite Galois 
extension of F. 

Applying (I) by taking A to be the crossed product algebra B1 and taking B = K 
shows that K = Kc = Kopp and Bt ® F K � Mn (K). In particular, the crossed product 
algebras B1 are always split by K. 

Example 

In the example of the Hamilton Quatemions above we have B 1 ®R <C � M2 (<C). We have 
B1 ®JR <C = <C + <Ci + <Cj + <Ck and an explicit isomorphism rp to M2 (<C) is given by 

rp (i)  = ( � _J=y) rp(j) = (� �1 ) 
and extending <C-linearly. 

By (III) every central simple F -algebra A is isomorphic as an F-algebra to M7 (f"..) 
for some division ring f'.. uniquely determined up to F -isomorphism, called the division 
ring part of A. 

Definition. Two central simple £-algebras A and B are similar if A � M7 (f"..) and 
B � M., (f"..) for the same division ring f".., i.e., if A and B have the same division ring 
parts. 

Let [A] denote the similarity class of A.  By (II), if A and B are central simple 
F -algebras then A ® F B is again a central simple F -algebra, so we may define a 
multiplication on similarity classes by [A] [B] = [A ®F B]. The class [F] is an 
identity for this multiplication and associativity of the tensor product shows that the 
multiplication is associative. By (lb) applied with B = A (so then Be = F since A is 
central) we have [A] [A0PP] = [F] , so inverses exist with this multiplication. 
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Definition. The group of similarity classes of central simple F -algebras with multi­
plication [A] [B] = [A &h B] is called the Brauer group of F and is denoted Br (F) . 

If L is any extension field of F then by (II) the algebra A 0 F L is a central 
simple L-algebra. It is easy to check that the map [A] � [A 0F L] is a well defined 
homomorphism from Br(F) to Br(L).  The kernel of this homomorphism consists of 
the classes of the algebras A with A 0F L � Mm (L) for some m ::=: 1 ,  i.e., the algebras 
A that are split by L. 

Definition. If Ll F is a field extension then the relative Brauer group Br (LI F) is the 
group of similarity classes of central simple F -algebras that are split by L. Equivalently, 
Br (LI F) is the kernel of the homomorphism [A] � [A 0F L] from Br(F) to Br (L). 

The following theorem summarizes some major results in this area and shows 
the fundamental connection between Brauer groups and the crossed product algebras 
constructed above. 

Theorem 42. Suppose KIF is a Galois extension of degree n with G = Gal(K I F). 
(1) The central simple F -algebra A with dim FA = n2 is split by K if and only if 

A 0 F K � M11 ( K) if and only if A is isomorphic to a crossed product algebra 
B f as in (39) and ( 40). 

(2) There is a bijection between the F -isomorphism classes of central simple F­
algebras A with A 0F K � M11 (K) and the elements of H2(G, K x ) . Under 
this bijection the class c E H2 (G, K x )  containing the normalized cocycle f 
corresponds to the isomorphism class of the crossed product algebra B f defined 
in (39) and (40), and the trivial cohomology class corresponds to M11 (F) . 

(3) Every central simple F -algebra of finite dimension over F and split by K is 
similar to one of dimension n2 split by K. The bijection in (2) also establishes 
a bijection between B r (KIF) and H2 ( G, K x )  which is also an isomorphism 
of groups. 

(4) There is a bijection between the collection of F -isomorphism classes of central 
simple division algebras over F that are split by K and H2 (G, K x ) . 

As previously mentioned, every central simple F -algebra of finite dimension over 
F can be split by some finite Galois extension of F, and it follows that 

Br (F) = U Br (KIF) 

K 
where the union is over all finite Galois extensions of F. It follows that there is a 
bijection between Br (F) and H2(Gal(F' I F) , (F' ) x )  where F' denotes a separable 
algebraic closure of F. Here Gal( PI F) is considered as a profinite group and the 
cohomology group refers to continuous Galois cohomology. 

One consequence of this result and Theorem 42 is that a full set of representatives 
for the F -isomorphism classes of central simple division algebras !:1 over F can be 
obtained from the division algebra parts of the crossed product algebras for finite Galois 
extensions of F. Those division algebras that are split over K occur for the crossed 
product algebras for KIF. 
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Example 

Since H2 (Gal(Fqa /Fq) ,  F;a ) = 0 (cf. Exercise 1 0), we have Br(Fqa /Fq) = 0 and hence 

also Br (Fq )  = 0. As a consequence, every finite division algebra is a field (cf. Exercise 
13 in Section 1 3 .6 for a direct proof), and every finite central simple algebra F q-algebra is 
isomorphic to a full matrix ring Mr (Fq ) .  

E X E R C I S E S  

1. Let A = { 1 ,  a , b, c} be the Klein 4-group and let G = ( g )  be the cyclic group of order 2 
acting trivially on A. 
(a) Prove that IC2(G, A) l = 28 . 
(b) Show that coboundaries are constant functions, and deduce that I B2(G, A) l = 4. 
(c) Use the cocycle condition to show that I Z2(G. A) l ::; 24• 

(d) If E = z4 X Zz = ( x ) X ( y ) , prove that the extensions 1 � A �  E � G � 1 
defined by n(x) = g, n(y) = 1 and q (a) = x2, q (b) = y (respectively, tz (b) = x2, 
tz (a) = y, and t3 (c) = x2, t3 (a) = y), together with the split extension Zz x Zz x Zz 
give 4 inequivalent extensions of Zz by the Klein 4-group. Deduce that H2 (G, A) 
has order 4 by explicitly exhibiting the corresponding cocycles. 

2. Let A = 7lj47l and let G be the cyclic group of order 2 acting trivially on A. 
(a) Prove that IC2(G, A) l = 28 . 
(b) Use the coboundary condition to show that I B2 (G, A) I =  23 . 
(c) Use the cocycle condition to show that IZ2 (G, A) I ::; 24 . 
(d) Show that I H2 (G, A) I = 2 by exhibiting two inequivalent extensions of G by A and 

their corresponding cocycles. 

3. Let A = 7lj47l and let G be the cyclic group of order 2 acting by inversion on A.  
(a) Show that there are four co boundaries and that only the zero co boundary is  normalized. 
(b) Prove by a direct computation of cocycle and co boundary groups that I H2 ( G, A) I = 2. 
(c) Exhibit two distinct cohomology classes and their corresponding extension groups. 
(d) Show that for a given extension of G by A with extension group isomorphic to Ds 

there are four normalized sections, all of which have the zero 2-cocycle as their factor 
set. 

(e) Show that for a given extension of G by A with extension group isomorphic to Qs 
there are sixteen sections, four of which are normalized, and all of the latter have the 
same factor set. 

4. For a non-normalized 2-cocycle f one defines the extension group E 1 on the set A x G 
by the same binary operation in equation (34). Verify two of the group axioms in this case 
by showing that identity is now (-f ( 1 ,  1 ) ,  1) and inverses are given by 

(a, x)-1 = (-x-1 · a - f(x-1 , x) - f(l , l) , x- 1 ) .  

(Verification of the associative law i s  essentially the same as for normalized 2-cocycles.) 
Prove also that the set A** = {(a - f(l , 1 ) ,  1) 1 a E A} is a subgroup of E1 and the map 
t** : a �--+ (a - f ( 1 , 1 ) ,  1 )  is an isomorphism from A to A** . Show that this extension E 1, 
with the injection t** and the usual projection map rr* onto G, is equivalent to an extension 
derived from a normalized cocycle in the same class as f. 

5. Show that the set of equivalences of a given extension 1 � A � E � G � 1 with itself 
form a group under composition, and that this group is isomorphic to the stability group 
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Stab ( I  � t (A) � E). (Thus Proposition 3 1  implies Z 1 ( G, A) is the group of equivalences 
of the extension with itself). 

6. (Gaschiitz 's Theorem) Let p be a prime, let A be an abelian normal p-subgroup of a finite 
group G, and let P be a Sylow p-subgroup of G. Prove that G is a split extension of G I A 
by A if and only if P is a split extension of PI A by A. (Note that A � P by Exercise 
37 in Section 4.5). [Use Sylow's Theorem to show if G splits over A then so too does P.  
Conversely, show that a normalized 2-cocycle associated to the extension of  P 1 A by A via 
Theorem 36 is the image of a normalized 2-cocycle in H2(GI A ,  A) under the restriction 
homomorphism Res : H2(GIA, A) 4 H2(PIA , A). Then use Proposition 26 and the 
fact that multiplication by IG : P I  is an automorphism of A.j 

7. (a) Prove that H2(A4 , ZI2Z) i= 0 by exhibiting a nonsplit extension of A4 by a cyclic 
group of order 2. [See Exercise 1 1 , Section 4.5.] 

(b) Prove that H2(As , ZI2Z) i= 0 by showing that SL2(F5) is a nonsplit extension of As 
by a cyclic group of order 2. [Use Propositions 21 and 23 in Section 4.5.] 

8. The Schur multiplier of a finite group G is defined as the group H2(G, ex) ,  where the 
multiplicative group ex of complex numbers is a trivial G-module. Prove that the Schur 
multiplier is a finite group. [Show that every cohomology class contains a cocycle whose 
values lie in the nth roots of unity, where n = I G I ,  as follows: If f  is any cocycle then 
by Corollary 27, r E B2(G, e x ) .  Define k E C2(G, e x )  by k(g1 , g2) = j(g1 , g2) 1fn 

(take any nth roots). Show that k E B2(G, ex)  and fk-1 takes values in the group of nth 
roots of 1 .] 

9. Use the classification of the extensions of the Klein 4-group by Z2 in the example following 
Theorem 39 to prove the following (in the notation of that example): 
(a) There is an (outer) automorphism of Z4 x Z2 which interchanges the cosets Ax and 

Axy and fixes the coset Ay. 
(b) There is an outer automorphism of Ds which interchanges the cosets As and Asr and 

fixes the coset Ar. 

10. Suppose Fq is a finite field with G = Gal(Fqd iFq) = ( aq )  where aq is the Frobenius 
automorphism, and let N be the usual norm element for the cyclic group G.  

838 

(a) Use Hilbert's Theorem 90 to prove that I N(Fxd ) l  = (qd - l)l(q - 1),  and deduce that q 
the norm map from F qd to F q is surjective. 

(b) Prove that Hn (G , Fxd )  = 0 for all n > 1 .  
q -
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Pa rt V I  

I NTRO D U GI O N  TO 
TH E RE PRESENTATI O N  TH EO RY 

O F  F I N ITE G RO U PS 

The final two chapters are an introduction to the representation theory of finite 
groups together with some applications. We have already seen in Part I how actions of 
groups on sets, namely permutation representations, are a fundamental tool for unrav­
elling the structure of groups. Cayley's Theorem and Sylow's Theorem as well as many 
of the results and applications in Sections 6. 1 and 6.2 are based on groups acting on sets. 
The chapter on Galois Theory developed one of the most beautiful correspondences in 
mathematics where the action of a group as automorphisms of a field gives rise to a 
correspondence between the lattice of subgroups of the Galois group and the lattice of 
subfields of a Galois extension of fields. In these final two chapters we study groups 
acting as linear transformations on vector spaces. We shall be primarily interested in 
utilizing these linear actions to provide information about the groups themselves. 

In Part III we saw that modules are the "representation objects" for rings in the 
sense that the axioms for an R-module specify a "ring action" of R on some abelian 
group M · which preserves the abelian group structure of M. In the case where M 
was an F[x]-module, x acted as a linear transformation from the vector space M to 
itself. In Chapter 12  the classification of finitely generated modules over Principal Ideal 
Domains gave us a great deal of information about these linear transformations of M 
(e.g., canonical forms). In Chapter 16 we used the ideal structure in Dedekind Domains 
to generalize the results of Chapter 12  to the classification of finitely generated modules 
over such domains. In this part we follow a process similar to the study of F[x ]-modules, 
replacing the polynomial ring with the group ring F G of G and classifying all finitely 
generated FG-modules for certain fields F (Wedderburn's Theorem). We then use this 
classification to derive some results about finite groups such as Burnside's Theorem on 
the solvability of groups of order paqb in Chapter 19. 



CHAPTER 1 8  

Re prese ntati o n  Th eory 
a nd Character Th eory 

1 8.1  LIN EAR ACTIONS AND MODULES OVER GROUP RINGS 

For the remainder of the book the groups we consider will be finite groups, unless 
explicitly mentioned otherwise. Throughout this section F is a field and G is a finite 
group. We first introduce the basic terminology. Recall that if V is a vector space 
over F, then G L(V) is the group of nonsingular linear transformations from V to itself 
(under composition), and if n e z+, then GLn (F) is the group of invertible n x n 
matrices with entries from F (under matrix multiplication). 

Definition. Let G be a finite group, let F be a field and let V be a vector space over F. 
(1) A linear representation of G is any homomorphism from G into GL (V) . The 

degree of the representation is the dimension of V. 
(2) Let n e z+ . A matrix representation of G is any homomorphism from G into 

GLn (F) . 
(3) A linear or matrix representation is faithful if it is injective. 
(4) The group ring of G over F is the set of all formal sums of the form 

with componentwise addition and multiplication (ag) ({3h) = (a{3)(g h) (where 
a and {3 are multiplied in F and gh is the product in G) extended to sums via 
the distributive law (cf. Section 7.2). 

Unless we are specifically discussing permutation representations the term "repre­
sentation" will always mean "linear representation." When we wish to emphasize the 
field F we shall say F -representation, or representation of G on V over F. 

Recall that if V is  a finite dimensional vector space of dimension n, then by fixing 
a basis of V we obtain an isomorphism GL(V) � GLn (F). In this way any linear 
representation of G on a finite dimensional vector space gives a matrix representation 
and vice versa. For the most part our linear representations will be of finite degree and we 
shall pass freely between linear representations and matrix representations (specifying a 
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basis when we wish to give an explicit correspondence between the two). Furthermore, 
given a linear representation cp : G � G L(V) of finite degree, a corresponding matrix 
representation provides numerical invariants (such as the determinant of cp(g) for g E 

G) which are independent of the choice of basis giving the isomorphism between 
GL(V) and GLn (F). The exploitation of such invariants will be fundamental to our 
development. 

Before giving examples of representations we recall the group ring FG in greater 
detail (group rings were introduced in Section 7 .2, and some notation and examples 
were discussed in that section). Suppose the elements of G are g. , gz ,  . . .  , gn . Each 
element of F G is of the form 

n 
L a;g; , 
i=l  

a; E F. 

Two formal sums1 are equal if and only if all corresponding coefficients of group 
elements are equal. Addition and multiplication in F G are defined as follows: 

n n n 

i=l i=l  i=l  

(t a;g;) (t p,g,) = t /  t: a,pj)g, 
g, gj =gk 

where addition and multiplication of the coefficients a; and {31 is performed in F. Note 
that by definition of multiplication, 

FG is a commutative ring if and only if G is an abelian group. 
The group G appears in FG (identifying g; with lg; )  and the field F appears in 

FG (identifying f3 with {Jg, ,  where g1 is the identity of G). Under these identifications 

In this way 

{3 ( t a;g;) = t({Ja; )g; , 
i=l  i=l  

for all f3 E F. 

F G is a vector space over F with the elements of G as a basis. 
In particular, FG is a vector space over F of dimension equal to I G I .  The elements of 
F commute with all elements of FG, i.e., F is in the center of FG. When we wish to 
emphasize the latter two properties we shall say that F G is an F -algebra (in general, an 
F -algebra is a ring R which contains F in its center, so R is both a ring and an F -vector 
space). 

Note that the operations in FG are similar to those in the F -algebra F[x] (although 
F[x] is infinite dimensional over F). In some works FG is denoted by F[G], although 
the latter notation is currently less prevalent. 

1 The formal sum displayed above is a way of writing the function from G to F which takes the 
value a; on the group element g; . This same "formality" was used in the construction of free modules 
(see Theorem 6 in Section 10.3). 
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Examples 

(1) If G = ( g ) is cyclic of order n E z+, then the elements of F G are of the form 

n- 1  
L a;gi .  
i=O 

The map F[x] -+ F ( g )  which sends xk to gk for all k :=::: 0 extends by F -linearity to 
a smjective ring homomorphism with kernel equal to the ideal generated by xn - 1 .  
Thus 

F( g )  � F[x]f(xn - I) .  

This is  an isomorphism of F -algebras, i.e., i s  a ring isomorphism which i s  F -linear. 
(2) Under the notation of the preceding example let r = I + g + g2 + . . .  + gn - l

, so r 
is a nonzero element of F ( g ) . Note that rg = g + g2 + · · · + gn - t + 1 = r, hence 
r( l  - g) = 0. Thus the ring F ( g ) contains zero divisors (provided n > 1 ) . More 
generally, if G is any group of order > 1 ,  then for any nonidentity element g E G, 
F ( g ) is a subring of F G, so F G also contains zero divisors. 

(3) Let G = S3 and F = Q. The elements r = 5( 1 2) - 7(1 2 3) and s = -4(1 2 3) + 
12(1 3 2) are typical members of QS3 . Their sum and product are seen to be 

r + s = 5( 1  2) - 1 1 ( 1  2 3) + 12(1  3 2) 

rs = -20(2 3) + 28( 1  3 2) + 60(1 3) - 84 

(recall that products (compositions) of permutations are computed from right to left). 
An explicit example of a sum and product of two elements in the group ring QDg 
appears in Section 7.2. 

Before giving specific examples of representations we discuss the correspondence 
between representations of G and F G-modules (after which we can simultaneously give 
examples of both). This discussion closely parallels the treatment of F[x ]-modules in 
Section 10. 1 .  

Suppose first that cp : G -+ G L(V) is a representation of G on the vector space V 
over F. As above, write G = {gt • . . .  , gn }. so for each i E { 1 ,  . . . , n} , cp(g; ) is a linear 
transformation from V to itself. Make V into an FG-module by defining the action of 
a ring element on an element of V as follows: 

n 
for all L a; g; E FG, v E V. 

i=l  

We verify a special case of axiom 2(b) of a module (see Section 10. 1 )  which shows 
precisely where the fact that cp is a group homomorphism is needed: 

(g;gj ) · v = cp(g;gj ) (v) 

842 

= (cp(g; ) o cp(gj)) (v) 
= cp (g; ) (cp(gj)(v)) 

= g; .  (gj . v) 

(by definition of the action) 

(since cp is a group homomorphism) 

(by definition of a composition of linear 
transformations) 
(by definition of the action) . 
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This argument extends by linearity to arbitrary elements of F G to prove that axiom 2(b) 
of a module holds in general. It is an exercise to check that the remaining module axioms 
hold. 

Note that F is a subring of F G and the action of the field element a on a vector is 
the same as the action of the ring element a l  on a vector i.e., the FG-module action 
extends the F action on V .  

Suppose now that conversely we are given an FG-module V. We obtain an associ­
ated vector space over F and representation of G as follows. Since V is an F G-module, 
it is an F -module, i.e. , it is a vector space over F. Also, for each g E G we obtain a 
map from V to V, denoted by qJ(g), defined by 

qJ(g) (v) = g · v for all v E V, 

where g · v is the given action of the ring element g on the element v of V.  Since the 
elements of F commute with each g E G it follows by the axioms for a module that for 
all v ,  w E  V and all a, {3 E F we have 

lp(g) (av + {3w) = g · (av + {3w) 
= g · (av) + g · ({3w) 
= a(g · v) + {3(g · w) 
= etlp(g)(v) + f3fP(g) (w) , 

that is, for each g E G, qJ(g) is a linear transformation. Furthermore, it follows by 
axiom 2(b) of a module that 

(this is essentially the calculation above with the steps reversed). This proves that fP is 
a group homomorphism (in particular, qJ(g -1 ) = lp(g) - 1 , so every element of G maps 
to a nonsingular linear transformation, i.e., fP : G -+ G L(V) ) . 

This discussion shows there is a bijection between FG-modules and pairs (V, qJ) : 

{ l { V a vector space over F l 
V an FG-module � and . 

fP : G -+ G L(V) a representation 

Giving a representation fP : G -+ G L(V) on a vector space V over F is therefore 
equivalent to giving an FG-module V. Under this correspondence we shall say that 
the module V affords the representation fP of G.  

Recall from Section 10. 1  that if  a vector space M is  made into an F[x]-module 
via the linear transformation T, then the F [x]-submodules of M are precisely the T­
stable subspaces of M. In the current situation if V is an FG-module affording the 
representation fP, then a subspace U of V is called G-invariant or G-stable if g · u E U 
for all g E G and all u E U (i.e., if qJ(g)(u) E U for all g E G and all u E U). It 
follows easily that 

the FG-submodules of V are precisely the G-stable subspaces of V . 
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Examples 

(1) Let V be a } -dimensional vector space over F and make V into an FG-module by 
letting gv = v for all g E G and v E V. This module affords the representation 
q; : G � GL(V) defined by q;(g) = I = the identity linear transformation, for all 
g E G. The corresponding matrix representation (with respect to any basis of V) is 
the homomorphism of G into GL t (F) which sends every group element to the I x 1 
identity matrix. We shall henceforth refer to this as the trivial representation of G.  
The trivial representation has degree 1 and if  I G I > 1 ,  i t  is not faithful. 

(2) Let V = FG and consider this ring as a left module over itself. Then V affords a 
representation of G of degree equal to I G I .  If we take the elements of G as a basis of 
V, then each g E G permutes these basis elements under the left regular permutation 
representation: 

g .  g; = gg; . 

With respect to this basis of V the matrix of the group element g has a 1 in row i 
and column j if ggj = g; , and has O's in all other positions. This (linear or matrix) 
representation is called the regular representation of G. Note that each nonidentity 
element of G induces a nonidentity permutation on the basis of V so the regular 
representation is always faithful. 

(3) Let n E z+, let G = Sn and let V be an n-dimensional vector space over F with basis 
e1 , £!2, . . .  , en . Let Sn act on V by defining for each a E Sn 

i.e., a acts by permuting the subscripts of the basis elements. This provides an (injec­
tive) homomorphism of Sn into G L(V) (i.e., a faithful representation of Sn of degree 
n), hence makes V into an FSn-module. As in the preceding example, the matrix of 
a with respect to the basis et ,  . . .  , en has a 1 in row i and column j if a · ei = e; (and 
has 0 in all other entries) .  Thus a has a I in row i and column j if a (j) = i .  

For an example of the ring action, consider the action of F S3 on the 3-dimensional 
vector space over F with basis e 1 ,  e2 , e3 . Let a be the transposition ( 1 2), let T be the 
3-cycle ( 1 2 3) and let r = 2a - 3T E F S3 . Then 

r · (c>:et + f3e2 + ye3) = 2(o:ea( l) + f3ea (2) + yea(3) ) - 3 (o:er ( l ) + f3er(2) + yer (3) ) 
= 2(o:e2 + f3e1 + ye3) - 3(o:e2 + f3e3 + yet ) 

= (2{3 � 3y)et - o:e2 + (2y - 3{3)eJ . 
(4) If 1/1 : H � GL(V) is any representation of H and q; : G � H is any group 

homomorphism, then the composition 1/1 o q; is a representation of G.  For example, 
let V be the F Sn-module of dimension n described in the preceding example. If · n : G � Sn is any permutation representation of G, the composition of n with the 
representation above gives a linear representation of G. In other words, V becomes 
an FG-module under the action 

g · e; = e:rr (g)(i ) . for all g E G. 

Note that the regular representation, (2), is just the special case of this where n = I G I  
and n i s  the left regular permutation representation of G. 

(5) Any homomorphism of G into the multiplicative group F x  = GL 1 (F) is a degree 
1 (matrix) representation. For example, suppose G = ( g } � Zn is the cyclic group 
of order n and s is a fixed nth root of 1 in F. Let gi r+ s i , for all i E Z. This 
representation of ( g }  is a faithful representation if and only if s is a primitive nth root 
of 1 .  
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(6) In many situations it is easier to specify an explicit matrix representation of a group 
G rather than to exhibit an FG-module. For example, recall that the dihedral group 
D2n has the presentation 

D2n = ( r, s I rn = s2 = 1 ,  rs = sr-1 ) . 
If R and S are any matrices satisfying the relations Rn = S2 = I and RS = SR-1 
then the map r r+ R and s r+ S extends uniquely to a homomorphism from D2n to the 
matrix group generated by R and S, hence gives a representation of D2n ·  An explicit 
example of matrices R, S E M2 (lR) may be obtained as follows. If a regular n-gon is 
drawn on the x ,  y plane centered at the origin with the line y = x as one of its lines 
of symmetry then the matrix R that rotates the plane through 2rr fn radians and the 
matrix S that reflects the plane about the line y = x both send this n-gon onto itself. 
It follows that these matrices act as symmetries of the n-gon and so satisfy the above 
relations. These matrices are readily computed (cf. Exercise 25, Section 1 .6) and so 
the maps 

r r+ R = (�s
2
2rr Jn - sin

2
2rr Jn ) and s r+ S = (0

1 0
1 ) 

sm njn cos njn 

extend uniquely to a (degree 2) representation of D2n into G L2 (lR) . Since the matrices 
R and S have orders n and 2 respectively, it follows that they generate a subgroup of 
G L2 (IR) of order 2n and hence this representation is faithfuL 

(7) By using the usual generators and relations for the quaternion group 

Qs = ( i , j l i4 = j4 = 1 , i2 = i . ;- 1 ji = T1 ) 
one may similarly obtain (cf. Exercise 26, Section 1 .6) a representation rp from Qs to 
GL2(C) defined by 

. (A o ) 
rp(l ) = o -A and 

. ( 0 - 1 ) 
rp(J)  = 

I 0 . 

This representation of Qs is faithfuL 
(8) A 4-dimensional representation of the quatemion group Qs may be obtained from 

the real Hamilton quatemions, Ill[ (cf. Section 7. 1). The group Qs is a subgroup of 
the multiplicative group of units of Ill[ and each of the elements of Qs acts by left 
multiplication on the 4-dimensional real vector space Ill[_ Since the real numbers are in 
the center ofJH[ (i.e., since Ill[ is an IR-algebra), left multiplication is IR-Iinear. This linear 
action thus gives a homomorphism from Qs into G L4(!R) . One can easily write out 
the explicit matrices of each of the elements of Qs with respect to the basis 1 ,  i, j, k of 
Ill[_ For example, left multiplication by i acts by 1 r+ i, i r+ -1 ,  j r+ k and k r+ -j 
and left multiplication by j acts by l r+ j, i r+ -k, j r+ -1 and k r+ i so 

i r+ (! -� � _ �) and j r+ ( � � -

� ! ) . 
0 0 1 0 0 - 1  0 0 

This representation of Qs is also faithful. 
(9) Suppose that H is a normal subgroup of the group G and suppose that H is an ele­

mentary abelian p-group for some prime p. Then V = H is a vector space over lF P, 

where the scalar a acts on the vector v by av = va (see Section 10.1) . The action 
of each element of G by conjugation on V is lF p-linear because gva g-1 = (gvg-1 )a 
and this action of G on V makes V into an lF pG-module (the automorphisms of el­
ementary abelian p-groups were discussed in Sections 4.4 and 10. 1 ). The kernel of 
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this representation is the set of elements of G that commute with every element of 
H, CG (H) (which always contains the abelian group H itself). Thus the action of a 
group on subsets of itself often affords linear representations over finite fields. Rep­
resentations of groups over finite fields are called modular representations and these 
are fundamental to the study of the internal structure of groups. 

(10) For an example of an FG-submodule, let G = Sn and let V be the F Sn-module 
described in Example 3. Let N be the subspace of V consisting of vectors all of whose 
coordinates are equal, i.e., 

N = {ai el + a2e2 + · · · + an en I a, = a2 = · · · = an }  

(this i s  a ! -dimensional Sn-stable subspace). Each a E Sn fixes each vector in N so the 
submodule N affords the trivial representation of Sn . As an exercise, one may show 
that if n :=::: 3 then N is the unique ! -dimensional subspace of V which is Sn -stable, 
i.e., N is the unique !-dimensional FSn-submodule (N is called the trace submodule 
of FSn) .  

Another F Sn -submodule of V i s  the subspace I of all vectors whose coordinates 
sum to zero: 

I = {ai el + a2e2 + · · · + an en I a1 + a2 + · · · + an = 0} . 

Again I is an Sn-stable subspace (since each a E Sn permutes the coordinates of each 
vector in V, each a leaves the sum of the coefficients unchanged). Since I is the 
kernel of the linear transformation from V onto F which sends a vector to the sum 
of its coefficients (called the augmentation map - cf. Section 7.3), I has dimension 
n - 1 . 

(11) If V = FG is the regular representation of G described in Example 2 above, then V 
has FG-submodules of dimensions 1 and I G I - 1 as in the preceding example: 

N = {a1 g1 + a2g2 + · · · + an gn I a 1 = a2 = · · · = an }  

I = {a1 g1 + a2g2 + · · · + angn I a1 + a2 + · · · + an =  0}. 

In fact N and I are 2-sided ideals of F G (not just left ideals - note that N is in the 
center of FG). The ideal / is called the augmentation ideal of FG and N is called the 
trace ideal of F G .  

Recall that in  the study of a linear transformation T of a vector space V to itself we 
made V into an F[x ]-module (where x acted as T on V); our goal was to decompose V 
into a direct sum of cyclic submodules. In this way we were able to find a basis of V for 
which the matrix of T with respect to this basis was in some canonical form. Changing 
the basis of V did not change the module V but changed the matrix representation of 
T by similarity (i.e., changed the isomorphism between GL(V) and GLn (F)). We 
introduce the analogous terminology to describe when two FG-modules are the same 
up to a change of basis. 

Definition. Two representations of G are equivalent (or similar) if the FG-modules 
affording them are isomorphic modules. Representations which are not equivalent are 
called inequivalent. 

Suppose cp : G ---+ GL ( V) and 1/f : G ---+ GL(W) are equivalent representations 
(here V and W must be vector spaces over the same field F). Let T : V ---+ W be 
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an FG-module isomorphism between them. Since T is, in particular, an F -module 
isomorphism, T is a vector space isomorphism, so V and W must have the same 
dimension. Furthermore, for all g E G, v E V we have T(g · v) = g · (T(v)), since 
T is an isomorphism of FG-modules. By definition of the action of ring elements this 
means T(q;(g)v) = l/t (g)(T(v)) , that is 

T o q;(g) = l/t (g) o T for all g E G. 

In particular, if we identify V and W as vector spaces, then two representations q; and 
l/t of G on a vector space V are equivalent if and only if there is some T E GL(V) such 
that T o q;(g) o T-1 = lft (g) for all g E G. This T is a simultaneous change of basis 
for all q;(g), g E G. 

In matrix terminology, two representations q; and l/t are equivalent if there is a fixed 
invertible matrix P such that 

for all g E G. 

The linear transformation T or the matrix P above is said to intertwine the representa­
tions q; and l/t (it gives the "rule" for changing q; into l/t ). 

In order to study the decomposition of an FG-module into (direct sums of) sub­
modules we shall need some terminology. We state these definitions for arbitrary rings 
since we shall be discussing direct sum decompositions in greater generality in the next 
section. 

Definition. Let R be a ring and let M be a nonzero R-module. 
(1) The module M is said to be irreducible (or simple) if its only submodules are 0 

and M; otherwise M is called reducible. 
(2) The module M is said to be indecomposable if M cannot be written as M1 El1 M2 

for any nonzero submodules M1 and M2; otherwise M is called decomposable. 
(3) The module M is said to be completely reducible if it is a direct sum of irreducible 

submodules. 
(4) A representation is called irreducible, reducible, indecomposable, decompos­

able or completely reducible according to whether the FG-module affording it 
has the corresponding property. 

(5) If M is a completely reducible R-module, any direct summand of M is called 
a constituent of M (i.e. ,  N is a constituent of M if there is a submodule N' of 
M such that M = N EB N'). 

An irreducible module is, by definition, both indecomposable and completely re­
ducible. We shall shortly give examples of indecomposable modules that are not irre­
ducible. 

If R = F G, an irreducible F G-module V is a nonzero F -vector space with no non­
trivial, proper G-invariant subspaces. For example, if dimF V = 1 then V is necessarily 
irreducible (its only subspaces are 0 and V). 

Suppose V is a finite dimensional F G-module and V is reducible. Let U be a 
G-invariant subspace. Form a basis of V by taking a basis of U and enlarging it to a 
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basis of V.  Then for each g E G the matrix, rp(g), of g acting on V with respect to this 
basis is of the fonn 1/r(g) ) rpz(g) 
where (/Jt = rp lu (with respect to the chosen basis of U) and rp2 is the representation 
of G on VI U (and 1/r is not necessarily a homomorphism - 1/r(g) need not be a 
square matrix). So reducible representations are those with a corresponding matrix 
representation whose matrices are in block upper triangular fonn. 

Assume further that the FG-module V is decomposable, V = U ffi U'. Take for 
a basis of V the union of a basis of U and a basis of U'. With this choice of basis the 
matrix for each g E G is of the fonn 

rp(g) = (rpt0(g) o ) rpz (g) 
(i.e. , 1/r (g) = 0 for all g E G). Thus decomposable representations are those with a 
corresponding matrix representation whose matrices are in block diagonal fonn. 

Examples 

(1) As noted above, all degree 1 representations are irreducible, indecomposable and 
completely reducible. In particular, this applies to the trivial representation and to the 
representations described in Example 5 above. 

(2) If I G I  > 1 ,  the regular representation of G is reducible (the augmentation ideal and the 
trace ideal are proper nonzero submodules). We shall later determine the conditions 
under which this representation is completely reducible and how it decomposes into 
a direct sum. 

(3) For n > 1 the F Sn -module described in Example 10 above is reducible since N and 1 
are proper, nonzero submodules. The module N is irreducible (being !-dimensional) 
and if the characteristic of the field F does not divide n, then 1 is also irreducible. 

(4) The degree 2 representation of the dihedral group Dzn = G described in Example 
6 above is irreducible for n � 3. There are no G-invariant ! -dimensional subspaces 
since a rotation by 2rr j n radians sends no line in IR.2 to itself. Similarly, the degree 2 
complex representation of Qs described in Example 7 is irreducible since the given 
matrix rp(i) has exactly two !-dimensional eigenspaces (corresponding to its distinct 
eigenvalues ±.J=T) and these are not invariant under the matrix rp(j) .  The degree 4 
representation rp : Qs -+ GL4(IR.) described in Example 8 can also be shown to be 
irreducible (see the exercises). We shall see, however, that if we view rp as a complex 
representation rp : Qs -+ G L4 (\C) Gust by considering the real entries of the matrices 
to be complex entries) then there is a complex matrix P such that P -l rp (g) P is a direct 
sum of 2 x 2 block matrices for all g E Qs. Thus an irreducible representation over a 
field F may become reducible when the field is extended. 

(5) Let G = ( g } be cyclic of order n and assume F contains all the nth roots of 1 .  As 
noted in Example 1 in the set of examples of group algebras, F( g } � F[x]j(xn - 1) .  
Thus the FG-modules are precisely the F[x]-modules annihilated by xn - 1 .  The 
latter (finite dimensional) modules are described, up to equivalence, by the Jordan 
Canonical Form Theorem. 
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F, there is a basis of V such that g (hence all its powers) is represented by a diagonal 
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matrix (cf. Corollary 25, Section 12.3). In this case, V is a completely reducible F( g }­
module (being a direct sum of ! -dimensional ( g }-invariant subspaces). In general, 
the minimal polynomial of g acting on V divides xn - 1 so if xn - 1 has distinct roots 
in F, then V is a completely reducible F ( g }-module. The polynomial xn - 1 has 
distinct roots in F if and only if the characteristic of F does not divide n. This gives 
a sufficient condition for every F ( g }-module to be completely reducible. 

If the minimal polynomial of g acting on V does not have distinct roots (so 
the characteristic of F does divide n), the Jordan canonical form of g must have an 
elementary Jordan block of size > 1 .  Since every linear transformation has a unique 
Jordan canonical form, g cannot be represented by a diagonal matrix, i.e., V is not 
completely reducible. It follows from results on cyclic modules in Section 12.3 that 
the ( ! -dimensional) eigenspace of g in any Jordan block of size > 1 admits no ( g }­
invariant complement, i.e., V is reducible but not completely reducible. 

Specifically, let p be a prime, let F = IF P and let g be of order p. Let V be the 
2-dimensional space over IF P with basis v, w and define an action of g on V by 

g · V  = V and g · w =  v + w. 

This endomorphism of V does have order p (in GL(V)) and the matrix of g with 
respect to this basis is the elementary Jordan block 

� (g) = ( � � ) . 
Now V is reducible (span{v} is a ( g }-invariant subspace) but V is indecomposable 
(the above 2 x 2 elementary Jordan matrix is not similar to a diagonal matrix). 

The first fundamental result in the representation theory of finite groups shows how 
Example 5 generalizes to noncyclic groups. 

Theorem 1. (Maschke 's Theorem) Let G be a finite group and let F be a field whose 
characteristic does not divide J G J .  If V is any FG-module and U is any submodule of 
V,  then V has a submodule W such that V = U ffi W (i.e. , every submodule is a direct 
summand). 

Remark: The hypothesis of Maschke's Theorem applies to any finite group when F has 
characteristic 0. 

Proof" The idea of the proof of Maschke's Theorem is to produce an F G-module 
homomorphism 

rr : V -+ U  

which is a projection onto U, i .e. , which satisfies the following two properties: 
(i) rr (u) = u for all u E U 
(ii) rr (rr(v)) = rr (v) for all v E V (i.e., rr2 = rr) 

(in fact (ii) i s  implied by  (i) and the fact that rr(V) 5; U). 
Suppose first that . we can produce such an F G-module homomorphism and let 

W = ker rr .  Since rr is a module homomorphism, W is a submodule. We see that W is 
a direct sum complement to U as follows. If v E U n W then by (i), v = rr(v) whereas 
by definition of W, rr(v) = 0. This shows U n W = 0. To show V = U + W let v be 
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an arbitrary element of V and write v = rr (v) + (v - rr (v)) .  By definition, rr (v) E U. 
By property (ii) of rr,  

rr(v - rr (v)) = rr (v) - rr (rr (v)) = rr (v) - rr (v) = 0, 

i.e., v - rr (v) E W. This shows V = U + W and hence V = U EB W. To establish 
Maschke's Theorem it therefore suffices to find such an FG-module projection rr . 

Since U is a subspace it has a vector space direct sum complement Wo in V (take 
a basis Bt of U, build it up to a basis B of V and let Wo be the span of B - 81 ). Thus 
V = U EB W0 as vector spaces but Wo need not be G-stable (i.e. ,  need not be an FG­
submodule). Let rr0 : V --+ U be the vector space projection of V onto U associated 
to this direct sum decomposition, i.e. , rr0 is defined by 

rro(u + w) = u for all u E U, w E Wo. 

The key idea of the proof is to "average" rr0 over G to form an F G-module projection 
rr .  For each g E G define 

by grr0g-1 (v) = g · rro(g-
1 · v) , for all v E V 

(here · denotes the action of elements of the ring F G). Since rro maps V into U and U is 
stable under the action of g we have that grr0g - 1 maps V into U. Both g and g -I act as 
F -linear transformations, so grr0g-1 is a linear transformation. Furthermore, if u is in 
the G-stable space U then so is g- 1 u ,  and by definition ofrro we have rr0(g-1 u) = g-1 u.  
From this we obtain that for all g E G, 

for all u E U 

(i.e. ,  grr0g-1 is also a vector space projection of V onto U). 
Let n = I G I  and view n as an element of F (n = 1 + · · · + 1, n times). By 

hypothesis n is not zero in F and so has an inverse in F. Define 

I '"' 1 rr = - � grrog -
n 

gEG 

Since rr is a scalar multiple of a sum of linear transformations from V to U, it is also 
a linear transformation from V to U. Furthermore, each term in the sum defining rr 
restricts to the identity map on the subspace U and so rr I u is 1 In times the sum of n 
copies of the identity. These observations prove the following: 

rr : V --+ U is a linear transformation 

rr (u) = u for all u E U 
rr2(v) = rr (v) for all v E V. 

It remains to show that rr is an FG-module homomorphism (i.e. , is FG-linear). It 
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suffices to prove that for all h E G, rr(hv) = hrr(v), for v E V. In this case 

1 rr(hv) = - L grro(g-1hv) n 
gEG 

(as g runs over all elements of G,  so does k = h -t g and the module element h may 
be brought outside the summation by the distributive law in modules). This establishes 
the existence of the FG-module projection rr and so completes the proof. 

The applications of Maschke's Theorem will be to finitely generated FG-modules. 
Unlike the situation of F[x]-modules, however, finitely generated FG-modules are 
automatically finite dimensional vector spaces (the difference being that FG itself is 
finite dimensional, whereas F[x] is not). Let V be an FG-module. If V is a finite 
dimensional vector space over F, then a fortiori V is finitely generated as an F G­
module (any F basis gives a set of generators over FG). Conversely, if V is finitely 
generated as an FG-module, say by Vt . . . .  , vk. then one easily sees that V is spanned 
as a vector space by the finite set {g · v; I g E G, 1 � i � k}. Thus 

an F G-module is finitely generated if and only if it is finite dimensional. 

Corollary 2. If G is a finite group and F is a field whose characteristic does not divide 
I G I ,  then every finitely generated FG-module is completely reducible (equivalently, 
every F -representation of G of finite degree is completely reducible). 

Proof: Let V be a finitely generated F G-module. As noted above, V is finite 
dimensional over F, so we may proceed by induction on its dimension. If V is irre­
ducible, it is completely reducible and the result holds. Suppose therefore that V has a 
proper, nonzero FG-submodule U.  By Maschke's Theorem U has an FG-submodule 
complement W, i.e., V = U EB W. By induction, each of U and W are direct sums of 
irreducible submodules, hence so is V .  This completes the induction. 

Corollary 3. Let G be a finite group, let F be a field whose characteristic does not 
divide I G I  and let <p : G -+ GL(V) be a representation of G of finite degree. Then 
there is a basis of V such that for each g E G the matrix of <p (g) with respect to this 
basis is block diagonal: 

c· (g) 
'1'2(g) 

. . . 
�m (gJ 

where <p; is an irreducible matrix representation of G, 1 � i � m. 
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Proof" By Corollary 2 we may write V = U1 EB U2 EB · • · EB Um , where U; is an 
irreducible F G-submodule of V.  Let 13; be a basis of U; and let 13 be the union of the 
13; 's. For each g E G, the matrix of q;(g) with respect to the basis 13 is of the form in 
the corollary, where q;; (g) is the matrix of q; (g) I u; with respect to the basis 13; . 

The converse of Maschke's Theorem is also true. Namely, if the characteristic 
of F does divide I G I ,  then G possesses (finitely generated) F G-modules which are 
not completely reducible. Specifically, the regular representation (i.e., the module FG 
itself) is not completely reducible. 

In Section 18.2 we shall discuss the question of uniqueness of the constituents in 
direct sum decompositions of FG-modules into irreducible submodules. 

E X E R C I S E S 

Let F be a field, let G be a finite group and let n E z:+. 
l. Prove that if cp :  G � GL(V) is any representation, then cp gives a faithful representation 

of Gj ker cp. 

2. Let cp : G � GLn (F} be a matrix representation. Prove that the map g r+ det(cp(g)) is a 
degree 1 representation. 

3. Prove that the degree I representations of G are in bijective correspondence with the degree 
1 representations of the abelian group G j G' (where G' is the commutator subgroup of G). 

4. Let V be a (possibly infinite dimensional) FG-module (G is a finite group). Prove that 
for each v E V there is an FG-submodule containing v of dimension ::::: I G I .  

5 .  Prove that i f  I G I  > 1 then every irreducible FG-module has dimension < I G I .  

6. Write out the matrices cp(g) for every g E G for each of the following representations that 
were described in the second set of examples: 
(a) the representation of S3 described in Example 3· (let n = 3 in that example) 
(b) the representation of Ds described in Example 6 (i.e., let n = 4 in that example and 

write out the values of all the sines and cosines, for all group elements) 
(c) the representation of Qs described in Example 7 
(d) the representation of Qs described in Example 8. 

7. Let V be the 4-dimensional permutation module for S4 described in Example 3 of the 
second set of examples. Let rr : Ds � S4 be the permutation representation of Ds 
obtained from the action of Ds by left multiplication on the set of left cosets of its subgroup 
( s ) . Make V into an F Ds-module via rr as described in Example 4 and write out the 4 x 4 
matrices for r and s given by this representation with respect to the basis e1 , . . .  , e4 .  

8. Let V be the FSn-module described in Examples 3 and 10 in the second set of examples. 
(a) Prove that if v is any element of V such that a · v = v for all a E Sn then v is an 

F-multiple of e1 + e2 + · · · + en .  
(b) Prove that i f  n � 3 ,  then V has a unique !-dimensional submodule, namely the 

sub module N consisting of all F -multiples of e1 + e2 + · · · + en . 

9. Prove that the 4-dimensional representation of Qs on llli described in Example 8 in the 
second set of examples is irreducible. [Show that any Qg-stable subspace is a left ideal.] 

10. Prove that GL2(lR) has no subgroup isomorphic to Qs. [This may be done by direct 
computation using generators and relations for Qg.  Simplify these calculations by putting 
one generator in rational canonical form.]  
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11. Let rp : Sn � GLn (F) be the matrix representation given by the permutation module 
described in Example 3 in the second set of examples, where the matrices are computed 
with respect to the basis e1 . . . .  , en . Prove that det rp(O') = E (O') for all 0' E Sn , where E (O') 
is the sign of the permutation 0'. [Check this on transpositions.] 

12. Assume the characteristic of F is not 2. Let H be the set of T E Mn (F) such that T 
has exactly one nonzero entry in each row and each column and zeros elsewhere, and the 
nonzero entries are ± I .  Prove that H is a subgroup of GLn (F) and that H is isomorphic 
to E2" ><l Sn (semidirect product), where E2n is the elementary abelian group of order 2

n
. 

The next few exercises explore an important result known as Schur's Lemma and some of its 
consequences. 

13. Let R be a ring and let M and N be simple (i.e., irreducible) R-modules. 
(a) Prove that every nonzero R-module homomorphism from M to N is an isomorphism. 

[Consider its kernel and image.] 
(b) Prove Schur's Lemma: if M is a simple R-module then HomR (M, M) is a division 

ring (recall that HomR (M, M) is the ring of all R-module homomorphisms from M 
to M, where multiplication in this ring is composition). 

14. Let rp : G � GL(V) be a representation of G. The centralizer of rp is defined to be the set 
of all linear transformations, A, from V to itself such that Arp(g) = rp(g)A for all g E G 
(i.e., the linear transformations of V which commute with all rp (g)'s). 
(a) Prove that a linear transformation A from V to V is in the centralizer of rp if and only 

if it is an FG-module homomorphism from V to itself (so the centralizer of rp is the 
same as the ring Hompc ( V, V)). 

(b) Show that if z is in the center of G then rp(z) is in the centralizer of rp.  
(c) Assume rp is an irreducible representation (so V is a simple FG-module). Prove 

that if H is any finite abelian subgroup of GL(V) such that Arp(g) = rp (g)A for 
all A E H then H is cyclic (in other words, any finite abelian subgroup of the 
multiplicative group of units in the ring Hompc (V, V) is cyclic). [By the preceding 
exercise, Hompc ( V, V) is a division ring, so this reduces to proving that a finite 
abelian subgroup of the multiplicative group of nonzero elements in a division ring 
is cyclic. Show that the division subring generated by an abelian subgroup of any 
division ring is a field and use Proposition 18,  Section 9.5.] 

(d) Show that if rp is a faithful irreducible representation then the center of G is cyclic. 
(e) Deduce from (d) that if G is abelian and rp is any irreducible representation then 

G I ker rp is cyclic. 

15. Exhibit all ! -dimensional complex representations of a finite cyclic group; make sure to 
decide which are inequivalent. 

16. Exhibit all l -dimensional complex representations of a finite abelian group. Deduce that 
the number of inequivalent degree 1 complex representations of a finite abelian group 
equals the order of the group. [First decompose the abelian group into a direct product of 
cyclic groups, then use the preceding exercise.] 

17. Prove the following variant of Schur's Lemma for complex representations of abelian 
groups: if G is abelian, any irreducible complex representation, rp, of G is of degree 1 
and G 1 ker rp is cyclic. [This can be done without recourse to Exercise 14 by using the 
observation that for any g E G the eigenspaces of rp(g) are G-stable. Your proof that rp 
has degree 1 should also work for infinite abelian groups.] 

18. Prove the following general form of Schur's Lemma for complex representations: if 
rp : G � G Ln (<C) is an irreducible matrix representation and A is an n x n matrix com-
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muting with rp(g) for all g E G, then A is a scalar matrix. Deduce that if rp is a faithful, 
irreducible, complex representation then the center of G is cyclic and rp(z) is a scalar 
matrix for all elements z in the center of G. [As in the preceding exercise, the eigenspaces 
of A are G-stable.] 

19. Prove that if G is an abelian group then any finite dimensional complex representation of G 
is equivalent to a representation into diagonal matrices (i.e., any finite group of commuting 
matrices over C can be simultaneously diagonalized). [This can be done without recourse 
to Maschke's Theorem by looking at eigenspaces.] 

20. Prove that the number of degree 1 complex representations of any finite group G equals 
I G : G' l ,  where G' is the commutator subgroup of G. [Use Exercises 3 and 16.] 

21. Let G be a noncyclic abelian group acting by conjugation on an elementary abelian p-group 
V, where p is a prime not dividing the order of G.  
(a) Prove that if  W is an irreducible lF" pG-submodule of V then there is some nonidentity 

element g E G such that W � Cv (g) (here Cv (g) is the subgroup of elements of V 
that are fixed by g under conjugation). 

(b) Prove that V is generated by the subgroups Cv (g) as g runs over all nonidentity 
elements of G .  

22. Let p be a prime, let P be a p-group and let F be a field of characteristic p. Prove that 
the only irreducible representation of P over F is the trivial representation. [Do this for a 
group of order p first using the fact that F contains all pth roots of 1 (namely 1 itself). If 
P is not of order p, let z be an element of order p in the center of P, prove that z is in the 
kernel of the irreducible representation and apply induction to P j( z ) .] 

23. Let p be a prime, let P be a nontrivial p-group and let F be a field of characteristic p. Prove 
that the regular representation is not completely reducible. [Use the preceding exercise.] 

24. Let p be a prime, let P be a nontrivial p-group and let F be a field of characteristic p. 
Prove that the regular representation is indecomposable. 

1 8.2 WEDDERBURN'S THEOREM AND SOM E CONSEQUENCES 

In this section we give a famous classification theorem due to Wedderburn which de­
scribes, in particular, the structure of the group algebra F G when the characteristic 
of F does not divide the order of G. From this classification theorem we shall derive 
various consequences, including the fact that for each finite group G there are only a 
finite number of nonisomorphic irreducible F G-modules. This result, together with 
Maschke's Theorem, in some sense completes the Holder Program for representation 
theory of finite groups over such fields. The remainder of the book is concerned with 
developing techniques for determining and working with the irreducible representations 
as well as applying this knowledge to obtain group-theoretic information. 

Theorem 4. (Wedderburn's Theorem) Let R be a nonzero ring with l (not necessarily 
commutative). Then the following are equivalent: 

(1) every R-module is projective 
(2) every R-module is injective 
(3) every R-module is completely reducible 
(4) the ring R considered as a left R-module is a direct sum: 
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where each L; is a simple module (i.e. ,  a simple left ideal) with L; = Re; , for 
some e; E R with 

(i) e; ej = 0 if i =!= j 
(ii) ef = e; for all i 

(iii) I:7=t e; = 1 
(5) as rings, R is isomorphic to a direct product of matrix rings over division rings, 

i.e., R = Rt x Rz x · · · x Rr where Rj is a two-sided ideal of R and Rj is 
isomorphic to the ring of all n j x n j matrices with entries in a division ring 6. j ,  
j = 1 ,  2 ,  . . . , r .  The integer r ,  the integers nj , and the division rings !:l.j (up to 
isomorphism) are uniquely determined by R .  

Proof: A proof of Wedderburn' s  Theorem i s  outlined in Exercises 1 to 10 

Definition. A ring R satisfying any of the (equivalent) properties in  Theorem 4 is 
called semisimple with minimwn condition. 

Rings R satisfying any of the equivalent conditions of Theorem 4 also satisfy the 
minimum condition or descending chain condition (D. C. C) on left ideals:  

if It 2 ]z 2 · · · is a descending chain of left ideals of R 

then there is an N E z+ such that h = IN for all k :::: N 

(which explains the use of this term in the definition above). The rings we deal with 
will all have this minimum condition. For example, group algebras always have this 
property since in any strictly descending chain of ideals the vector space dimensions of 
the ideals (which are F -subspaces of FG) are strictly decreasing, hence the length of a 
strictly descending chain is at most the dimension of F G ( = I G 1 ) .  We shall therefore use 
the term "semisimple" to mean "semisimple with minimum condition." The rings R; in 
conclusion (5) of Wedderburn's Theorem are called the Wedderburn components of R 
and the direct product decomposition of R is called its Wedderburn decomposition. Note 
that Wedderburn's Theorem for commutative rings is a consequence of the classification 
of Artinian rings in Section 16. 1 .  A commutative semisimple ring with minimum 
condition is an Artinian ring with Jacobson radical equal to zero and so is a direct 
product of fields (which are its Wedderburn components). 

One should note that condition (5) is a two-sided condition which describes the 
overall structure of R completely (the ring operations in this direct product of rings are 
componentwise addition and multiplication). In particular it implies that a sernisimple 
ring also has the minimum condition on right ideals: A useful way of thinking of the 
elements of the direct product R 1 x · · · x Rr in conclusion (5) is as n x n (block diagonal) 
matrices of the form 

J 
where A; is an arbitrary n; x n; matrix with entries from 6.; (here n = I:;=l n; ). 
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Recall from Section 10.5 that an R-module Q is injective if whenever Q is a 
submodule of any R -module M, then M has a submodule N such that M = Q EB N. 
Maschke's Theorem therefore implies: 

Corollary 5. If G is a finite group and F is a field whose characteristic does not divide 
I G I ,  then the group algebra F G is a semisimple ring. 

Before obtaining more precise information about how the invariants n, r, l'!..j , etc., 
relate to invariants in group rings F G for certain fields F, we first study the structure 
of matrix rings (i.e . , the rings described in conclusions (4) and (5) of Wedderburn ' s 
Theorem). We introduce some terminology which is used extensively in ring theory. 
Recall that the center of the ring R is the subring of elements commuting with all 
elements in R; it will be denoted by Z(R) (the center will contain I if the ring has a 1). 

Definition. 
(1) A nonzero element e in a ring R is called an idempotent if t? = e. 
(2) Idempotents e1 and ez are said to be orthogonal if e1e2 = eze1 = 0. 
(3) An idempotent e is said to be primitive if it cannot be written as a sum of two 

(commuting) orthogonal idempotents. 
(4) The idempotent e is called a primitive central idempotent if e E Z(R) and e 

cannot be written as a sum of two orthogonal idempotents in the ring Z (R). 

Proposition 6 describes the ideal structure of a matrix ring and Proposition 8 extends 
these results to direct products of matrix rings. 

Proposition 6. Let !"!.. be a division ring, let n E z+, let R be the ring of all n x n 
matrices with entries from !"!.. and let I be the identity matrix (= the 1 of R). 

(1) The only two-sided ideals of R are 0 and R. 
(2) The center of R consists of the scalar matrices a I, where a is in the center of !"!.. : 

Z(R) = {a/ I a E Z(l'!..} } , and this is a field isomorphic to Z(I'!..} .  In particular, 
if !"!.. is a field, the center of R is the subring of all scalar matrices. The only 
central idempotent in R is I (in particular, I is primitive). 

(3) Let e; be the matrix with a 1 in position i, i and zeros elsewhere. Then e1 , . . .  , en 
are orthogonal primitive idempotents and I:7=1 e; = I .  

(4) L; = Re; i s  the left ideal consisting of arbitrary entries in  column i and zeros 
in all other columns. L; is a simple left R-module. Every simple left R-module 
is isomorphic to L 1 (in particular, all L; are isomorphic R-modules) and as a 
left R-module we have R = L t EB · · · EB Ln . 

Before proving this proposition it will be useful to have the following result. 

Lemma 7. Let R be an arbitrary nonzero ring. 
(1) If M and N are simple R-modules and cp : M --1- N is a nonzero R-module 

homomorphism, then cp is an isomorphism. 
(2) (Schur 's Lemma) If M is a simple R-module, then HomR (M, M) is a division 

ring. 
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Proof of Lemma 7: To prove ( 1) note that since q; is nonzero, ker q; is a proper 
submodule of M. By simplicity of M we have ker q; = 0. Similarly, the image of q; 
is a nonzero submodule of the simple module N, hence q;(M) = N. This proves q; is 
bijective, so ( 1 )  holds. 

By part ( 1 ), every nonzero element of the ring HomR (M, M) is an isomorphism, 
hence has an inverse. This gives (2). 

Proof of Proposition 6 Let A be an arbitrary matrix in R whose i, j entry is Uij · 
Let Eij be the matrix with a 1 in position i, j and zeros elsewhere. The following 
straightforward computations are left as exercises: 

(i) Eij A is the matrix whose ;th row equals the jth row of A and all other rows are 
zero. 

(ii) AE;j is the matrix whose jth column equals the ;th column of A and all other 
columns are zero. 

(iii) EpqA Ers is the matrix whose p, s entry is Uqr and all other entries are zero. 

To prove (1 )  suppose J is any nonzero 2-sided ideal of R and let A be an element 
of J with a nonzero entry in position q ,  r . Given any p, s E { 1 , . . .  , n }  we obtain from 
(iii) that 

1 
Eps = - Epq AEr.< E J. 

Uqr 

Since the D.-linear combinations of {Eps I 1 � p � n ,  1 � s � n} give all of R, it 
follows that J = R. This proves (1) .  

To prove (2) assume A E Z(R). Thus for all i ,  j we have Eij A = AEij . From 
(i) and (ii) above it follows immediately that all off-diagonal entries of A are zero and 
all diagonal entries of A are equal. Thus A = al for some a E D.. Furthermore, A 
must also commute with the set of all scalar matrices {31, {3 E D., i.e., a must commute 
with all elements of D.. Finally, since Z(R) is a field, it is immediate that it contains a 
unique idempotent (namely J). This establishes all parts of (2). 

In part (3) it is clear that e1 • . . .  , en are orthogonal idempotents whose sum is J .  
We defer proving that they are primitive until we have established (4). 

Next we prove (4). From (ii) above it follows that Re; = RE;; is the set of matrices 
with arbitrary entries in the ;th column and zeros in all other columns. Furthermore, 
if A is any nonzero element of Re; , then certainly RA 5; Re; . The reverse inclusion 
holds because if Up; is a nonzero entry of A, then by (i) above 

1 
e; = E;; = - E;pA E RA.  

Up; 

This proves Re; = RA for any nonzero element A E Re; , and so Re; must be a simple 
R-module. 

Let M be any simple R-module. Since lm = m for all m E M and since I = 
I:7=1 e; . there exists some i and some m E M such that e;m =j:. 0. For this i and m the 
map re; 1-+ re;m is a nonzero R-module homomorphism from the simple R-module 
Re; to the simple module M. By Lemma 7(1) it is an isomorphism. By (ii), the map 
r 1-+ r E; 1 gives Re; � Re1 . Finally, every matrix is the direct sum of its columns so 
R = L1 EB · · · EB Ln . This completes the proof of (4). 
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It remains to prove that the idempotents in part (3) are primitive. If e; = a + b, for 
some orthogonal idempotents a and b, then we shall see that 

L; = Re; = Ra EB Rb. 
This will contradict the fact that L; is a simple R-module. To establish the above direct 
sum note first that since ab = ba = 0, we have ae; = a E Re; and be; = b E Re; .  For 
all r E R we have re; = ra + rb, hence Re; = Ra + Rb . Moreover, Ra n Rb = 0 
because if ra = sb for some r, s E R, then ra = raa = sba = 0 (recall a = a2 and 
ba = 0). This completes all parts of the proof. 

Proposition 8. Let R = Rt x R2 x · · · x R, where R; is the ring of n; x n; matrices 
over the division ring D..; ,  for i = 1 ,  2, . . . , r .  

(1) Identify R;  with the ;th component of  the direct product. Let z ;  be the r-tuple 
with the identity of R; in position i and zero in all other positions. Then 
R; = z; R and for any a E R; , z;a = a and Zja = 0 for all j 'I i .  The elements 
z 1 ,  . • •  , Zr are all of the primitive central idempotents of R .  They are pairwise 
orthogonal and I:;=I z; = 1 .  

(2) Let N be any left R-module and let z; N = {z;x I x E N} ,  1 ::::= i ::::= r.  Then 
z; N is a left R-submodule of N, each z;N is an R; -module on which Rj acts 
trivially for all j 'I i ,  and 

N = zt N EB z2N EB · · · EB ZrN. 

(3) The simple R-modules are the simple R;-modules on which Rj acts trivially 
for j 'I i in the following sense. Let M; be the unique simple R; -module (cf. 
Proposition 6). We may consider M; as an R-module by letting Rj act trivially 
for all j 'I i .  Then M 1 , • • .  , Mr are pairwise nonisomorphic simple R -modules 
and any simple R -module is isomorphic to one of M 1 , • • .  , Mr. Explicitly, the 
R -module M; is isomorphic to the simple left ideal (0, . . .  , 0, L (i) ,  0, . . .  , 0) of 
all elements of R whose ;th component, L (i) ,  consists of matrices with arbitrary 
entries in the first column and zeros elsewhere. 

( 4) For any R -module N the R -submodule z; N is a direct sum of simple R -modules, 
each of which is isomorphic to the module M; in (3). In particular, if M is a 
simple R -module, then there is a unique i such that Z; M = M and for this index 
i we have M � M; ; for all j 'I i ,  ZjM = 0. 

(5) If each D..; equals the field F, then R is a vector space over F of dimension 

L;=l nr and dimF Z(R) = r. 

Proof· In part ( 1 )  since multiplication in the direct product of rings is  componen­
twise it is clear that z; times the element (a1 , • • .  , a7) of R is the r-tuple with a; in 
position i and zeros elsewhere. Thus R; = z; R, z; is the identity in R; and z;a = 0 if 
a E Rj for any j 'I i .  It is also clear that z 1 , . . . , Zr are pairwise orthogonal central 
idempotents whose sum is the identity of R .  The central idempotents of R are, by 
definition, the idempotents in Z (R) = F1 x F2 x · · · x F7 , where F; is the center of R; . 
By Proposition 6, F; is the field Z(D..; ) .  If w = (wt , . . .  , W7) is any central idempotent 
then w; E F; for all i ,  and since w2 = w we have w? = w; in the field F; . Since 0 and 1 
are the only solutions to x2 = x in a field, the only central idempotents in R are r-tuples 
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whose entries are O's and l 's. Thus Z I , . . .  , Zr are primitive central idempotents and 
since every central idempotent is a sum of these, they are the complete set of primitive 
central idempotents of R. This proves ( 1 ). 

To prove (2) let N be any left R-module. First note that for any z E Z(R) the 
set {zx I x E N} is an R-submodule of N. In particular, z; N is an R-submodule. 
Let z;x E z; N and let a E Rj for some j -1- i .  By ( 1 )  we have that a = azj and 
so az;x = (azj ) (z;x) = az;ZjX = 0 because Z; Zj = 0. Thus the R-submodule 
z; N is acted on trivially by Rj for all j -1- i .  For each x E N we have by ( 1 )  that 
x = lx = Z IX + · · · + ZrX, hence N = ZI N + · · · + ZrN. Finally, this sum is direct 
because if, for instance, X E z IN n (zzN + . . . + Zr N), then X = z I X whereas z I times 
any element of zzN + · · · + zrN is zero. This proves (2). 

In part (3) first note that an R; -module M becomes an R-module when Rj is defined 
to act trivially on M for all j -1- i .  For such a module M the R -submodules are the same 
as the R; -submodules. Thus M; is a simple R-module for each i since it is a simple 
R;-module. 

Next, let M be a simple R-module. By (2), M = Z I M EB · · · EB Zr M. Since M 
has no nontrivial proper R -submodules, there must be a unique i such that M = z; M 
and Zj M = 0 for all j -j. i .  Thus the simple R-module M is annihilated by Rj for all 
j -j. i .  This implies that the R -submodules of M are the same as the R; -submodules 
of M, so M is therefore a simple R; -module. By Proposition 6, M is isomorphic as an 
R; -module to M; . Since Rj acts trivially on both M and M; for all j -j. i ,  it follows 
that the R; -module isomorphism may be viewed as an R-module isomorphism as well. 

Suppose i -1- j and suppose q? : M; --+ Mj is an R-module isomorphism. Ifs; E M; 

then S; = Z;S; SO 
f,O(s; ) = f,O(Z;S; )  = Z;f,O(S; ) = 0, 

since f,O(s; ) E Mj and z; acts trivially on Mj . This contradicts the fact that f,O is an iso­
morphism and proves that MI , . . .  , Mr are pairwise nonisomorphic simple R-modules. 

Finally, the left ideal of R described in (3) is acted on trivially by Rj for all j -1- i 
and, by Proposition 6, it is up to isomorphism the unique simple R; -module. This left 
ideal is therefore a simple R-module which is isomorphic to M; . This proves (3). 

For part (4) we have already proved that if M is any simple R-module then there is 
a unique i such that z; M = M and Zj M = 0 for all j -1- i. Furthermore, we have shown 
that for this index i the simple R-module M is isomorphic to M; . Now let N be any 
R -module. Then z; N is a module over R; which is acted on trivially by Rj for all j -1- i .  
By Wedderburn's Theorem z;N is a direct sum of simple R-modules. Since each of 
these simple summands is acted on trivially by Rj for all j -j. i, each is isomorphic to 
M; .  This proves ( 4 ).  

In part (5) if each t:J.; equals the field F, then as an F -vector space 

Each matrix ring M11; (F) has dimension nf over F, hence R has dimension r:;=I nf over 
F. Furthermore, the center of each M11; (F) is ! -dimensional (since by Proposition 6(2) 
it is isomorphic to F), hence Z(R) has dimension r over F. This completes the proof 
of the proposition. 
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We now apply Wedderburn's Theorem (and the above ring-theoretic calculations) 
to the group algebra FG.  First of all, in order to apply Wedderburn's Theorem we 
need the characteristic of F not to divide I G 1. In fact, since we shall be dealing with 
numerical data in the sections to come it will be convenient to have the characteristic of 
F equal to 0. Secondly, it will simplify matters if we force all the division rings which 
will appear in the Wedderburn decomposition of FG to equal the field F - we shall 
prove that imposing the condition that F be algebraically closed is sufficient to ensure 
this. To simplify notation we shall therefore take F = C for most of the remainder of 
the text. The reader can easily check that any algebraically closed field of characteristic 
0 (e.g., the field of all algebraic numbers) can be used throughout in place of C. 

By Corollary 5 the ring CG is semisimple so by Wedderburn's Theorem 

CG � Rt X R2 X · · ·  X Rr 

where R; is the ring of n; x n; matrices over some division ring !::l.; .  Thinking of the 
elements of this direct product as n x n block matrices (n = :E;=l n; )  where the ;th 
block has entries from !::l.; ,  the field C appears in  this direct product as  scalar matrices 
and is contained in the center of CG. Note that each !::l.; is a vector space over C of 
dimension .::: n. The next result shows that this implies each !::l.; = C. 

Proposition 9. If !::l. is a division ring that is a finite dimensional vector space over an 
algebraically closed field F and F � Z(!::l.), then !::l. = F. 

Proof· Since F � Z(!::l.) ,  for each a E !::l. the division ring generated by a and F 
is a field. Also, since !::l. is finite dimensional over F the field F(a) is a finite extension 
of F. Because F is algebraically closed it has no nontrivial finite extensions, hence 
F(a) = F for all a E !::l., i.e., !::l. = F. 

This proposition proves that each R; in the Wedderburn decomposition of CG is a 
matrix ring over C: 

Now Proposition 8(5) implies that 
r 

L n; = I G I .  
i=l 

The final application in this section is to prove that r ( = the number of Wedderburn 
components in CG) equals the number of conjugacy classes of G.  To see this, first 
note that Proposition 8(5) asserts that r = dimcZ(CG) .  We compute this dimension 
in another way. 

Let Kt , . . .  , Ks be the distinct conjugacy classes of G (recall that these partition 
G). For each conjugacy class K; of G let 

X; = L g E CG. 
gEIC, 

Note that X; and Xj have no common terms for i =j:. j, hence they are linearly indepen­
dent elements of CG. Furthermore, since conjugation by a group element permutes the 
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elements of each class, h -t X; h = X; , i.e., X; commutes with all group elements. This 
proves that X; e Z(CG). 

We show the X; 's form a basis of Z(CG), which will prove s = dimc Z (CG) = r. 
Since the X; 's are linearly independent it remains to show they span Z(CG). Let 
X = LgeG a8g be an arbitrary element of Z(CG). Since h-1 Xh = X, 

'L a8h-1gh = 'L a8g. 
geG geG 

Since the elements of G form a basis of CG the coefficients of g in the above two sums 
are equal: 

Since h was arbitrary, every element in the same conjugacy class of a fixed group 
element g has the same coefficient in X, hence X can be written as a linear combination 
of the X; 's. 

We summarize these results in the following theorem. 

Theorem 10. Let G be a finite group. 
(1) CG � Mn1 (C) X Mn2 (C) X • • • X Mn, (C) .  
(2) CG has exactly r distinct isomorphism types of irreducible modules and these 

have complex dimensions n1 , n2, . . .  , nr (and so G has exactly r inequivalent 
irreducible complex representations of the corresponding degrees).  

(3) L�=I n� = I G I . 
(4) r equals the number of conjugacy classes in G .  

Corollary 11. 
(1) Let A be a finite abelian group. Every irreducible complex representation 

of A is 1 -dimensional (i.e., is a homomorphism from A into C x )  and A has 
l A I inequivalent irreducible complex representations. Furthermore, every finite 
dimensional complex matrix representation of A is equivalent to a representation 
into a group of diagonal matrices. 

(2) The number of inequivalent (irreducible) degree 1 complex representations of 
any finite group G equals I GI G' 1 . 

Proof: If A is abelian, CA is a commutative ring. Since a k x k matrix ring is not 
commutative whenever k > 1 we must have each n; = 1 .  Thus r = I A I  (= the number 
of conjugacy classes of A). Since every CA-module is a direct sum of irreducible 
submodules, there is a basis such that the matrices are diagonal with respect to this 
basis. This establishes the first part of the corollary. 

For a general group G, every degree 1 representation, qJ, is a homomorphism of G 
into e x .  Thus qJ factors through GI G'. Conversely, every degree 1 representation of 
G 1 G' gives, by composition with the natural projection G --+ GI G', a degree 1 repre­
sentation of G .  The degree 1 representations of G are therefore precisely the irreducible 
representations of the abelian group GIG'.  Part (2) is now immediate from (1 ). 
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Examples 

(1) The irreducible complex representations of a finite abelian group A (i.e., the homo­
morphisms from A into e x )  can be explicitly described as follows: decompose A into 
a direct product of cyclic groups 

A �  Ct X · · ·  X Cn 

where I C; I = I { x; ) I = d; . Map each x; to a (not necessarily primitive) d; lh root of 
1 and extend this to all powers of x; to give a homomorphism. Since there are d; 
choices for the image of each x; , the number of distinct homomorphisms of A into 
e x  = GL t (C) defined by this process equals I A I .  By Corollary 1 1 , these are all the 
irreducible representations of A. Note that it is necessary that the field contain the 
appropriate roots of 1 in order to realize these representations. An exercise below 
explores the irreducible representations of cyclic groups over Q. 

(2) Let G = S3. By Theorem 10 the number of irreducible complex representations of 
G is three (= the number of conjugacy classes of S3). Since the sum of the squares 
of the degrees is 6, the degrees must be I ,  1 and 2. The two degree 1 representations 
are immediately evident: the trivial representation and the representation of S3 into 
{ ± 1 } given by mapping a permutation to its sign (i.e., u 1-+ + 1 if u is an even permu­
tation and u �-+ - 1  if u is an odd permutation). The degree 2 representation can be 
found by decomposing the permutation representation on 3 basis vectors (described 
in Section 1) into irreducibles as follows: let S3 act on the basis vectors et , f!'l, eJ of a 
vector space V by permuting their indices. The vector t = e1 + e2 + e3 is a nonzero 
fixed vector, so t spans a !-dimensional G-invariant subspace (which is a copy of the 
trivial representation). By Maschke's Theorem there is a 2-dimensional G-invariant 
complement, I .  Note that the permutation representation is not a sum of degree 1 
representations: otherwise it could be represented by diagonal matrices and the per­
mutations would commute in their action - this is impossible since the representation 
is faithful and G is non-abelian. Thus I cannot be decomposed further, so I affords the 
irreducible 2-dimensional representation. Indeed, I is the "augmentation" submodule 
described in Section 1 :  

1 = {w E  V I w = a1 e1 + azf!'l + a3e3 with a t  + az + a3 = 0}. 

Clearly e1 -e2 and ez -e3 are independent vectors in I, hence they form a basis for this 
2-dimensional space. With respect to this basis of I we obtain a matrix representation 
of S3 and, for example, this matrix representation on two elements of S3 is ( - 1  1 ) ( 1  2) 1-+ 

0 1 and ( 0 - 1 ) (1 2 3) �-+ I - l . 
(3) We decompose the regular representation over e of an arbitrary finite group. Recall 

that this is the representation afforded by the left eG-module eG itself. By Theorem 
I 0, eG is first of all a direct product of two-sided ideals: 

eG � Mn1 (C) X Mn2 (C) X · · ·  X Mn, (e) .  

Now by Proposition 6(4) each Mn; (C) decomposes further as a direct sum of  n; 
isomorphic simple left ideals. These left ideals give a complete set of isomorphism 
classes of irreducible eG-modules. Thus the regular representation (over C) of G 
decomposes as the direct sum of all irreducible representations of G, each appearing 
with multiplicity equal to the degree of that irreducible representation. 

We record one additional property of <CG which we shall prove in Section 19.2. 
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Theorem 12. The degree of each complex irreducible representation of a finite group 
G divides the order of G, i.e., in the notation of Theorem 10, each n; divides I G I for 
i = 1 , 2, . . . , r .  

I n  the next section we shall describe the primitive central idempotents of CG in 
terms of the group elements. 

E X E R C I S E S 

Let G be a finite group and let R be a ring with 1 .  

1 .  Prove that conditions ( 1 )  and (2) of Wedderburn's Theorem are equivalent. 
2. Prove that (3) implies (2) in Wedderburn's Theorem. [Let Q be a submodule of an R­

module N. Use Zorn's Lemma to show there is a submodule M maximal with respect to 
Q n M = 0. If Q + M = N, then (2) holds; otherwise let Mt be the complete preimage 
in N of some simple module in N I M not contained in ( Q + M) I M, and argue that M 1 
contradicts the maximality of M.] 

3. Prove that (4) implies (3) in Wedderburn's Theorem. [Let N be a nonzero R-module. First 
show N contains simple submodules by considering a cyclic submodule. Then use Zorn's 
Lemma applied to the set of direct sums of simple submodules (appropriately ordered) to 
show that N contains a maximal completely reducible submodule M. If M =ft N let Mt 
be the complete preimage in N of a simple module in N 1M and contradict the maximality 
of M.] 

4. Prove that (5) implies (4) in Wedderburn's Theorem. [Use the methods in the proofs of 
Propositions 6 and 8 to decompose each R; as a left R-module.] 

The next six exercises establish some general results about rings and modules that imply the 
remaining implication of Wedderburn's Theorem: (2) implies (5). In these exercises assume 
R satisfies (2) :  every R-module is injective. 

5. Show that R has the descending chain condition (D.C.C.) on left ideals. Deduce that R is 
a finite direct sum of left ideals. [If not, then show that as a left R-module R is a direct 
sum of an infinite number of nonzero submodules. Derive a contradiction by writing the 
element 1 in this direct sum.] 

6. Show that R = Rt x R2 x · · · x Rr where Rj is a 2-sided ideal and a simple ring (i .e., 
has no proper, nonzero 2-sided ideals). Show each Rj has an identity and satisfies D.C.C. 
on left ideals. [Use the preceding exercise to show R has a minimal 2-sided ideal Rt . As 
a left R-module R = Rt ffi R' for some left ideal R'. Show R' is a right ideal and proceed 
inductively using D.C.C.] 

7. Let S be a simple ring with 1 satisfying D.C.C. on left ideals and let L be a minimal 
left ideal in S. Show that S ;;: P as left S-modules, where P = L ffi · · · ffi L with n 

factors. [Argue by simplicity that LS = S so 1 = l1s1 + · · · + lnsn for some l; E L 
and s; E S with n minimal. Show that the map (XI ,  . . .  , Xn) 1--+ XI s1 + · · · + XnSn is a 
surjective homomorphism of left S-modules; use the minimality of L and n to show it is 
an injection.] 

8. Let A be any ring with 1 ,  let L be any left A-module and let P be the direct sum of n 

copies of L with itself. 
(a) Prove the ring isomorphism HomA (P , Ln

) ;;: Mn (D), where D = HomA (L , L) 
(multiplication in the ring HomA (X, X) is function composition, cf. Proposition 2(4) 
in Section I 0.2). 
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(b) Deduce that if L is a simple A-module, then Hom A (P , P) is isomorphic to a matrix 
ring over a division ring. [Use Schur's Lemma and (a).] 

(c) Prove the ring isomorphism Hom A (A,  A) ;:::: A opp, where A opp is the opposite ring to 
A (the elements and addition are the same as in A but the value of the product x · y 

in A0PP is yx, computed in A), cf. the end of Section 17.4. [Any homomorphism is 
determined by its value on 1 .] 

9. Prove that if S is a simple ring with I satisfying D.C.C. on left ideals then S ;:::: Mn (.ll) for 
some division ring 11. (This result together with Exercise 6 completes the existence part of 
the proof that (2) implies (5) in Wedderburn's Theorem). [Use Exercises 7 and 8 to show 
sopp ;:::: Homs(P , Ln) ;:::: Mn (D) for some division ring D. Then show S ;:::: Mn (/1), 
where 11 is the division ring vopp .] 

10. Prove that 11 and n in the isomorphism S ;:::: Mn (/1) of the previous exercise are uniquely 
determined by S (proving the uniqueness statement in Wedderburn's Theorem), as follows. 
Suppose S =  Mn (/1) ;:::: Mn' (/1') as rings, where 11 and 11' are division rings. 
(a) Prove that 11 ;:::: Homs(L , L) where L is a minimal left ideal in S. Deduce that 

11 ;:::: 11'. [Use Proposition 6(4).] 
(b) Prove that a finitely generated (left) module over a division ring 11 has a "basis" (a 

linearly independent generating set), and that any two bases have the same cardinality. 
Deduce that n = n

'
. [Mimic the proof of Corollary 4(2) of Section 1 1 . 1 .] 

11. Prove that if R is a ring with 1 such that every R-module is free then R is a division ring. 
12. Let F be a field, let f(x) E F[x] and let R = F[x]j(f(x)). Find necessary and sufficient 

conditions on the factorization of f(x) in F[x] so that R is a semisimple ring. When R is 
semisimple, describe its Wedderburn decomposition. [See Proposition 16 in Section 9.5.] 

13. Let G be the cyclic group of order n and let R = QG. Describe the Wedderburn decom­
position of R and find the number and the degrees of the irreducible representations of 
G over Q. In particular, show that if n = p is a prime then G has exactly one nontrivial 
irreducible representation over Q and this representation has degree p - 1 .  [Recall from 
the first example in Section 1 that QG = Q[x]j(xn - 1 ) .  Use Proposition 16 in Section 
9.5 and results from Section 13 .6.] 

14. Let p be a prime and let F = F P be the field of order p. Let G be the cyclic group of order 
3 and let R = FG. For each of p = 2 and p = 7 describe the Wedderburn decomposition 
of R and find the number and the degrees of the irreducible representations of G over F. 

15. Prove that if P is a p-group for some prime p, then P has a faithful irreducible complex 
representation if and only if Z (P) is cyclic. [Use Exercise 1 8  in Section 1 ,  Theorem 6. 1 (2) 
and Example 3.] 

16. Prove that if V is an irreducible FG-module and F is an algebraically closed field then 
Hompc(V, V) is isomorphic to F (as a ring). 

17. Let F be a field, let R = Mn (F) and let M be the unique irreducible R-module. Prove 
that HomR (M, M) is isomorphic to F (as a ring). 

18. Find all 2-sided ideals of Mn (ll.) . 

1 8.3 CHARACTER THEORY AND THE ORTHOGONALITY RELATIONS 

In general, for groups of large order the representations are difficult to compute and 
unwieldy if not impossible to write down. For example, a matrix representation of 
degree 100 involves matrices with 10,000 entries, and a number of 100 x 100 matrices 
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may be required to describe the representation, even on a set of generators for the 
group. There are, however, some striking examples where large degree representations 
have been computed and used effectively. One instance of this is a construction of 
the simple group lt by Z. Janko in 1965 (the existence problem for simple groups 
was discussed at the end of Section 6.2). Janko was investigating certain properties 
of simple groups and he found that if any simple group possessed these properties, 
then it would necessarily have order 175,560 and would be generated by two elements. 
Furthermore, he proved that a hypothetical simple group with these properties must 
have a ?-dimensional representation over the field IF1 1  with two generators mapping to 
the two matrices 

0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 and 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
1 0 0 0 0 0 0 

-3 
-2 
- 1  
- 1  
-3 

l 
3 

2 - 1  
1 1 

- 1  -3 
-3 - 1  
- 1  -3 

3 3 
3 -2 

- 1  
3 

- 1  
-3 
-3 
-2 

1 

-3 
1 

-3 
-3 

2 
1 
1 

- 1  
3 

-3 
2 

- 1  
l 
3 

-3 
3 
2 

- 1  
- 1  

3 
1 

(note that for any simple group S, every representation of S into G Ln (F) which does 
not map all group elements to the identity matrix is a faithful representation, so S is 
isomorphic to its image in GLn (F)). In particular, Janko's calculations showed that 
the simple group satisfying his properties was unique, if it existed. M. Ward was able 
to show that these two matrices do generate a subgroup of G L1 (IF 1 1 ) of order 175,560 
and it follows that there does exist a simple group satisfying Janko's properties. 

In a similar vein, S. Norton, R. Parker and J. Thackray constructed the simple group 
J4 of order 86,775,57 1 ,046,077,562,880 using a 1 12-dimensional representation over 
IF2• This group was shown to be generated by two elements, and explicit matrices in 
G L 1 12 (IF2) for these two generators were computed in the course of their analysis. 

In 198 1 ,  R. Griess constructed the largest of the sporadic groups, the so called 
Monster, of order 

246 . 320 . 59 . 76 . 1 12 • 133 •  17 . 19 . 23 . 29 . 3 1 . 41 . 47 . 59 . 7 1 . 

His proof involves calculations of automorphisms of an algebra over C of dimension 
196,884 and leads to a construction of the Monster by means of a representation of this 
degree. 

By analogy, in general it is difficult to write out the explicit permutations associated 
to a permutation representation ({J : G � Sn for large degrees n .  There are, however, 
numerical invariants such as the signs and the cycle types of the permutations n(g) and 
these numerical invariants might be easier to compute than the permutations themselves 
(i .e., it may be possible to determine the cycle types of elements without actually having 
to write out the permutations themselves, as in the computation of Galois groups over 
Q in Section 14.8). These invariants alone may provide enough information in a given 
situation to carry out some analysis, such as prove that a given group is not simple (as 
illustrated in Section 6.2). Furthermore, the invariants just mentioned do not depend on 
the labelling of the set { 1 ,  2, . . .  , n} (i.e., they are independent of a "change of basis" 
in Sn) and they are the same for elements that are conjugate in G. 
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In this section we show how to attach numerical invariants to linear representations. 
These invariants depend only on the equivalence class (isomorphism type) of the rep­
resentation. In other words, for each representation ({! : G ---+ G Ln (F) we shall attach 
an element of F to each matrix q; (g) and we shall see that this number can, in many 
instances, be computed without knowing the matrix q;(g) .  Moreover, we shall see that 
these invariants are independent of the similarity class of q; (i.e., are the same for a fixed 
g E G if the representation q; is replaced by an equivalent representation) and that they, 
in some sense, characterize the similarity classes of representations of G. 

Throughout this section G is a finite group and, for the moment, F is an arbitrary 
field. All representations considered are assumed to be finite dimensional. 

Definition. 
(1) A class .function is any function from G into F which is constant on the con­

jugacy classes of G, i.e., .f : G ---+ F such that .f(g-1xg) = .f(x) for all 
g, x E G .  

(2) If ({! is a representation of G afforded by the F G-module V ,  the character of ({! 
is the function 

x : G -+ F defined by x (g) = tr q; (g). 

where tr q;(g) is the trace of the matrix of q;(g) with respect to some basis of 
V (i.e., the sum of the diagonal entries of that matrix). The character is called 
irreducible or reducible according to whether the representation is irreducible 
or reducible, respectively. The degree of a character is the degree of any repre­
sentation affording it. 

In the notation of the second part of this definition we shall also refer to x as the 
character afforded by the F G-module V.  In general, a character is not a homomorphism 
from a group into either the additive or multiplicative group of the field. 

Examples 

(1) The character of the trivial representation is the function x (g) = l for all g E G. This 
character is called the principal character of G. 

(2) For degree l representations, the character and the representation are usually identified 
(by identifying a 1 x l matrix with its entry). Thus for abelian groups, irreducible 
complex representations and their characters are the same (cf. Corollary l l ). 

(3) Let TI : G --+ Sn be a permutation representation and let q; be the resulting linear 
representation on the basis et . . . .  , en of the vector space V: 

866 

q;(g) (e; ) = en(g)(il 

(cf. Example 4 of Section l ). With respect to this basis the matrix of q;(g) has a l 
in the diagonal entry i, i if TI(g) fixes i ;  otherwise, the matrix of q;(g) has a zero in 
position i, i .  Thus if n is the character of q; then 

n(g) = the number of fixed points of g on { l ,  2, . . .  , n } .  

In particular, if  TI i s  the permutation representation obtained from left multiplication 
on the set of left cosets of some subgroup H of G then the resulting character is called 
the pennutation character of G on H. 
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(4) The special case of Example 3 when n is the regular permutation representation of 
G is worth recording: if rp is the regular representation of G (afforded by the module 
FG) and p is its character: { 0 if g # 1 

p (g) = 
IG I  ifg = 1 .  

The character of the regular representation of G is called the regular character of G. 
Note that this provides specific examples where a character takes on the value 0 and 
is not a group homomorphism from G into either F or px . 

(5) Let rp :  D2n � GL2(lR) be the explicit matrix representation described in Example 6 
in the second set of examples of Section 1 .  If x is the character of rp then, by taking 
traces of the given 2 x 2 matrices one sees that x (r) = 2 cos(2rr/n) and x (s) = 0. 
Since rp takes the identity of D2n to the 2 x 2 identity matrix, x (1)  = 2. 

(6) Let rp : Qs � GL2(C) be the explicit matrix representation described in Example 7 
in the second set of examples of Section 1 .  If x is the character of rp then, by taking 
traces of the given 2 x 2 matrices, x (i) = 0 and x (j) = 0. Since the element - 1  e Qs 
maps to minus the 2 x 2 identity matrix, x ( -1 )  = -2. Since rp takes the identity of 
Qs to the 2 x 2 identity matrix, x (1)  = 2. 

(7) Let rp : Qs � GL4(1R) be the matrix representation described in Example 8 in the 
second set of examples of Section 1 .  If x is the character of rp then, by inspection of 
the matrices exhibited, x (i) = x (j) = 0. Since rp takes the identity of Qs to the 4 x 4 
identity matrix, x (1)  = 4. 

For n x n matrices A and B, direct computation shows that tr A B  = tr BA.  If A is 
invertible, this implies that 

tr A-1 BA = tr B .  

Thus the character of a representation is independent of the choice of basis of the vector 
space affording it, i.e., 

equivalent representations have the same character. ( 1 8 . 1 )  

Let rp be a representation o f  G of degree n with character X · Since rp(g-1xg) is 
rp(g)-1 rp (x)rp(g) for all g, x E G, taking traces shows that 

the character of a representation is a class function. ( 1 8.2) 

Since the trace of the n x n identity matrix is n and rp takes the identity of G to the 
identity linear transformation (or matrix), 

x (1) is the degree ofrp. ( 18 .3) 

If V is an F G-module whose corresponding representation has character x .  then 
each element of the group ring F G acts as a linear transformation from V to V. Thus 
each LgeG agg E FG has a trace when it is considered as a linear transformation from 
V to V .  The trace of g E G acting on V is, by definition, x (g). Since the trace of 
any linear combination of matrices is the linear combination of the traces, the trace of 
Lgec agg acting on V is LgeG agx (g) . Note that this trace function on FG is the 
unique extension of the character x of G to an F -linear transformation from F G to F.  
In this way we shall consider characters of G as  also being defined on the group ring 
FG. 
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Notice in Example 3 above that if the field F has characteristic p > 0, the values of 
the character mod p might be zero even though the number of fixed points is nonzero. 
In order to circumvent such anomalies and to use the consequences of Wedderburn's 
Theorem obtained when F is algebraically closed we again specialize the field to be the 
complex numbers (or any algebraically closed field of characteristic 0). By the results 
of the previous section 

<CG � Mn1  (<C) X Mn2 (<C) X • · • X Mn, (<C) . ( 18.4) 

For the remainder of this section fix the following notation: 

M1 , Mz, . . .  , Mr are the inequivalent irreducible <CG-modules, 

Xi is the character afforded by Mi , I :::: i :::: r. 
(1 8.5) 

Thus r is the number of conjugacy classes of G and we may relabel M1 , . . . , Mr if 
necessary so that the degree of Xi is ni for all i (which is also the dimension of M; over 
<C). 

Now every (finite dimensional) <CG-module M is isomorphic (equivalent) to a direct 
sum of irreducible modules: 

(1 8.6) 

where a; is a nonnegative integer indicating the multiplicity of the irreducible module 
Mi in this direct sum decomposition, i.e., 

a; times 

ai Mi = Mi EEl · · · EB Mi . 

Note that if the representation q; is afforded by the module M and M = M1 $ M2 , then 
we may choose a basis of M consisting of a basis of M1 together with a basis of M2. 
The matrix representation with respect to this basis is of the form 

q;(g) = ( (/JJ6g) 
<pz�g) ) 

where q;; is the representation afforded by Mi , i = I ,  2. One sees immediately that if 
1/J is the character of q; and 1/Ji is the character of q;; , then 1/J(g) = 1/f1 (g) + 1/f2(g), i.e., 
1/1 = 1/11 + 1/12 . By induction we obtain: 

the character of a representation is the sum of the characters 
of the constituents appearing in a direct sum decomposition. 

If 1/J is the character afforded by the module M in (6) above, this gives 

1/J = a1 X1 + a2X2 + · · · + arXr · 

(1 8.7) 

(1 8.8) 

Thus every (complex) character is a nonnegative integral sum of irreducible (complex) 
characters. Conversely, by taking direct sums of modules one sees that every such sum 
of characters is the character of some complex representation of G. 

We next prove that the correspondence between characters and equivalence classes 
of complex representations is bijective. Let z1 , zz , . . .  , Zr be the primitive central idem­
patents of <CG described in the preceding section. Since these are orthogonal (or equiv­
alently, since they are the r-tuples in the decomposition of <CG into a direct product of r 
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subrings which have a 1 in one position and zeros elsewhere), ZI , . . .  , Zr are C-linearly 
independent elements of CG. As above, each irreducible character X; is a function on 
CG. By Proposition 8(3) we have 

(a) if j # i then ZjM; = 0, i.e., Zj acts as the zero matrix on Mi , hence Xi (Z; ) = 0, 
and 

(b) z; acts as the identity on M; , hence X; (Z;) = n; . 

Thus XI ,  . . .  , Xr are multiples of the dual basis to the independent set Z I , . . .  , Zr . hence 
are linearly independent functions. Now if the CG-module M described in (6) above 
can be decomposed in a different fashion into irreducibles, say, 

then we would obtain a relation 

a1 X1 + a2X2 + · · · + arXr = h1 X1 + h2X2 + · · · + hrXr · 

By linear independence of the irreducible characters, b; = a; for all i E { 1 ,  . . . , r} . 
Thus, in any decomposition of M into a direct sum of irreducibles, the multiplicity of 
the irreducible M; is the same, 1 � i � r .  In particular, 

two representations are equivalent if and only if they have the same character. 
( 1 8.9) 

This uniqueness can be seen in an alternate way. First, use Proposition 8(2) to 
decompose an arbitrary finite dimensional CG-module M uniquely as 

M = Z1 M EB Z2M EB · · · EB ZrM. 

By part ( 4) of the same proposition, Z; M is a direct sum of simple modules, each of 
which is isomorphic to M; . The multiplicity of M; in a direct sum decomposition of z; M 
. . 

d
" . I dim Z; M 

Thi h h I . I" . f M IS, by countmg ImensiOns, equa to . . s proves t at t e mu tip ICity o ; 
d1m M; 

in any direct sum decomposition of M into simple submodules is uniquely determined. 
Note that, as with decompositions of F[x ]-modules into cyclic submodules, a 

CG-module may have many direct sum decompositions into irreducibles - only 
the multiplicities are unique (see also the exercises). More precisely, comparing 
with the Jordan canonical form of a single linear transformation, the direct summand 
a; M; = M; EB · • • EB M; (a; times) which equals the submodule z; M is the analogue of 
the generalized eigenspace corresponding to a single eigenvalue. This submodule of 
M is unique (as is a generalized eigenspace) and is called the xP' isotypic component 
of M. Within the xr isotypic component, the summands M; are analogous to the ! ­
dimensional eigenspaces and, just as with the eigenspace of an endomorphism there is 
no unique basis for the eigenspace. If G = ( g ) is a finite cyclic group, the isotypic 
components of G are the same as the generalized eigenspaces of g .  

Observe that the vector space of all (complex valued) class functions on G has a 
basis consisting of the functions which are 1 on a given class and zero on all other 
classes. There are r of these, where r is the number of conjugacy classes of G, so the 
dimension of the complex vector space of class functions is r .  Since the number of 
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(complex) irreducible characters of G equals the number of conjugacy classes and these 
are linearly independent class functions, we see that 

the irreducible characters are a basis for the space of all complex class functions. 
( 18. 1 0) 

The next step in the theory of characters is to put an Hermitian inner product 
structure on the space of class functions and prove that the irreducible characters form 
an orthonormal basis with respect to this inner product. For class functions () and 1/f 
define 

1 " -<o . t> = TGI � o (g)l/f(g) 
geG 

(where the bar denotes complex conjugation). One easily checks that ( , ) is Hermitian: 
for a, f3 e ((: 
(a) (a61 + /362 , 1/f) = a(Ot . 1/f) + /3(�. 1/f), 
(b) (0 , al/ft + fJ1/f2) = a(O, 1/Ft) + P(O, 1/f2), and 
(c) (0 , 1/f) = (1/f, 0). 

Our principal aim is to show that the irreducible characters form an orthonormal 
basis for the space of complex class functions with respect to this Hermitian form (we 
already know that they are a basis). This fact will follow from the orthogonality of 
the primitive central idempotents, once we have explicitly determined these in the next 
proposition. 

Proposition 13. Let zt • . . .  , Zr be the orthogonal primitive central idempotents in CG 
labelled in such a way that Zi acts as the identity on the irreducible CG-module Mi , and 
let Xi be the character afforded by Mi . Then 

Xi (1) " -1 Zi = IGf � Xi (g )g. 
geG 

Proof" Let z = Zi and write 

z = L:agg . 
geG 

Recall from Example 4 in this section that if p is the regular character of G then 

{ 0 if g #= 1  p(g) = 
I G I  if g = 1 

( 18. 1 1) 

and recall from the last example in Section 2 that 
r 

p = L Xi O)Xj ·  ( 18 . 12) 
j=l 

To find the coefficient a g . apply p to zg-1 and use linearity of p together with equation 
( 1 1 )  to obtain 
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Computing p (zg-1 )  using ( 12) then gives 

r 

L Xi O)Xj (Zg- 1 ) = a8 IG I . 
i=l 

( 18 . 13) 

Let CfJj be the irreducible representation afforded by Mi, 1 � j � r .  Since we may 
consider cpi as an algebra homomorphism from <CG into End(Mi) , we obtain cpj (zg - I ) = 
cpi (z)cpj (g-1 ) .  Also, we have already observed that cpi (z) is 0 if j =j:. i and cp; (z) is the 
identity endomorphism on M; . Thus 

-1 { 0 if j =j:. i 
(/)j (Zg ) = 

( -1 )  if . . cp; g 1 = l .  

This proves Xi (zg-1 ) = X; (g-1 )tSij , where tSij is zero if i =j:. j and is 1 if i = j (called 
1 

the Kronecker delta). Substituting this into equation (13) gives a8 = TGI X; ( l)X; (g-1 ) .  
This i s  the coefficient of g in  the statement of the proposition, completing the proof. 

The orthonormality of the irreducible characters will follow directly from the or­
thogonality of the central primitive idempotents via the following calculation: 

Z;tS;j = Z;Zi 

= X; ( 1) Xi ( l) "' · ( -1 ) · (h-1 ) h 
I G I  IG I  L x, 

g x, g 
g,hEG 

= X; (1) Xi ( l) "' ["' · (x - 1 ) · (x- 1 )] I G I  IG I  L L x. y x, y 
yEG xEG 

(to get the latter sum from the former substitute y for gh and x for h). Since the 
elements of G are a basis of <CG we may equate coefficients with those of Z; found in 
Proposition 13 to get (the coefficient of g) 

,s . . X; (l ) · ( -I ) _ X; ( l)xj (l) "' · (x - I ) · (x- 1 ) 
IJ I G I x. 

g - IG 12 L x. g x, . 
XEG 

Simplifying (and replacing g by g-1) gives 

,s . .  X; (g) - -
1
- "' x· (xg)x · (x -1 ) for all g E G. 

I J  · ( 1 )  - IG I  L I J x, X EG 

Taking g = 1 in ( 14) gives 

( 1 8 . 14) 

( 18 . 15) 

The sum on the right side would be precisely the inner product (X; ,  Xi) if  Xi (x- I ) were 

equal to Xi (x) ;  this is the content of the next proposition. 
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Proposition 14. If 1/r is any character of G then 1/r (x) is a sum of roots of l in <C and 
'ifr(x-1 ) = 'ifr(x) for all x E G. 

Proof" Let rp be a representation whose character is 1/r,  fix an element x E G and 
let l x l  = k. Since the minimal polynomial of rp(x) divides Xk - 1 (hence has distinct 
roots), there is a basis of the underlying vector space such that the matrix of rp(x) with 
respect to this basis is a diagonal matrix with kth roots of 1 on the diagonal. Since 'ifr(x) 
is the sum of the diagonal entries (and does not depend on the choice of basis), 'ifr(x) 
is a sum of roots of 1 .  Moreover, if E is a root of 1 ,  E - 1 = E. Thus the inverse of a 
diagonal matrix with roots of 1 on the diagonal is the diagonal matrix with the complex 
conjugates of those roots of 1 on the diagonal. Since the complex conjugate of a sum 
is the sum of the complex conjugates, 1/r (x-1 ) = tr rp(x-1 ) = tr rp(x) = 'ifr(x). 

Keep in mind that in the proof of Proposition 14 we first fixed a group element x 
and then chose a basis of the representation space so that rp(x) was a diagonal matrix. 
It is always possible tQ diagonalize a single element but it is possible to simultaneously 
diagonalize all rp(x) 's if and only if rp is similar to a sum of degree 1 representations. 

Combining the above proposition with equation ( 1 5) proves: 

Theorem 15. (The First Orthogonality Relation for Group Characters) Let G be a 
finite group and let XI ,  . . . , Xr be the irreducible characters of G over <C. Then with 
respect to the inner product ( , ) above we have 

(X; ,  Xj)  = 8ij 

and the irreducible characters are an orthonormal basis for the space of class functions. 
In particular, if 8 is any class function then 

8 = L)8 , X; )x; . 
i = l  

Proof: We have just established that the irreducible characters form an orthonormal 
basis for the space of class functions. If 8 is any class function, write 8 = I::·= I a; X; ,  
for some a; E <C. It follows from linearity of the Hermitian product that a; = (8, X; ), 
as stated. 

We list without proof the Second Orthogonality Relation; we shall not require it 
for the applications in this book. 

Theorem 16. {The Second Orthogonality Relation for Group Characters) Under the 
notation above, for any x , y E G 

if x and y are conjugate in G 
otherwise. 

Definition. For 8 any class function on G the norm of 8 is ( 8 ,  8) 1 12 and will be denoted 
by 1 1 8 1 1 -
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When a class function is written in terms of the irreducible characters, 0 = L CXj Xi ' 
its norm is easily calculated as I I  0 I I  = (L af) 112 . It follows that 

a character has norm 1 if and only if it is irreducible. 
Finally, observe that computations of the inner product of characters 0 and 1/r may be 

simplified as follows. If IC1 , • • .  , ICr are the conjugacy classes of G with sizes d1 , • • • , d, 

and representatives g1 , . . .  , gr respectively, then the value 8 (g; )1/r(g; ) appears d; times 
in the sum for ( 0 , 1/r ) , once for each element of IC; .  Collecting these terms gives 

1 r --
(0 , 1/r) = TGT � d;O(g;)l/r(g; ) ,  

•=1 

a sum only over representatives of the conjugacy classes of G. In particular, the norm 
of 0 is given by 

1 r 
I I  o 1 12 = (O , O) = IGI � ddO(g; ) l2 . 

•=1 

Examples 

(1) Let G = S3 and let n be the permutation character of degree 3 described in the 
examples at the beginning of this section. Recall that rr (a) equals the number of 
elements in ( 1 ,  2, 3} fixed by a .  The conjugacy classes of S3 are represented by 1 ,  
(1 2)  and ( 1  2 3) of sizes 1 ,  3 and 2 respectively, and rr (l)  = 3, rr ((1 2)) = 1 ,  
rr((l  2 3)) = 0 .  Hence 

I I  n 1 12 = � [1 rr(l)2 + 3 rr((1  2))2 + 2 rr((l  2 3))2] 
1 = 6 (9 + 3 + 0) = 2 

This implies that n is a sum of two distinct irreducible characters, each appearing with 
multiplicity 1 .  Let X1 be the principal character of S3, so that X1 (a) = X1 (a) = 1 for 
all a E S3 . Then 

(rr, X1 )  = � [ I  rr(1)X1 ( 1 )  + 3 rr (( 1  2))X1 ((1  2)) + 2 rr(( l  2 3))X1 ((1 2 3)) ] 
1 = 
6

(3 + 3 + 0) = 1 

so the principal character appears as a constituent of n with multiplicity 1 .  This proves 
n = X1 + X2 for some irreducible character X2 of S3 of degree 2 (and agrees with our 
earlier decomposition of this representation). This also shows that the value of X2 on 
a E S3 is the number of fixed points of a minus 1 .  

(2) Let G = S4 and let n be the natural permutation character of degree 4 (so again rr(a) 
is the number of fixed points of a). The conjugacy classes of S4 are represented by 1 ,  
( 1 2), (1  2 3) ,  (1  2 3 4) and ( 1 2) (3 4) of sizes 1 ,  6, 8, 6 and 3 respectively. Again we 
compute: 

I I  n 1 12 = 
2
� [ 1 rr (1)2 + 6 rr ((l 2))2 + 8 rr ((l 2 3))2 + 6 rr((1  2 3 4))2 

+ 3 rr ((l 2) (3 4))2] 
1 = 

24 
(16 + 24 + 8 + 0 + 0) = 2 . 
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so ;r has two distinct irreducible constituents. If X1 is the principal character of S4 , 
then 

1 
(;r, X1 ) = 

24 ( 1  n ( l) + 6 ;r((l  2)) + 8 ;r (( l 2 3)) 

+ 6 Ir (( l 2 3 4)) + 3 ;r((l  2)(3 4))] 
1 = 

2/4 +  12 + 8 + 0 + 0) = 1 .  

This proves that the degree 4 permutation character is the sum of the principal character 
and an irreducible character of degree 3. 

(3) Let G = Ds, where 

Ds = { r, s  I s2 = r4 = 1 , rs = sr- 1 ) .  

The conjugacy classes of Ds are represented by 1 , s ,  r ,  r2 and s r  and have sizes 1 ,  2, 
2, 1 and 2, respectively. Let q; be the degree 2 matrix representation of Ds obtained 
as in Example 6 in Section l from embedding a square in JR2: 

( 0 1 ) ( 0 - 1 ) 2 ( - 1  0 ) ( 1 0 ) q;(s) = 1 0 ' q;(r) = 1 0 ' q;(r ) = 0 - 1 ' q;(sr) = 0 - 1 · 
Let 1/f be the character of this representation (where we consider the real matrices as 
a subset of the complex matrices). Again, since 1/f is real valued one computes 

1 
1 1 1/f 1 12 = 8 [ 11/f(1)2 + 21/f(s)2 + 21/f(r)2 + 11/f(r2)2 + 21/f(sr)2] 

1 = g- (4 + 0 + 0 + 4 + 0) = 1 .  

This proves the representation q; i s  irreducible (even if we allow similarity transfor­
mations by complex matrices). 

We have seen that the sum of two characters is again a character. Specifically, if 
1/11 and 1/12 are characters of representations 9'1 and 9'2, then 1/11 + 1/12 is the character of 
9'1 + 9'2· 

Proposition 17. If 1/11 and 1/12 are characters, then so is their product 1/11 1/12 · 

Proof" Let V1 and V2 be CG-modules affording characters 1/11 and 1/12 and define 
w = v1 ®c v2. Since each g E G acts as a linear transformation on v1 and v2. the 
action of g on simple tensors by g(v1 ® v2) = (gv1 )  ® (gv2) extends by linearity to a 
well defined linear transformation on W by Proposition 17 in Section 1 1 .2. One easily 
checks that this action also makes W into a CG-module. By Exercise 38 in Section 
1 1 .2 the character afforded by W is Vt1 Vt2· 

The next chapter will contain further explicit character computations as well as 
some applications of group characters to proving theorems about certain classes of 
groups. 
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Some Remarks on Fourier Analysis and Group Characters 

This brief discussion is intended to indicate some connections of the results above with 
other areas of mathematics. 

The theory of group representations described to this point is a special branch of 
an area of mathematics called Harmonic Analysis. Readers may already be familiar 
with the basic theory of Fourier series which also falls into this realm. We make some 
observations which show how representation theory for finite groups corresponds to 
"Fourier series" for some infinite groups (in particular, to Fourier series on the circle). 
To be mathematically precise one needs the Lebesgue integral to ensure completeness of 
certain (Hilbert) spaces but readers may get the flavor of things by replacing "Lebesgue" 
by "Riemann." 

Let G be the multiplicative group of points on the unit circle in <C: 

G = {z E <C I l z l  = 1 } .  

We shall usually view G as the interval [0, 2rr] i n  ffi. with the two end points identified, 
i.e., as the additive group ffi.j2n/Z (the isomorphism is: the real number x corresponds 
to the complex number eix ). Note that G has a translation invariant measure, namely 
the Lebesgue measure, and the measure of the circle is 2rr. For finite groups, the 
counting measure is the translation invariant measure (so the measure of a subset H is 
the number of elements in that subset, I H I )  and integrals on a finite group with respect 
to this counting measure are just finite sums. 

The space 

L2 (G) = {f :  G ---+ <C I f  is measurable and 1 / 1 2  is integrable over G } 

plays the role of the group algebra of the infinite group G .  This space becomes a 
commutative ring with 1 under the convolution of functions: for f, g E L2(G) the 
product f * g : G ---+ <C is defined by 

(f * g) (x) = _1 {2rr f (x - y)g(y) dy 
2rr lo for all x E G . 

(Recall that for a finite group H, the group algebra is also formally the ring of <C-valued 
functions on H under a convolution multiplication and that these functions are written 
as formal sums - the element L agg E <CG denotes the function which sends g to 
ag E <C for all g E G.) 

The complete set of continuous homomorphisms of G into G L 1 (<C) is  given by 

en (X) = einx , X E [0, 2rr] ,  n E /Z. 

(Recall that for a finite abelian group, all irreducible representations are ] -dimensional 
and for 1 -dimensional representations, characters and representations may be identi­
fied.) 

The ring L 2 (G) admits an Hermitian inner product: for f, g E L 2 (G) 

1 12rr _ 
(f, g) = - f (t)g(t) dt . 

2rr 0 
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Under this inner product, {en I n E Z} is an orthonormal basis (where the term "basis" is 
used in the analytic sense that these are independent and 0 is the only function orthogonal 
to all of them). Moreover, 

where En is the ! -dimensional subspace spanned by en , the hat over the direct sum 
denotes taking the closure of the direct sum in the L 2-topology, and equality indicates 
equality in the L 2 sense. (Recall that the group algebra of a finite abelian group is the 
direct sum of the irreducible ! -dimensional submodules, each occurring with multi­
plicity one.) These facts imply the well known result from Fourier analysis that every 
square integrable function f (x) on [0, 2rr] has a Fourier series 

00 

where the Fourier coefficients, Cn ,  are given by 

1 12:n: Cn = (f, en) = -
j(t)e-int dt. 2rr 0 

This brief description indicates how the representation theory of finite groups ex­
tends to certain infinite groups and the results we have proved may already be familiar in 
the latter context. In fact, there is a completely analogous theory for arbitrary (not nec­
essarily abelian) compact Lie groups - here the irreducible (complex) representations 
need not be ! -dimensional but they are all finite dimensional and L2(G) decomposes 
as a direct sum of them, each appearing with multiplicity equal to its degree. The 
emphasis (at least at the introductory level) in this theory is often on the importance of 
being able to represent functions as (Fourier) series and then using these series to solve 
other problems (e.g., solve differential equations). The underlying group provides the 
"symmetry" on which to build this ''harmonic analysis," rather than being itself the 
principal object of study. 

E X E R C I S E S 

Let G be a finite group. Unless stated otherwise all representations and characters are over <C. 

1. Prove that tr AB = tr B A for n x n matrices A and B with entries from any commutative 
ring. 

2. In each of (a) to (c) let 1/f be the character afforded by the specified representation cp .  

(a) Let cp be the degree 2 representation of Dto described in Example 6 in  the second 
set of examples in Section 1 (here n = 5) and show that 1 1 1/f 1 1 2 = 1 (hence cp is 
irreducible). 

(b) Let cp be the degree 2 representation of Qs described in Example 7 in the second set 
of examples in Section 1 and show that 1 1 1/f 1 1 2 = 1 (hence cp is irreducible). 

(c) Let cp be the degree 4 representation of Qs described in Example 8 in the second set of 
examples in Section 1 and show that 1 1 1/f 1 12 = 4 (hence even though cp is irreducible 
over IR, cp decomposes over <C as twice an irreducible representation of degree 2). 

3. If x is an irreducible character of G, prove that the x-isotypic subspace of a <CG-module 
is unique. 
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4. Prove that if N is any irreducible CG-module and M = N ffi N, then M has infinitely 
many direct sum decompositions into two copies of N. 

S. Prove that a class function is a character if and only if it is a positive integral linear 
combination of irreducible characters. 

6. Let ({! : G � GL(V) be a representation with chaJacter 1/J.  Let W be the subspace 
{v E V I ({J(g)(v) = v for all g E G} of V fixed pointwise by all elements of G. Prove that 
dim W = (1/J, Xt) ,  where Xl is the principal character of G. 

7. Assume V is a CG-module on which G acts by permuting the basis 13 = {e1 , . . .  , en } .  
Write 13 as a disjoint union of the orbits 13t , . . .  , 13, of G on 13. 
(a) Prove that V decomposes as a CG-module as Vt ffi · · · ffi V1 , where V; is  the span of 

13; .  
(b) Prove that if v; is the sum of the vectors in 13; then the !-dimensional subspace of V; 

spanned by v; is the unique CG-submodule of V; affording the trivial representation 
(in other words, any vector in V; that is fixed under the action of G is a multiple of 
v; ) . [Use the fact that G is transitive on 13; . See also Exercise 8 in Section 1 .] 

(c) Let W = {v E V I ({J(g) (v) = v for all g E G} be the subspace of V fixed pointwise 
by all elements of G. Deduce that dim W = t = the number of orbits of G on 13. 

8. Prove the following result (sometimes called Burnside's Lemma although its origin is with 
Frobenius): let G be a subgroup of Sn and for each a E G let Fix(a) denote the number 
of fixed points of a on { 1 , . . . , n } .  Let t be the number of orbits of G on { 1 ,  . . .  , n ] .  Then 

t i G I  = L Fix(g). 
geG 

[Use the preceding two exercises.] 

9. Let G be a nontrivial, transitive group of permutations on the finite set !J and let 1/1 be the 
character afforded by the linear representation over C obtained from !J (cf. Example 4 in 
Section 1) so 1/f(a) is the number of fixed points of a on !J. Now let G act on the set 
!J x !J by g · (wt , W2.) = (g · w1 , g · W2.) and let rr be the character afforded by the linear 
representation obtained from this action. 
(a� Prove that rr = 1/12. 
(b) Prove that the number of orbits of G on !J x !J is given by the inner product (1/1, 1/f).  

[By the preceding exercises, the number of orbits on !J x !J is equal to (rr, Xt),  where 
Xl is the principal character.] 

(c) Recall that G is said to be doubly transitive on !J if it has precisely 2 orbits in its 
action on !J x !J (it always has at least 2 orbits since the diagonal, { (w, w) I w E  !J} , 
is one orbit) . Prove that if G is doubly transitive on !J then 1/1 = Xl + X2. where Xl 
is the principal character and X2 is a nonprincipal irreducible character of G. 

(d) Let !J = { 1 ,  2 . . . . , n}  and let G = Sn act on !J in the natural fashion. Show that the 
character of the associated linear representation decomposes as the principal character 
plus an irreducible character of degree n - 1 .  

10. Let 1/f be the character of any 2-dimensional representation of a group G and let x be an 
element of order 2 in G. Prove that 1/f(x) = 2, 0 or -2. Generalize this to n-dimensional 
representations. 

ll. Let x be an irreducible character of G. Prove that for every element z in the center of G 
we have x (z) = EX (l) ,  where E is some root of 1 in C. [Use Schur's Lemma.] 

12. Let 1/f be the character of some representation ({! of G. Prove that for g E G the following 
hold: 
(a) if 1/f(g) = 1/f(l)  then g E ker ({J, and 
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(b) if lt/r (g) l = tjr(l)  and q; is faithful then g E Z(G) (where l tJr (g) l is the complex 
absolute value of tjr (g)). [Use the method of proof of Proposition 14.] 

13. Let q; : G � G L(V) be a representation and let X : G � ex be a degree 1 representation. 
Prove that xq; : G � GL(V) defined by xq;(g) = x (g)q;(g) is a representation (note that 
multiplication of the linear transformation q;(g) by the complex number x (g) is well 
defined). Show that xq; is irreducible if and only if q; is irreducible. Show that if tJr is the 
character afforded by q; then x tJr is the character afforded by x q;. Deduce that the product 
of any irreducible character with a character of degree 1 is also an irreducible character. 

The next few exercises study the notion of algebraically conjugate characters. These exercises 
may be considered as extensions of Proposition 14 and some consequences of these extensions. 
In particular we obtain a group-theoretic characterization of the conditions under which all 
irreducible characters of a group take values in Q. 

Let F be the sub field of C of all elements that are algebraic over Q (the field of algebraic 
numbers). Thus F is the algebraic closure of Q contained in C and all the results established 
over C hold without change over F. 

14. Note that since F � C, every representation q; : G � GLm (F) may also be considered 
as a complex representation. Prove that if q; is a representation over F that is irreducible 
over F, then q; is also irreducible when considered over the larger field C (note that this is 
not true if F is not algebraically closed - cf. Exercise 2(c) above). Show that the set of 
irreducible characters of G over F is the same as the set of irreducible characters over C 
(i.e .. these are exactly the same set of class functions on G). Deduce that every complex 
representation is equivalent to a representation over F. [Since F is algebraically closed 
of characteristic 0, the irreducible characters over either F or C are characterized by the 
first orthogonality relation.] 

Let q; : G � G Lm (F) be any representation with character tJr. Let Q(q;) denote the subfield 
of F generated by all the entries of the matrices q;(g) for all g E G. 

15. Prove that Q(q;) is a finite extension of Q. 

Now let K be any Galois extension of Q containing Q(q;) and let a E Gal(K/Q) . In fact, 
since every automorphism of K extends to an automorphism of F, we may assume a is any 
automorphism of F. The map q;a : G � GLn (F) is defined by letting q;a (g) be the n x n 
matrix whose entries are obtained by applying the field automorphism a to the entries of the 
matrix q; (g) . 

16. Prove that q;a is a representation. Prove also that the character of q;a is tjra , where 
tJra (g) = a  (tJr(g)) .  

17. Prove that q; i s  irreducible if  and only if  q;a i s  irreducible. 

The representation q;a (or character tjra) is called the algebraic conjugate of q; by a (or of 
tjr, respectively); two representations ({JI and (/)2 (or characters t/r1 and t/r2) are said to be alge­
braically conjugate if there is some automorphism a of F such that q;f = (/)2 (or tJrf = t/r2, 
respectively) .  Some care needs to be taken with this (standard) notation since the exponen­
tial notation usually denotes a right action whereas automorphisms of F act on the left on 
representations : q;Car) = (q;r )a . 

Let Q(tJr) be the subfield of F generated by the numbers tJr(g) for all g E G.  Let I G I = n 
and let c: be a primitive n1h root of 1 in F. 

18. Prove that Q( tJr) � Q( c:). Deduce that Q( tJr) is a Galois extension of Q with abelian Galois 
group. [Sec Proposition 14.] 
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Recall from Section 14.5 that Gal(Q( E) /Q) � (7Lj n7L) x ,  where the Galois automorphisms are 
given on the generator E by a a : E r-+ Ea , where a is an integer relatively prime to n . 

19. Prove that if aa E Gal(Q(E)/Q) is the field automorphism defined above, then for all 
g E G we have 1/fa" (g) = 1/f(ga). [Use the method of Proposition 14.] 

20. Prove that if g is an element of G which is conjugate to ga for all integers a relatively 
prime to n, then 1/f (g) E Q, for every character 1/1 of G. [Use the preceding exercise and 
the fact that Q is the field fixed by all au 's.] 

21. Prove that an element g E G is conjugate to ga for all integers a relatively prime to IG I  if 
and only if g is conjugate to ga' 

for all integers a' relatively prime to lg l . 

22. Show for any positive integer n that every character of the symmetric group Sn is rational 
valued (i.e., 1/f(g) E Q for all g E Sn and all characters 1/1 of Sn). 

The next two exercises establish the converse to Exercise 20. 

23. Prove that elements x and y are conjugate in a group G if and only if x (x) = x (y) for all 
irreducible characters x of G. 

24. Let g E G and assume that every irreducible character of G is rational valued on g. Prove 
that g is conjugate to ga for every integer a relatively prime to IG  1 .  [If g is not conjugate to 
ga for some a relatively prime to IG I  then by the preceding exercise there is an irreducible 
character x such that x (g) i=- x (ga) .  Derive a contradiction from the hypothesis that 
x (g) e Q.] 

25. Describe which irreducible characters of the cyclic group of order n are algebraically 
conjugate. 

26. Prove that every irreducible character of both Qs and Ds is rational valued. Prove that 
Dto has an irreducible character that is not rational valued. 

27. Let G = H x K and let rp : H � GL(V) be an irreducible representation of H with 

character x .  Then G � H � GL(V) gives an irreducible representation of G, where 
TlH is the natural projection; the character, "j(, of this representation is "j(((h, k)) = x (h) . 
Likewise any irreducible character 1/1 of K gives an irreducible character ';f of G with 
';f ((h , k)) = 1/f (k) . 
(a) Prove that the product x_';f is an irreducible character of G. [Show it has norm 1 .] 
(b) Prove that every irreducible character of G is obtained from such products of irre-

ducible characters of the direct factors. [Use Theorem 10, either (3) or (4).] 

28. (Finite subgroups ojGL2(Q)) Let G be a finite subgroup of GL2(Q) . 
(a) Show that GL2(Q) does not contain an element of order n for n = 5, 7, or n :::: 9. 

Deduce that IG I  = 2a3b . [Use rational canonical forms.] 
(b) Show that the Klein 4-group is the only noncyclic abelian subgroup of GL2(Q) . 

Deduce from this and (a) that IG I  1 24. 
(c) Show that the only finite subgroups of GL2(Q) are the cyclic groups of order 1, 2, 3, 

4, and 6, the Klein 4-group, and the dihedral groups of order 6, 8, and 12. [Use the 
classifications of groups of small order in Section 4.5 and Exercise 10  of Section 1 
to restrict G to this list. Show conversely that each group listed has a 2-dimensional 
faithful rational representation.] 
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CHAPTER 1 9  

Exa m p l es a nd Ap p l icat i o n s  
of Cha racte r Th eo ry 

1 9.1  CHARACTERS OF GROUPS OF SMALL ORDER 

The character table of a finite group is the table of character values formatted as follows: 
list representatives of the r conjugacy classes along the top row and list the irreducible 
characters down the first column. The entry in the table in row X; and column gj is 

X; (gj) . The character table of a finite group is unique up to a permutation of its rows 
and columns. It is customary to make the principal character the first row and the 
identity the first column and to list the characters in increasing order by degrees. In 
our examples we shall list the size of the conjugacy classes under each class so the 
entire table will have r + 2 rows and r + 1 columns (although strictly speaking, the 
character table is the r x r matrix of character values). This will enable one to easily 
check the "orthogonality of rows" using the first orthogonality relation: if the classes 
are represented by g, , . . .  , gr of sizes d, , . . .  , dr then 

1 r --
(X; , Xj ) = TGI LdkX; (gdxj (gk) . 

k=l 
The second orthogonality relation says that the Hermitian product of any two distinct 
columns of a character table is zero (i.e., it gives an "orthogonality of columns"). 

A number of character tables are given in the Atlas of Finite Groups by Conway, 
Curtis, Norton, Parker and Wilson, Clarendon Press, 1985. These include the character 
table of the Monster simple group, M. The group M has 194 irreducible characters. 
The smallest degree of a nonprincipal irreducible character of M is 196883 and the 
largest degree is on the order of 2 x 1026 . Nonetheless, it is possible to compute the 
values of all these characters on all conjugacy classes of M. 

For the first example of a character table let G = ( x ) be the cyclic group of order 
2. Then G has 2 conjugacy classes and two irreducible characters: 

classes : 1 X 

sizes: 1 1 

XI 1 

X2 1 - 1  

Character Table of Z2 



The characters and representations of this abelian group are the same, and the irreducible 
representations of any abelian group are described in Example 1 at the end of Section 
1 8.2. 

Similarly, if G = ( x ) is cyclic of order 3, and t; is a fixed primitive cube root of I 
(so t;2 = �). then the character table of G is the following: 

classes: X x2 

sizes: 1 

Xl  1 I I 

X2 I t; t;2 

X3 I t;2 t; 

Character Table of Z3 

Next we construct the character table of S3 . Recall from Example 2 in Section 1 8.2 

that S3 has 3 irreducible characters whose values are described in that example and in 
Example 1 at the end of Section 1 8.3. 

classes: 1 ( 1 2) ( 1 2 3) 

sizes: 1 3 2 

Xl 1 

X2 I - 1  

X3 2 0 - 1  

Character Table of S3 

Next we consider D8, adopting the notation of Example 3 of Section 1 8.3. By 
Corollary 1 1 ,  D8 has four characters of degree I .  Also, in Example 3 we constructed 
an irreducible degree 2 representation. Since the sum of the squares of the degrees 
of these representations is 8, this accounts for all irreducible representations (or, since 
there are 5 conjugacy classes, there are 5 irreducible representations). If we let bars 
denote passage to the commutator quotient group (which is the Klein 4-group), then 

T = r2• The degree 1 representations (= their characters) are computed by sending 
generators s and r to ± 1 (and the product class is mapped to the product of the values). 
Matrices for the degree 2 irreducible representation were computed in Example 3 of 
Section 1 8.3 and the character of this representation can be read directly from these 
matrices. The character table of D8 is therefore the following: 

classes: r2 s r sr 
sizes: 1 2 2 2 

Xl 1 1 1 1 1 

X2 1 1 - 1  1 - 1  

X3 1 1 1 - 1  - 1  

X4 1 1 - 1  - 1  1 

Xs 2 -2 0 0 0 

Character Table of Ds 
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Now we compute the character table of the quaternion group of order 8. We use 
the usual presentation 

Qs = u. i I ;4 = 1 , ;2 = /. i - l ii = rl } 
and let k = ij and i2 = -1 .  The conjugacy classes of Q8 are represented by 1 ,  - 1 , i ,  
j and k of sizes 1 ,  1 ,  2 ,  2 and 2 ,  respectively. Since the commutator quotient of Q 8  is 
the Klein 4-group, there are four characters of degree 1 .  The one remaining irreducible 
character must have degree 2 in order that the sum of the squares of the degrees be 8. Let 
x5 be the degree 2 irreducible character of Q8• One may check that the representation 
cp : Q8 --+ G L2 (C) described explicitly in Example 7 in the second set of examples of 
Section 1 8. 1  affords xs . but we show how the orthogonality relations give the values 
of xs without knowing these explicit matrices. If cp is an irreducible representation of 
degree 2, by Schur's Lemma (cf. Exercise 1 8  in Section 18 . 1 ) cp(- 1) is a 2 x 2 scalar 
matrix and so is ± the identity matrix since - 1  has order 2 in Qg. Hence xs ( - 1) = ±2. 
Let xs (i) = a,  xs (j) = b and xs (k) = c. The orthogonality retations give 

1 = (xs . xs)  = � (22 + (±2)2 + 2aa + 2bb + 2cC). 

Since ali, bb and cc are nonnegative real numbers, they must all be zero. Also, since 
xs is orthogonal to the principal character we get 

1 0 = (XI , xs) = 8 (2 + (±2) + o + o + 0) , 

hence xs ( - 1) = -2. The complete character table of Q8 is the following: 

classes: 1 - 1  j k 
sizes: 1 1 2 2 2 

XI 1 1 1 1 1 
X2 1 1 - 1  1 - 1  
X3 1 1 1 - 1  - 1  
X4 1 1 - 1  - 1  1 
Xs 2 -2 0 0 0 

Character Table of Qs 

Observe that Ds and Qg have the same character table, hence 

nonisomorphic groups may have the same character table. 
Note that the values of the degree 2 representation of Qs could also have been easily 
calculated by applying the second orthogonality relation to each column of the character 
table. We leave this check as an exercise. Also note that although the degree 2 irreducible 
characters of Ds and Qg have the same (real number) values the degree 2 representation 
of D8 may be realized by real matrices whereas it may be shown that Q8 has no faithful 
2-dimensional representation over lR (cf. Exercise 10  in Section 18 . 1) . 

For the next example we construct the character table of S4. The conjugacy classes 
of S4 are represented by 1 ,  ( 1 2) , ( 1 2 3) , ( 1 2 3 4) and ( 1 2) (3 4) with sizes 1 ,  6, 8, 6, 

and 3 respectively. Since S� = A4, there are two characters of degree 1 :  the principal 
character and the character whose values are the sign of the permutation. 

882 Chap. 19  Examples and  Appl ications o f  Character Theory 



To obtain a degree 2 irreducible character let V be the normal subgroup of order 
4 generated by ( 1 2) (3 4) and ( 1 3) (2 4) . Any representation ({! of S4j V  � S3 gives, 
by composition with the natural projection S4 � S4j V, a representation of S4 ; if the 
former is irreducible, so is the latter. Let ({! be the composition of the projection with the 
irreducible 2-dimensional representation of S3 , and let X3 be its character. The classes 
of 1 and ( 1 2) (3 4) map to the identity in the S3 quotient, ( 1 2) and (1 2 3 4) map to 
transpositions and ( 1 2 3) maps to a 3-cycle. The values of X3 can thus be read directly 
from the values of the character of degree 2 in the table for s3 . 

Since S4 has 5 irreducible characters and the sum of the squares of the degrees is 
24, there must be two remaining irreducible characters, each of degree 3 .  In Example 2 
of Section 1 8 .3 one of these was calculated, call it X4 ·  Recall that 

X4(o-) = (the number of fixed points of o-) - 1 .  

The remaining irreducible character, xs , is X4X2 · One can either use Proposition 1 7  in 
Section 1 8 .3 or Exercise 1 3  in Section 1 8.3 to see that this product is indeed a character. 
The first orthogonality relation verifies that it is irreducible. 

classes: 1 ( 1 2) ( 1 2 3) ( 1 2 3 4) ( 1 2)(3 4) 
sizes: 1 6 8 6 3 

Xl 1 1 l 1 1 

X2 1 - 1  1 - 1  1 

X3 2 0 - 1  0 2 

X4 3 1 0 - 1  - 1  

Xs 3 - 1  0 l - 1  

Character Table of S4 

From the character table of S4 one can easily compute the character table of A4. 
Note that A4 has 4 conjugacy classes. Also I A4 : A� I = 3, so A4 has three characters 
of degree 1 with V = A� in the kernel of each degree 1 representation. The remaining 
irreducible character must have degree 3. One checks directly from the orthogonality 
relation applied in A4 that the character x4 of S4 restricted to A4 (= xs i A4 ) is irreducible. 
This irreducibility check is really necessary since an irreducible representation of a 
group need not restrict to an irreducible representation of a subgroup (for instance, the 
irreducible degree 2 representation of S3 must become reducible when restricted to any 
proper subgroup, since these are all abelian). The character table of A4 is the following 

classes: 1 ( 1 2) (3 4) ( 1 2 3) 
sizes: 1 3 4 

Xl 1 1 1 

X2 1 1 { 
X3 1 1 {2 

X4 3 - 1  0 

Character Table of Aa 
where { is a primitive cube root of 1 in C. 
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As a final example we construct the following character table of S5 : 

classes: 1 ( 1 2) ( 1 2 3) ( 1 2 3 4) ( 1 2 3 4 5) ( 1 2) (3 4) ( 1 2) (3 4 5) 
sizes: 1 1 0  20 30 24 1 5 20 

XI 1 1 1 l 1 1 
X2 1 - 1  1 - 1  l 1 - 1  
X3 4 2 1 0 - 1  0 - 1  
X4 4 -2 1 0 - 1  0 1 
Xs 5 - 1  - 1  1 0 1 - 1  

X6 5 1 - 1  - 1  0 1 1 

X7 6 0 0 0 1 -2 0 

Character Table of S5 

The conjugacy classes and their sizes were computed in Section 4.3. Since I Ss : S� I = 2, 

there are two degree 1 characters: the principal character and the "sign" character. 
The natural permutation of S5 on 5 points gives rise to a permutation character of 

degree 5 .  As with S4 and S3 the orthogonality relations show that the square of its norm 
is 2 and it contains the principal character. Thus x3 is the permutation character minus 
the principal character (and, as with the smaller symmetric groups, X3 ( u) is the number 
of fixed points of u minus 1 ). As argued with S4, it follows that X4 = X3 X2 is also an 
irreducible character. 

To obtain xs recall that Ss has six Sylow 5-subgroups. Its action by conjugation on 
these gives a faithful permutation representation of degree 6. If 1/1 is the character of 
the associated linear representation, then since u E S5 fixes a Sylow 5-subgroup if and 
only if it normalizes that subgroup, we have 

1/f(u) = the number of Sylow 5-subgroups normalized by u. 

The normalizer in S5 of the Sylow 5-subgroup ( (1 2 3 4 5) ) is ( ( 1 2 3 4 5) , (2 3 5 4) ) 
and all normalizers of Sylow 5-subgroups are conjugate in S5 to this group. This 
normalizer contains only the identity, 5-cycles, 4-cycles and products of two disjoint 
transpositions. No other cycle type normalizes any Sylow 5-subgroup so on any other 
class, 1/1 is zero. To compute 1/1 on the remaining three nonidentity classes note (by 
inspection in S6) that in any faithful action on 6 points the following hold: an element 
of order 5 must be a 5-cycle (hence fixes 1 point); any element of order 4 which fixes 
one point must be a 4-cycle (hence fixes 2 points); an element of order 2 which is the 
square of an element of order 4 fixes exactly 2 points also. This gives all the values of 
1/f.  Now direct computation shows that 

and (XI ,  1/1) = 1 . 
Thus xs = 1/1 - XI is irreducible of degree 5. By the same theory as for x4 one gets 
that X6 = X5 X2 is another irreducible character. 

Since there are 7 conjugacy classes, there is one remaining irreducible character 
and its degree is 6. Its values can be obtained immediately from the decomposition of 
the regular character, p (cf. Example 3 in Section 1 8.2 and Example 4 in Section 1 8.3): 

884 

P - XI - X2 - 4X3 - 4X4 - 5xs - 5X6 
X7 = ------�------�----------� 

6 
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A direct calculation by the orthogonality relations checks that x7 is irreducible. Note 
that the values of the character x7 were computed without explicitly exhibiting a rep­
resentation with this character. 

E X E R C I S E S 

1. Calculate the character tables of z2 X Z2, Z2 X Z3 and Z2 X Z2 X Z2. Explain why the 
table of Z2 X Z3 contains primitiVe 6th roots of 1 .  

2. Compute the degrees of the irreducible characters of Dt6 · 
3. Compute the degrees of the irreducible characters of As.  Deduce that the degree 6 irre­

ducible character of Ss is not irreducible when restricted to As. [The conjugacy classes of 
As are worked out in Section 4.3.] 

4. Using the character tables in this section, for each of parts (a) to (d) use the first orthogo­
nality relation to write the specified permutation character (cf. Example 3, Section 1 8.3) 
as a sum of irreducible characters: 
(a) the permutation character of the subgroup A3 of S3 
(b) the permutation character of the subgroup ( (1  2 3 4) ) of s4 
(c) the permutation character of the subgroup v4 of s4 
(d) thepermutation character ofthe subgroup ( ( 1  2 3) , ( 1  2) , (4 5) ) of Ss (this subgroup 

is the normalizer of a Sylow 3-subgroup of Ss) . 

5. Assume that for any character 1/r of a group, 1/12 is also a character (where 1/12 (g) = ( 1/r (g ) )2
) 

- this is a special case of Proposition 17 in Section 1 8.3. Using the character tables in this 
section, for each of parts (a) to (e) write out the values of the square, x

2, of the specified 
character x and use the first orthogonality relation to write x2 as a sum of irreducible 
characters: 
(a) X = XJ, the degree 2 character in the table of S3 

(b) x = xs ,  the degree 2 character in the table of Qg 
(c) X = xs .  the last character in the table of S4 
(d) x = X4 , the second degree 4 character in the table of Ss 
(e) x = X7, the last character in the table of Ss . 

6. Calculate the character table of As. 

7. Show that S6 has an irreducible character of degree 5 .  

8. Calculate the character table of Dw. (This table contains nonreal entries.) 

9. Calculate the character table of Dt2· 
10. Calculate the character table of s3 X s] . 

11. Calculate the character table of Z3 X s] . 
12. Calculate the character table of Z2 X s4 . 

13. Calculate the character table of s3 X s4 0 
14. Let n be an integer with n � 3. Show that every irreducible character of D2n has degree 1 

or 2 and find the number of irreducible characters of each degree. [The conjugacy classes 
of D2n were found in Exercises 31  and 32 of Section 4.3 and its commutator subgroup 
was computed in Section 5.4.] 

15. Prove that the character table is an invertible matrix. [Use the orthogonality relations.] 

16. For each of As and Dw describe which irreducible characters are algebraically conjugate 
(cf. the exercises in Section 1 8.3). 
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17. Let p be any prime and let P be a non-abelian group of order p3 (up to isomorphism there 
are two choices for P; for odd p these were constructed when the groups of order p3 were 
classified in Section 5.5). This exercise determines the character table of P and shows that 
both isomorphism types have the same character table (the argument includes the p = 2 
case wmxed out in this section) .  
(a) Prove that P has p2 characters of degree 1 .  
(b) Prove that P has p - I irreducible characters of degree p and that these together with 

the p2 degree 1 characters are all the irreducible characters of P. [Use Theorem 1 0(3) 
and Theorem 12 in Section 18.2.] 

(c) Deduce that (regardless of the isomorphism type) the group P has p2 + p - 1  conjugacy 
classes, p of which are of size 1 (i.e., are central classes) and p2 - 1 of which each 
have size p. Deduce also that the classes of size p are precisely the nonidentity cosets 
of the center of P (i.e., if x E P - Z(P) then the conjugacy class of x is the set of p 
elements in the coset x Z ( P)). 

(d) Prove that if x is an irreducible character of degree p then the representation affording 
x is faithful. 

(e) Fix a generator, z, of the center of P and let E be a fixed primitive pth root of 1 in 
C. Prove that if x is an irreducible character of degree p then x (z) = pE; for some 
i E { 1 .  2, . . . , p - 1 } . Prove further that x (x) = 0 for all X E p - Z(P). (Note then 
that the degree p characters are all algebraically conjugate.) [Use the same reasoning 
as in the construction of the character table of Qg.]  

(f) Prove that for each i E { 1 ,  2, . . . , p - 1 }  there is a unique irreducible character 
Xi of degree p such that Xi (z) = pEi . Deduce that the character table of P is 
uniquely determined, and describe it. [Recall from Section 6. 1 that regardless of the 
isomorphism type, P' = Z(P) and PIP' � Zp x Zp . From this one can write out 
the degree 1 characters. Part (e) describes the degree p characters. ]  

1 9.2 THEOREMS OF BURNSIDE AND HALL 

In this section we give a "theoretical" application of character theory: Burnside's paqb 
Theorem. We also prove Philip Hall's characterization of finite solvable groups, which 
is a group-theoretic proof relying on Burnside's Theorem as the first step in its induction . 

Burnside's Theorem 

The following result was proved by Burnside in 1904. Although purely group-theoretic 
proofs of it were discovered recently (see Theorem 2.8 in Finite Groups Ill by B. 
Huppert and N. Blackburn, Springer-Verlag, 1982) the original proof by Burnside pre­
sented here is very accessible, elegant, and quite brief (given our present knowledge of 
representation theory). 

Theorem 1. (Burnside) For p and q primes, every group of order paqb is solvable. 

Before undertaking the proof of Burnside's Theorem itself we establish some results 
of a general nature. An easy consequence of these preliminary propositions is that the 
degrees of the irreducible characters of any finite group divide its order. The particular 
results that lead directly to the proof of Burnside's Theorem appear in Lemmas 6 and 7. 
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It follows quite easily that a counterexample to Burnside's Theorem of minimal order 
is a non-abelian simple group, and it is these two character-theoretic lemmas that give 
the contradiction by proving the existence of a normal subgroup. 

We first recall from Section 1 5.3 the definition of algebraic integers. 

Definition. An element a E C is called an algebraic integer if it is a root of a monic 
polynomial with coefficients from /Z. 

The basic results needed for the proof of Burnside's Theorem are: 

Proposition 2. Let a E C. 
(1) The following are equivalent: 

(i) a is an algebraic integer, 
(ii) a is algebraic over Q and the minimal polynomial of a over Q has 

integer coefficients, and 
(iii) /Z[a] is a finitely generated /Z-module (where /Z[a] is the subring of C 

generated by /Z and a, i.e., is the ring of all /Z-linear combinations of 
nonnegative powers of a). 

(2) The algebraic integers in C form a ring and the algebraic integers in Q are the 
elements of /Z. 

Proof" These are established in Section 15.3. (The portion of Section 1 5.3 consist­
ing of integral extensions and properties of algebraic integers may be read independently 
from the rest of Chapter 15 .) 

Corollary 3. For every character 1/1 of the finite group G, 1/1 (x) is an algebraic integer 
for all x E G. 

Proof: By Proposition 14 in Section 18.3, 1/J(x) is a sum of roots of 1 .  Each root 
of 1 is an algebraic integer, so the result follows immediately from Proposition 2(2). 

We shall also need some preliminary character-theoretic lemmas before beginning 
the main proof. Adoptthe following notation for the arbitrary finite group G: Xl , . . .  , Xr 
are the distinct irreducible (complex) characters of G, IC1 , . . .  , ICr are the conjugacy 
classes of G and ({J; is an irreducible matrix representation whose character is Xi for 
each i .  

Proposition 4. Define the complex valued function w; on { IC 1 , • • •  , ICr} for each i by 

w · (IC · ) = 
IICj i X; (g) 

I J 
X; ( l) 

where g is any element of ICj . Then w; (/Cj) is an algebraic integer for all i and j.  

Proof: We first prove that if I is  the identity matrix, then 

L ({J; (g) = w; (ICj ) / . 

gel(i 
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To see this let X be the left hand side of ( 1 ). As we saw in Section 1 8.2, each x E G 
acting by conjugation permutes the elements of Kj and so X commutes with f{J; (g) for 
all g. By Schur's Lemma (Exercise 1 8  in Section 1 8 . 1 ) X is a scalar matrix: 

X = al for some a E C. 

It remains to show that a =  w; (Kj ) . But 

Thus ax; ( l) = tr X =  !Ki ! X; (g) ,  as needed to establish (1) . 
Now let g be a fixed element of Ks and define aijs to be the number of ordered 

pairs g; , gj with g; E K; , gj E Kj and g; gj = g. Notice that aijs is an integer. It is 
independent ofthe choice of g in Ks because ifx-1 gx is a conjugate of g, every ordered 
pair g; , gj whose product is g gives rise to an ordered pair x-1g;x ,  x-1gix whose 
product is x-1 gx (and vice versa). 

Next we prove that for all i, j, t E { 1 ,  . . . , r }  
r 

Wr (K; )Wr (Kj) = I >ijsWr (Ks ) . ( 19.2) 
s=1 

To see this note that by ( 1 ), the left hand side of (2) is the diagonal entry of the scalar 
matrix on the left of the following equation: 

= L L aijsf{Jt (g) s=1 gEICs 

= Laijs L f{Jr (g) 
s=1 gE/C, 

= LaijsWr (Ks)I 
s=1 

(since a;js is independent 
of g E Ks) 

( by (1)  ) . 

Comparing entries of these scalar matrices gives (2). 
Now (2) implies that the subring of tC generated by Z and w1 (K1 ) ,  . . .  , w1 (Kr ) is a 

finitely generated Z-module for each t E { 1 , . . .  , r }  (it is generated as a Z-module by 
1 ,  w1 (K1 ) , . . .  , w1 (Kr )) .  Since Z is a Principal ldeal Domain the submodule Z[w1 (K; )] 
is also a finitely generated Z-module, hence Wr (K; ) is an algebraic integer by Proposition 
2. This completes the proof. 

Corollary 5. The degree of each complex irreducible representation of a finite group 
G divides the order of G, i.e., x; (l ) I I G I  for i = 1 ,  2, . . .  , r .  
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Proof" Under the notation of Proposition 4 and with gj E Kj we have 

I G I  IG I  
X; ( l ) 

= 
X; ( l) 

(X; , X; ) 

= t IKj iX; (gj)� 

j=l X; ( l ) 

= L w; (Kj )X; (gj ) · 
j=l 

The right hand side is an algebraic integer and the left hand side is rational, hence is an 
integer. This proves the corollary. 

The next two lemmas lead directly to Burnside's Theorem. 

Lemma 6. If G is any group that has a conjugacy class K and an irreducible matrix 
representation q; with character x such that ( IK I . x (l) ) = 1 ,  then for g E K either 
X (g) = 0 or q; (g) is a scalar matrix. 

Proof" By hypothesis there exist s , t E IZ such that s IK I + t x ( 1)  = 1 .  Thus 

s iKix (g) + tx ( 1 )x (g) = x (g) . 
Divide both sides of this by x ( 1 )  and note that by Corollary 3 and Proposition 4 both 

IK i x (g) . . . x (g) x (g) x (g) and are algebrruc mtegers, hence so 1s --. Let a1 = -- and 
x O) x O) x ( 1 ) 

let a1 , a2 , . . .  , an be all its algebraic conjugates over <Ql (i.e. , the roots of the minimal 
polynomial of a1 over Q). Since a1 is a sum of x (l )  roots of 1 divided by the integer 
x (l) ,  each a; is also a sum of x ( l ) roots of 1 divided by x (l ) .  Thus a; has complex 
absolute value :S: 1 for all i .  Now b = D7=t a; E <Ql and b is an algebraic integer (±b 
is the constant term of the irreducible polynomial of at ), hence b E /Z. But 

n 

i = l  

so b = 0, ±1.  Since all a1 's are conjugate, b = 0 <=> a1 = 0 <=> x (g) = 0. Also, 
b = ± 1 <=> lad = 1 for all i .  Thus either x (g) = 0 or l x (g) l = x (l) . In the former 
situation the lemma is established, so assume l x (g) l = x ( l ) . 

Let q;1 be a matrix representation equivalent to q; in which q;1 (g) is a diagonal 
matrix: 

(/)1 (g) = 

( Et J 
Thus x (g) = Et + . • .  + En · By the triangle inequality if E; =I Ej for any i, j,  then 
IE 1 + · · · + En I < n = X ( 1 ) . Since this is not the case we must have (/JI (g) = E I (where 
E = E; for all i ). Since scalar matrices are similar only to themselves, q;(g) = El as 
well. This completes the proof. 

Sec. 19.2 Theorems of Bu rnside and Hal l  889 



Lemma 7. If IIC I  is a power of a prime for some nonidentity conjugacy class IC of G, 
then G is  not a non-abelian simple group. 

Proof: Suppose to the contrary that G is a non-abelian simple group and let 
IIC I  = pc . Let g E IC. If c = 0 then g E Z(G), contrary to a non-abelian simple 
group having a trivial center. As above, let Xl , . . .  , Xr be all the irreducible charac­
ters of G with Xl the principal character and let p be the regular character of G .  By 
decomposing p into irreducibles we obtain 

r 
o = p(g) = 1 + L x; ( l )x; (g) .  ( 19.3) 

i=2 

If p 1 xj ( l ) for every j > 1 with Xj (g) =I= 0, then write Xj (l) = pdj . In this case 
(3) becomes 

0 = 1 + p LdjXj (g) . 
j 

Thus L j dj Xj (g) = - 1 I p is an algebraic integer, a contradiction. This proves there is 
some j such that p does not divide Xj ( 1 ) and Xj (g) =I= 0. If rp is a representation whose 
character is Xj , then rp is faithful (because G is assumed to be simple) and, by Lemma 6, 
rp(g) is a scalar matrix. Since rp(g) commutes with all matrices, rp(g) E Z(rp(G)) .  This 
forces g E Z(G), contrary to G being a non-abelian simple group. The proof of the 
lemma is complete. 

We now prove Burnside's Theorem. Let G be a group of order pa qh for some primes 
p and q .  If p = q or if either exponent is 0 then G is nilpotent hence solvable. Thus we 
may assume this is not the case. Proceeding by induction let G be a counterexample 
of minimal order. If G has a proper, nontrivial normal subgroup N, then by induction 
both N and GIN are solvable, hence so is G ( cf. Section 3.4 or Proposition 6. 10). Thus 
we may assume G is a non-abelian simple group. Let P E Sylp (G) . By Theorem 8 
of Chapter 4 there exists g E Z(P) with g f= 1 .  Since P � CG (g), the order of the 
conjugacy class of g (which equals I G  : CG (g) l ) is prime to p, i.e., is a power of q .  

This violates Lemma 7 and so completes the proof of Burnside's Theorem. 

Phil ip Hall's Theorem 

Recall that a subgroup of a finite group is called a Hall subgroup if its order and index are 
relatively prime. For any subgroup H of a group G a subgroup K such that G = H K 
and H n K = 1 is called a complement to H in G.  

Theorem 8. (P. Hall) Let G be a group of order p�1 p�2 • • • p�' where p1 , • • • , p1 
are distinct primes. If for each i E { 1 ,  . . .  , t} there exists a subgroup H; of G with 
I G : H; I = p�' ,  then G is solvable. 

Hall's Theorem can also be phrased: iffor each i E { 1 , . . .  , t} a Sylow p;-subgroup 
of G has a complement, then G is solvable. The converse to Hall's Theorem is also true 
- this was Exercise 33 in Section 6. 1 .  

We shall first need some elementary lemmas. 
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Lemma 9. If G is solvable of order > 1 ,  then there exists P � G with P a nontrivial 
p-group for some prime p.  

Proof: This is a special case of the exercise on minimal normal subgroups of 
solvable groups at the end of Section 6. 1 .  One can see this easily by letting P be a 
nontrivial Sylow subgroup of the last nontrivial term, c<n-l) , in the derived series of G 
(where G has solvable length n). In this case c<n-l) is abelian so P is a characteristic 
subgroup of c<n-t) , hence is normal in G. 

Lemma 10. Let G be a group of order p� 1 p�2 
• • • p�' where p1 , . . .  , p1 are distinct 

primes. Suppose there are subgroups H and K of G such that for each i E { 1 ,  . . . , t} ,  
either p�1 divides I H I  or p�1 divides I K I .  Then G = H K and IH n K l = ( I H I ,  I K I ) .  

Proof' Fix some i E { 1 ,  . . . , t }  and suppose first that p�1 divides the order of H. 
Since H K is  a disjoint union of right cosets of H and each of these right cosets has 
order equal to I H I ,  it follows that p�1 divides I H K 1 .  Similarly, if p�1 divides I K l ,  since 
H K is a disjoint union of left cosets of K, again p�1 divides I H K 1 .  Thus I G I I I H K I 
and so G = H K .  Since 

I H  K l = 
I H I I K I 

I H n K I '  

it follows that I H n K l = ( I H I .  I K I ) .  

We now begin the proof of Hall's Theorem, proceeding by induction on I G I .  Note 
that if t = 1 the hypotheses are trivially satisfied for any group (H1 = 1) and if t = 2 
the hypotheses are again satisfied for any group by Sylow's Theorem (Ht is a Sylow 
P2-subgroup of G and H2 is a Sylow p1 -subgroup of G). If t = 1 ,  G is nilpotent, hence 
solvable and if t = 2, G is solvable by Burnside's Theorem. Assume therefore that 
t :::: 3. 

Fix i and note that by the preceding lemma, for all j E { 1, . . .  , t } - { i } , 

1 n = H; n Hj l = p r 

Thus every Sylow Prsubgroup of H; has a complement in H; :  H1 n H; . By induction 
H; is solvable. 

By Lemma 9 we may choose P � HI with I P I  = pf > 1 for some i > 1 .  Since 
t :::: 3 there exists an index j E { 1 ,  . . .  , t } - { 1 ,  i } .  By Lemma 10 

IH H I 
a2 aj-1 aj+l a, 

I n i = P2 · · · Pj-l Pj+l  · · · Pt · 

Thus H1 n H1 contains a Sylow p;-subgroup of H1 . Since P is a normal p; -subgroup 
of H1 , P is contained in every Sylow p; -subgroup of H1 and so P :::=: H1 n H1 . By 
Lemma 10, G = Ht H1 so each g E G may be written g = h t hj for some h t E Ht and 
h1 E H1 . Then 

and so 
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Now P � Hj and h t Ph}1 = P for all h t  E H1 . Thus 

1 =1= p � n h t Hjh}1 • 
h 1 Elh 

Thus N = n8EcgHjg-1 is a nontrivial, proper normal subgroup of G. It follows that 
both N and GIN satisfy the hypotheses of the theorem ( cf. the exercises in Section 
3 .3). Both N and GIN are solvable by induction, so G is solvable. This completes the 
proof of Hall's Theorem. 

E X E R C I S E S  

1. Show that every character of the symmetric group Sn is integer valued, for all n (i.e., 
1/f (g) E 12 for all g E Sn and all characters 1/1 of Sn ). [See Exercise 22 in Section 1 8.3.] 

2. Let G be a finite group with the property tha:t every maximal subgroup has either prime 
or prime squared index. Prove that G is solvable. (The simple group GL3 (IF'z) has the 
property that every maximal subgroup has index either 7 or 8, i.e., either prime or prime 
cubed index - cf. Section 6.2.). [Let p be the largest prime dividing I G I  and let P be 
a Sylow p-subgroup of G. If P ::::] G, apply induction to G I P.  Otherwise let M be a 
maximal subgroup containing Nc (P). Use Exercise 5 1  in Section 4.5 to show that p = 3 
and deduce that I G I = 2a3b .] 

3. Assume G is a finite group that possesses an abelian subgroup H whose index is a power 
of a prime. Prove that G is solvable. 

4. Repeat the preceding exercise with the word "abelian" replaced by "nilpotent." 

5. Use the ideas in the proof of Philip Hall's Theorem to prove Burnside's paqb Theorem in 
the special case when all Sylow subgroups are abelian (without use of character theory.) 

1 9.3 INTRODUCTION TO THE THEORY OF IN DUCED CHARACTERS 

Let G be a finite group, let H be a subgroup of G and let ({J be a representation of 
the subgroup H over an arbitrary field F. In this section we show how to obtain a 
representation of G, called the induced representation, from the representation ({J of its 
subgroup. We also determine a formula for the character of this induced representation, 
the induced character, in terms of the character of ({J and we illustrate this formula by 
computing some induced characters in specific groups. Finally, we apply the theory of 
induced characters to prove that there are no simple groups of order 33 • 7 · 1 3  · 409, 
a group order which was discussed at the end of Section 6.2 in the context of the 
existence problem for simple groups. The theory of induced representations and induced 
characters marks the beginning of more advanced representation theory. This section 
is intended as an introduction rather than as a comprehensive treatment, and the results 
we have included were chosen to serve this purpose. 

First observe that it may not be possible to extend a representation ({J of the subgroup 
H to a representation c/J of G in  such a way that c/J IH = ({J. For example, A3 � S3 
and A3 has a faithful representation of degree 1 ( cf. Section l ) . Since every degree 1 
representation of S3 contains A3 = S� in its kernel, this representation of A3 cannot 
be extended to a representation of S3 . For another example of a representation of a 
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subgroup which cannot be extended to the whole group take G to be any simple group 
and let fP be any representation of H with the property that ker fP is a proper, nontrivial 
normal subgroup of H . If fP extended to a representation tP of G then the kernel of tP 
would be a proper, nontrivial subgroup of G, contrary to G being a simple group. We 
shall see that the method of induced characters produces a representation tP of G from 
a given representation fP of its subgroup H but that tP I H  =/= fP in general (indeed, unless 
H = G the degree of tP will be greater than the degree of fP ). 

We saw in Example 5 following Corollary 9 in Section 10.4 that because F H is a 
subring of FG, the ring FG is an (FG, F H)-bimodule; and so for any left PH-module 
V,  the abelian group F G 0 F H V is a left F G-module (called the extension of scalars 
from F H to FG for V). In the representation theory of finite groups this extension is 
given a special name. 

Definition. Let H be a subgroup of the finite group G and let V be an F H -module 
affording the representation fP of H. The F G-module F G 0 F H V is called the induced 
module of V and the representation of G it affords is called the induced representation 
of fP. If 1/1 is the character of fP then the character of the induced representation is called 
the induced character and is denoted by Ind� (1/l). 

Theorem 11. Let H be a subgroup of the finite group G and let g, ,  . . .  , 8m be rep­
resentatives for the distinct left cosets of H in G. Let V be an F H -module affording 
the matrix representation fP of H of degree n. The FG-module W = F G  0FH V 
has dimension nm over F and there is a basis of W such that W affords the matrix 
representation tP defined for each g E G by ( fP(gl_

' gg, ) 
tP (g) = : 

fP(g;;/ gg, ) 

. ; . fP (g} ;ggm) ) 
fP(g;;/ggm) 

where each fP(g/1  ggj)  is an n x n block appearing in the i , j block position of tP (g), 
and where fP (g/1 ggj) is defined to be the zero block whenever g/ 1  ggj ¢ H. 

Proof First note that FG is a free right F H -module: 

FG = g, FH EEl g2FH EEl · · · EEl gm FH. 
Since tensor products commute with direct sums (Theorem 17, Section 1 0.4), as abelian 
groups we have 

W = FG 0FH V � (g, 0 V) EEl (g2 0 V) EEl · · ·  EEl (gm 0 V) .  

Since F i s  in the center of FG it follows that this i s  an F -vector space isomorphism as 
well. Thus if v, , v2 , . . . , Vn is a basis of V affording the matrix representation fP, then 
{g; 0 Vj I 1 � i � m, 1 � j � n} is a basis of W. This shows the dimension of W is 
mn. Order the basis into m sets, each of size n as 
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We compute the matrix representation tJ> (g) of each g acting on W with respect to this 
basis. Fix j and g, and let gg1 = g;h for some index i and some h E H. Then for 
every k 

n 

= Latk(h) (g; ® v1 ) 
1=1 

where a1k is the t ,  k coefficient of the matrix of h acting on V with respect to the basis 
{ v1 , . . . , Vn } .  In other words, the action of g on W maps the /h block of n basis vectors 
of W to the ;th block of basis vectors, and then has the matrix q;(h) on that block. Since 
h = gj1 gg1 , this describes the block matrix tJ>(g) of the theorem, as needed. 

Corollary 12. In the notation of Theorem 1 1  
(1) if 1f! is the character afforded by V then the induced character is given by 

m 

Ind� (1fr)(g) = L 1fr(gj1gg; ) 
i=1 

where 1fr(g;-1gg; ) is defined to be O if g;- 1gg; fj. H, and 
(2) Ind� ( 1f!) (g) = 0 if g is not conjugate in G to some element of H. In particular, 

if H is a normal subgroup of G then Ind� ( 1f!) is zero on all elements of G - H. 

Remark: Since the character 1f! of H is constant on the conjugacy classes of H we have 
1f! (g) = 1f! (h - 1 g h) for all h E H. As h runs over all elements of H, x h runs over 
all elements of the coset x H. Thus the formula for the induced character may also be 
written 

where the elements x in each fixed coset give the same character value I H I  times (which 
accounts for the factor of 1/ IH I ), and again 1fr(x-1 gx) = 0 if x-1 gx fj. H. 

Proof: From the matrix of g computed above, the blocks q;(g;- 1 gg; ) down the 

diagonal of tJ>(g) are zero except when gj1gg; E H. Thus the trace of the block matrix 

tJ> (g) is the sum of the traces of the matrices q;(gj1gg; ) for which gj1gg; E H. Since 

the trace of q; (gj 1 gg; ) is 1fr(gj1 gg; ) , part ( 1 )  holds. 

If g;-1 gg; fj. H for all coset representatives g; then each term in the sum for 
Ind� (1fr)(g) is zero. In particular, if g is not in the normal subgroup H then neither is 
any conjugate of g, so Ind� ( 1f!) is zero on g. 

Examples 

(1) Let G = D12 = ( r, s I r6 = s2 = I . rs = sr- 1 ) be the dihedral group oforder 1 2 and 
let H = { 1 ,  s ,  r3 , s r3},  so that H is isomorphic to the Klein 4-group and I G : H I  = 3. 
Following the notation ofTheorem 1 1  we exhibit the matrices for r and s of the induced 
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representation of a specific representation fP of H. Let the representation of H on a 
2-dimensional vector space over 1Q! with respect to some basis v1 , v2 be given by ( - 1  0 ) 
fP (s) = 0 1 

= A , 
3 ( 1 0 ) 

fP(r ) =  0 - 1 
= B , 

3 ( - 1  0 ) 
fP(sr ) =  0 - 1  

= C , 

so n = 2, m = 3 and the induced representation 4> has degree nm = 6. Fix represen­
tatives g1 = 1 ,  gz = r, and g3 = r2 for the left cosets of H in G, so that gk = rk- l . 

Then 

-1 . - - (i - l)+l+(j - 1) - j-i+1 d gi rg1 - r - r , an 

gi
-1 sgj = sr(i -1 )+(j-1 ) = sri+j-2 . 

Thus the 6 x 6 matrices for the induced representation are seen to be ( 0 0 B ) 
4> (r) = I 0 0 0 I 0 0 0 ) 0 c 

c 0 
where the 2 x 2 matrices A, B and C are given above, I is the 2 x 2 identity matrix 
and 0 denotes the 2 x 2 zero matrix. 

(2) If H is any subgroup of G and 1/f1 is the principal character of H, then Ind� (l/fl ) (g) 

counts 1 for each coset representative gi such that gi-l ggi E H. Since g;- 1 ggi E H 

if and only if g fixes the left coset gi H under left multiplication, Ind� (l/f1 ) (g) is the 
number of points fixed by g in the permutation representation of g on the left cosets 
of H. Thus by Example 3 of Section 1 8 .3 we see that: if 1/f1 is the principal character 
of H then Ind� ( 1/f1 ) is the permuflltion character on the left cosets of H in G. In the 
special case when H = 1 ,  this implies if Xl is the principal character of the trivial 
subgroup H = 1 then Indf (X 1 ) is the regular character of G. This also shows that an 
induced character is not, in general, irreducible even if the character from which it is 
induced is irreducible. 

(3) Let G = S3 and let l/f be a nonprincipal linear character ofA3 = ( x ) , so that l/f (x) = 1; ,  
for some primitive cube root of unity t; (the character tables of A 3  = Z3 and S3 appear 

in Section 1 ). Let 1Jf = Ind1 (1/f) . Thus 1Jf has degree 1 · I S3 : A3 l = 2 and, by the 3 
corollary, 1Jf is zero on all transpositions. If y is any transposition then 1 , y is a set of 
left coset representatives of A3 in S3 and y

- 1 
xy = x2 . Thus 1Jt (x) = 1/f(x) + 1/f (x2) 

equals t; + t;2 = - 1 .  This shows that if 1/f is either of the two nonprincipal irreducible 
characters of A3 then the induced character of 1/f is the (unique) irreducible character 
of S3 of degree 2. In particular, different characters of a subgroup may induce the 
same character of the whole group. 

(4) Let G = Ds have its usual generators and relations and let H = ( s  ) .  Let 1/f be the 
nonprincipal irreducible character of H and let 1Jf = Ind� ( 1/f).  Pick left coset represen­

tatives l , r, r2 , r3 for H. By Theorem 1 1 , 1Jt ( l )  = 4. Since l/f (s) = - ! , one computes 
directly that W (s) = -2. By Corollary 1 2(2) we obtain 1Jt(r) = 1Jf(r2) = W(sr) = 0. 
In the notation of the character table of Ds in Section 1, by the orthogonality relations 
we obtain 1Jf = X2 + X4 + X5 (which may be checked by inspection). 

For the remainder of this section the field F is taken to be the complex numbers: 
F = C. 

Before concluding with an application of induced characters to simple groups we 
compute the characters of an important class of groups. 
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Definition. A finite group G is called a Frobenius group with Frobenius kernel Q if 
Q is a proper, nontrivial normal subgroup of G and CG (x) :::::: Q for all nonidentity 
elements x of Q. 

In view of the application to simple groups mentioned at the beginning of this 
section we shall restrict attention to Frobenius groups G of order qa p, where p and q 
are distinct primes, such that the Frobenius kernel Q is an elementary abelian q-group 
of order qa and the cyclic group G I Q acts irreducibly by conjugation on Q. In other 
words, we shall assume Q is a direct product of cyclic groups of order q and the only 
normal subgroups of G that are contained in Q are I and Q, i.e. , Q is a minimal normal 
subgroup of G. For example, A4 is a Frobenius group of this type with Frobenius kernel 
V4, its Sylow 2-subgroup. Also, if p and q are distinct primes with p < q and G is a 
non-abelian group of order pq (one always exists if p I q - 1) then G is a Frobenius 
group whose Frobenius kernel is its Sylow q-subgroup (which is normal by Sylow's 
Theorem). We essentially determine the character table of these Frobenius groups. 
Analogous results on more general Frobenius groups appear in the exercises. 

Proposition 13. Let G be a Frobenius group of order qa p, where p and q are distinct 
primes, such that the Frobenius kernel Q is an elementary abelian q-group of order qa 
and the cyclic group GI Q acts irreducibly by conjugation on Q. Then the following 
hold: 

(1) G = Q P where P is a Sylow p-subgroup of G. Every nonidentity element of 
G has order p or q. Every element of order p is conjugate to an element of 
P and every element of order q belongs to Q. The nonidentity elements of P 
represent the p - 1 distinct conjugacy classes of elements of order p and each 
of these classes has size qa . There are (qa - 1) I p distinct conjugacy classes of 
elements of order q and each of these classes has size p. 

(2) G' = Q so the number of degree 1 characters of G is p and every degree 1 
character contains Q in its kernel. 

(3) If 1/1 is any nonprincipal irreducible character of Q, then Indg ('l/l) is an irre­
ducible character of G. Moreover, every irreducible character of G of degree 
> 1 is equal to Indg ( 1/1) for some nonprincipal irreducible character 1/1 of Q. 
Every irreducible character of G has degree either 1 or p and the number of 
irreducible characters of degree p is (qa - 1) 1 p. 

Proof: Note that Q P equals G by order consideration. By definition of a Frobenius 
group and because Q is abelian, CG (h) = Q for every nonidentity element h of Q. If 
x were an element of order pq, then xP would be an element of order q, hence would 
lie in the unique Sylow q-subgroup Q of G. But then x would commute with xP and so 
x would belong to CG (xP) = Q, a contradiction. Thus G has no elements of order pq. 
By Sylow's Theorem every element of order p is conjugate to an element of P and every 
element of order q lies in Q .  No two distinct elements of P are conjugate in G because 

if g-1xg = y for some x , y E P then g- 1xg = y in the abelian group G = GIQ 
and so :X = y. Then x = y because P � P. Thus there are exactly p - 1 conjugacy 
classes of elements of order p and these are represented by the nonidentity elements of 
P.  If x is a nonidentity element of P, then CG (x) = P and so the conjugacy class of 
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x consists of IG : P I = qa elements. Finally, if h is a nonidentity element of Q, then 
CG (h) = Q and the conjugacy class of h is {h, hx , . . . , hxp-l }, where P = ( x  ) .  This 
proves all parts of ( 1  ). 

Since G I Q is abelian, G' :::: Q. Since G is non-abelian and Q is, by hypothesis, 
a minimal normal subgroup of G we must have G' = Q. Part (2) now follows from 
Corollary 1 1  in Section 1 8 .2. 

Let 1/1 be a nonprincipal irreducible character of Q and let \II = Indg (1/l). We use 
the orthogonality relations to show that \II is irreducible. Let 1 ,  x ,  . . . , xP-1 be coset 
representatives for Q in G. By Corollary 1 2, \II is zero on G - Q so 

I I  \11 1 1 2 = -
1 

L \ll (h)\ll (h) 
I G I hEQ 

p- 1 
1 � �  . .  = - � �  1/f(x' hx-' )1/l(xihx-i )  

I G I hEQ i=O 

= '� ' 2: 1/l(h)1/f(h) 
hEQ 

= p i Q I = 1 
I G I 

' 

where the second line follows from the definition of the induced character \II , the third 
line follows because each element of Q appears exactly p times in the sum in the second 
line, and the last line follows from the first orthogonality relation in Q because 1/1 is an 
irreducible character of Q. This proves \II is an irreducible character of G. 

We prove that every irreducible character of  G of degree > 1 is the induced char­
acter of some nonprincipal degree 1 character of Q by counting the number of distinct 
irreducible characters of G obtained this way. By parts (1) and (2) the number of irre­
ducible characters of G (= the number of conjugacy classes) is p + (qa - 1)/ p and the 
number of degree 1 characters is p. Thus the number of irreducible characters of G of 
degree > 1 is (qa - l)jp.  The group P acts on the set C of nonprincipal irreducible 
characters of Q as follows: for each 1/1 E C and each x E P let 1/lx be defined by 

1/fx (h) = 1/f(xhx-1) for all h E  Q.  
Since 1/1 is a nontrivial homomorphism from Q into ex (recall that all irreducible 
characters of the abelian group Q have degree 1 )  it follows easily that 1/fx is also a 
homomorphism. Thus 1/fx E C and so P permutes the elements of C. Now let x be a 
generator for the cyclic group P.  Then 1 , x ,  . . .  , x P-1 are representatives for the left 
cosets of Q in G. By Corollary 1 2  applied with this set of coset representatives we see 
that if 1/1 E C then the value of Indg (1/l) on any element h of Q is given by the sum 

1/f(h) + 1/fx (h) + · · · +  1/fxp- l (h) . Thus when the induced character Indg (1/1) is restricted 
to Q it decomposes into irreducible characters of Q as 

lndg (1/I) I Q  = 1/1 + 1/lx + · · · + 1/lxp- l . 

If 1/11 and 1/12 are in different orbits of the action of P on C then the induced characters 
Indg (1/11) and Indg (1/12) restrict to distinct characters of Q (they have no irreducible 
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constituents in common). Thus characters induced from elements of distinct orbits 
of P on C are distinct irreducible characters of G. The abelian group Q has qa - 1 
nonprincipal irreducible characters (i.e., I C I  = qa - 1 )  and I P  I = p so there are at 
least (qa - 1 )  f p orbits of P on C and hence at least this number of distinct irreducible 
characters of G of degree p. Since G has exactly (qa - 1 ) /  p irreducible characters of 
degree > 1 ,  every irreducible character of G of degree > 1 must have degree p and 
must be an induced character from some element of C. The proof is complete. 

For the final example we shall require two properties of induced characters. These 
properties are listed in the next proposition and the proofs are straightforward exercises 
which follow easily from the formula for induced characters or from the definition of 
induced modules together with properties of tensor products. 

Proposition 14. Let G be a group, let H be a subgroup of G and let l/1 and l/1' be 
characters of H. 

(1) (Induction of characters is additive) Ind� (l/1 + l/1') =. Ind� (l/1) + Ind� (l/1') . 
(2) (Induction of characters is transitive) If H :::: K :::: G then 

Ind� (Ind� (l/1)) = Ind� (l/1) . 

It follows from part ( 1 )  of Proposition 14 that if :Lt=l n;l/1; is any integral linear 
combination of characters of H with n; :::-:: 0 for all i then 

Ind� ( :t n ; l/1;) = :t n; Ind� (l/1; ) .  
i=l i=l 

A class function of H of the form :Lt=t n;l/J; ,  where the coefficients are any integers 
(not necessarily nonnegative) is called a generalized character or virtual character of 
H. For a generalized character of H we define its induced generalized character of G 
by equation ( * ), allowing now negative coefficients n; as well. In this way the function 
Ind� becomes a group homomorphism from the additive group of generalized characters 
of H to the additive group of generalized characters of G (which maps characters to 
characters). This implies that the formula for induced characters in Corollary 12 holds 
also if l/1 is a generalized character of H. 

Application to Groups of Order 33 · 7 · 13 · 409 

We now conclude with a proof of the following result: 

there are no simple groups of order 33 · 7 · 13  · 409. 

As mentioned at the beginning of this section, simple groups of this order were discussed 
at the end of Section 6.2 in the context of the existence problem for simple groups. It is 
possible to prove that there are no simple groups of this order by arguments involving a 
permutation representation of degree 8 1 9  (cf. the exercises in Section 6.2). We include 
a character-theoretic proof of this since the methods illustrate some important ideas in 
the theory of finite groups. The approach is based on M. Suzuki's seminal paper The 
nonexistence of a certain type of simple group of odd order, Proc. Amer. Math. Soc., 
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8(1957), pp. 686-695, which treats much more general groups. Because we are dealing 
with a specific group order, our arguments are simpler and numerically more explicit, 
yet they retain some of the key ideas of Suzuki's work. Moreover, Suzuki's paper and its 
successor, Finite groups in which the centralizer of any non-identity element is nilpotent, 
by W. Feit, M. Hall and J. Thompson, Math. Zeit. ,  74(1960), pp. 1-17, are prototypes 
for the lengthy and difficult Feit-Thompson Theorem ( cf. Section 3.4 ). Our discussion 
also conveys some of the flavor of these fundamental papers. In particular, each of 
these papers follows the basic development in which the structure and embedding of 
the Sylow subgroups is first determined and then character theory (with heavy reliance 
on induced characters) is applied. 

For the remainder of this section we assume G is a simple group of order 33 · 7 · 1 3  · 
409. We list some properties of G which may be verified using the methods stemming 
from Sylow's Theorem discussed in Section 6.2. The details are left as exercises. 
(1) Let q1 = 3, let Q1 be a Sylow 3-subgroup of G and let N1 = No (Q1) .  Then Q1 

is an elementary abelian 3-group of order 33 and N 1 is a Frobenius group of order 
33 · 13 with Frobenius kernel Q1 and with Ntf Q 1 acting irreducibly by conjugation 
on Q1 . 

(2) Let q2 = 7, let Q2 be a Sylow ?-subgroup of G and let N2 = No (Q2) .  Then Q2 is 
cyclic of order 7 and N2 is the non-abelian group of order 7 · 3 (so N2 is a Frobenius 
group with Frobenius kernel Q2). 

(3) Let q3 = 13, let Q3 be a Sylow 1 1 -subgroup of G and let N3 = No (Q3).  Then 
Q3 is cyclic of order 1 3  and N3 is the non-abelian group of order 13 · 3 (so N3 is a 
Frobenius group with Frobenius kernel Q3). 

(4) Let q4 = 409, let Q4 be a Sylow 409-subgroup of G and let N4 = No (Q4). Then 
Q4 is cyclic of order 409 and N4 is the non-abelian group of order 409 · 3 (so N4 
is a Frobenius group with Frobenius kernel Q4). 

(5) Every nonidentity element of G has prime order and Qi n Qf = 1 for every 
g E G - Ni , for each i = 1 ,  2, 3, 4. The nonidentity conjugacy classes of G are: 
(a) 2 classes of elements of order 3 (each of these classes has size 7 · 1 3  · 409) 
(b) 2 classes of elements of order 7 (each of these classes has size 33 · 1 3  · 409) 
(c) 4 classes of elements of order 1 3  (each of these classes has size 33 · 7 · 409) 
(d) 136 classes of elements of order 409 (each of these classes has size 33 · 7 · 13), 
and so there are 145 conjugacy classes in G. 

Since each of the groups Ni is a Frobenius group satisfying the hypothesis of Proposition 
1 3, the number of characters of Ni of degree > 1 may be read off from that proposition: 

(i) N 1 has 2 irreducible characters of degree 1 3  
(ii) N2 has 2 irreducible characters of degree 3 

(iii) N3 has 4 irreducible characters of degree 3 
(iv) N4 has 136 irreducible characters of degree 3. 

From now on, to simplify notation, for any subgroup H of G and any generalized 
character J.L of H let 

J.L* = Ind� (J.L) 

so a star will always denote induction from a subgroup to the whole group G and the 
subgroup will be clear from the context. 

Sec. 19.3 I ntroduction to the Theory of I nduced Characters 899 



The following lemma is a key point in the proof. It shows how the vanishing 
of induced characters described in Corollary 12  (together with the trivial intersection 
property of the Sylow subgroups Q; , namely the fact that Qi n Qf = 1 for all g E 
G - N G ( Qi)) may be used to relate inner products of certain generalized characters to 
the inner products of their induced generalized characters. For these computations it is 
important that the generalized characters are zero on the identity (which explains why 
we are considering differences of characters of the same degree). 

Lemma 15. For any i E { 1 ,  2, 3, 4} let q = q; , let Q = Qi , let N = Ni and let 
p = IN : Q l .  Let 1/11 • . . .  , Vt4 be any irreducible characters of N of degree p (not 
necessarily distinct) and let a = 1/11 - 1/tz and f3 = Vt3 - 1/14 . Then a and f3 are 
generalized characters of N which are zero on every element of N of order not equal 
to q .  Furthermore, a* and f3* are generalized characters of G which are zero on every 
element of G of order not equal to q and 

(a* , f3*)c = (a, f3)N 
(where ( , ) H denotes the usual Hermitian product of class functions computed in the 
group H). In other words, induction from N to G is an inner product preserving map 
on such generalized characters a, f3 of N. 

Proof" By Proposition 13, there are nonprincipal characters A I ,  . . .  , A4 of Q of 
degree 1 such that Vti = Ind� (Aj ) for j = 1 ,  . . . , 4. By Corollary 12 therefore, each Vti 
vanishes on N - Q, hence so do a and f3.  Note that since Vti ( 1 ) = p for all j we have 
a(l) = {3(1 ) = 0. By the transitivity of induction, 1/tl = Ind� (1/tj)  = Indg (Aj ) for all 
j . Again by Corollary 12 applied to the latter induced character we see that 1/ti* vanishes 
on all elements not conjugate in G to some element of Q, hence so do both a* and f3* . 
Since the induced characters 1/t/ all have degree I G : Q I ,  the generalized characters 
a* and {3* are zero on the identity. Thus a* and f3* vanish on all elements of G which 
are not of order q . Finally, if g1 , . . .  , gm are representatives for the left cosets of N in 
G with g1 = 1 ,  then because Q n Q8k = 1 for all k > 1 (by (5) above), it follows 
immediately from the formula for induced (generalized) characters that a* (x) = a(x) 
and f3*(x) = f3 (x) for all nonidentity elements x E Q (i.e., for all elements x E N of 
order q). Furthermore, by Sylow's Theorem every element of G of order q lies in a 
conjugate of Q, hence the collection of G-conjugates of the set Q - { 1 } partition the 
elements of order q in G into IG  : Nl disjoint subsets. Since a* and f3* are class 
functions on G, the sum of a*(x)f3* (x) as x runs over any of these subsets is the same. 
These facts imply 

900 

1 � -
(a* , f3*)c = - � a* (x)f3* (x) 

I G I  xE G 
1 � -

= TGf � a* (x)f3* (x) 
x EG 
lx l=q 

1 
- � I G  N la* (x)f3* (x) - TGI � 

XEN 
lx l=q 
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This completes the proof. 

1 '""" -= - � a(x)f3(x) = ( a, f3 )N . 
IN I xeN 

The next lemma sets up a correspondence between the irreducible characters of N; 
of degree > 1 and some nonprincipal irreducible characters of G. 

Lemma 16. For any i E { 1 ,  2, 3 ,  4} let q = q; , let Q = Q; ,  let N = N; and let 
p = I N  : Q 1 - Let 1/tt , . . . , Vtk be the distinct irreducible characters of N of degree 
p. Then there are distinct irreducible characters Xt ,  . . .  , Xk of G, all of which have 
the same degree, and a fixed sign E = ±1  such that 1/ti - 1/t/ = E (Xt - Xi)  for all 
j = 2, 3, . . . , k. 

Proof: Let ai = 1/tt - 1/tj for j = 2, 3, . . .  , k so ai satisfies the hypothesis of 
Lemma 15 .  Since 1/11 =f:. Vti •  by Lemma 15 

2 = I I ai 1 12 = (aj .  aj)N = (aj ,  aj)c = l l aj 1 1 2 
for all j .  Thus aj must have two distinct irreducible characters of G as its irreducible 
constituents. Since aj (l) = 0 it must be a difference of two distinct irreducible char­
acters, both of which have the same degree. In particular, the lemma holds if k = 2 
(which is the case for q = 3 and q = 7). Assume therefore that k > 2 and write 

a; = 1/ti - 1/t� = E (X - X 1) 

a; = 1/ti - 1/t; = E1 (B - B1) 

for some irreducible characters X , X I, e ,  B1 of G and some signs E, E 1 •  As proved above, 
X =f:. X 1  and e =f:. B1• Interchanging e and B1 if necessary, we may assume E = E1 • Thus 

a; - a; = 1/t; - 1/t; = E (B - e1 - x + x') .  

B y  Lemma 15, 1/ti - 1/t; = (1/12 - 1/13)* also has exactly two distinct irreducible con­
stituents, hence either e = X or el = x' .  Replacing E by -E if necessary we may 
assume that e = x so that now we have 

a; = 1/t� - 1/t� = E (x - x') 

a; = 1/ti - 1/t; = E(X - e 1) 
where x .  x 1 and e are distinct irreducible characters of G and the sign E is determined. 
Label x = X1 .  X 1  = X2 and e = X3 · Now one similarly checks that for each j :::: 3 
there is an irreducible character Xi of G such that 

aj = 1/t� - 1/tj* = E (Xt - Xi ) 
and Xt • . . .  , Xk are distinct. Since all x/s have the same degree as Xt . the proof is 
complete. 

We remark that it need not be the case that Xi = 1/ti* for any j,  but only that the 
differences of irreducible characters of N induce to differences of irreducible characters 
of G. 

The irreducible characters Xi of G obtained via Lemma 16 are called exceptional 
characters associated to Q.  
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Lemma 17. The exceptional characters associated to Q; are all distinct from the 
exceptional characters associated to Qj for i and j distinct elements of { 1 ,  2, 3 ,  4}. 

Proof" Let x be an exceptional character associated to Q; and let () be an exceptional 
character associated to Qj . By construction, there are distinct irreducible characters 1/1 
and 1/1' of Q; such that 1/1* - 1/1'* = x - x ' and there are distinct irreducible characters 
J.... and J....' of Qj such that J....* - J....' * = () - ()'. Let a = 1/1 - 1/1' and let f3 = J.... - J....' .  By 
Lemma 15, a* is zero on all elements of G whose order is not equal to q; (including 
the identity) and {3* is zero on all elements of G whose order is not equal to qj . Thus 
clearly (a* ,  {3*) = 0. It follows easily that the two irreducible constituents of a* are 
pairwise orthogonal to those of {3* as well. This establishes the lemma. 

It is now easy to show that such a simple group G does not exist. By Lemma 16 
and properties (i) to (iv) of G we can count the number of exceptional characters: 

(i) there are 2 exceptional characters associated to Q 1 
(ii) there are 2 exceptional characters associated to Q2 

(iii) there are 4 exceptional characters associated to Q3 
(iv) there are 136 exceptional characters associated to Q4 . 

Denote the common degree of the exceptional characters associated to Q; by d; for 
i = 1 ,  . . .  , 4. By Lemma 17, the exceptional characters account for 144 nonprincipal 
irreducible characters of G hence these, together with the principal character, are all the 
irreducible characters of G (the number of conjugacy classes of G is 145). The sum of 
the squares of the degrees of the irreducible characters is the order of G:  

1 + 2d� + 24 + 4dj + 136d} = 1004913. 

Simplifying this, we obtain 

d� + di_ + 2dj + 68d} = 502456. (19.4) 

Finally, since each nonprincipal irreducible representation of the simple group G is 
faithful and since the smallest degree of a faithful representation of N1 is 13, each 
d; :=:: 13. Since d4 < J502456f68 < 86 and d4 divides I G I ,  it follows that 

d4 E { 13, 2 1 ,  27, 39, 63}. 

Furthermore, each d; I I G I by Corollary 5 and so there are a small number of possibilities 
for each d; . One now checks that equation (4) has no solution (this is particularly easy 
to do by computer). This contradiction completes the proof. 

E X E R C I S E S  

Throughout the exercises all representations are over the complex numbers. 

1. Let G = S3, let H = A3 and let V be the 3-dimensional CH-module which affords the 
natural permutation representation of A3. More explicitly, let V have basis e1 , � .  e3 and 
let a E A3 act on V by ae; = ea (i) · Let 1 and ( 1  2) be coset representatives for the left 
cosets of A3 in S3 and write out the explicit matrices described in Theorem 1 1  for the 
action of S3 on the induced module W, for each of the elements of S3 . 

2. In each of pans (a) to (f) a character 1/1 of a subgroup H of a particular group G is specified. 
Compute the values of the induced character Ind� ( 1/f) on all the conjugacy classes of G and 
use the character tables in Section I to write Ind� ( 1/f) as a sum of irreducible characters: 
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(a) t/1 is the unique nonprincipal degree 1 character of the subgroup ( (1 2) } of S3 
(b) t/J is the degree 1 character of the subgroup ( r } of Ds defined by t/1 (r) = i, where 

i E C is a square root of - 1  
(c) t/1 i s  the degree 1 character of the subgroup ( r }  of Ds defined by t/J (r) = - 1  
(d) t/J i s  any of the nonprincipal degree 1 characters of the subgroup V4 = ( ( 1  2) ,  (3 4) } 

of s4 
(e) t/1 = X4 is the first of the two characters of degree 3 in the character table of H = S4 

in Section 1 and H is a subgroup of G = Ss 
(t) t/J is any of the nonprincipal degree 1 characters of the subgroup V4 = ( (1 2) , (3 4) } 

of Ss . 
3. Use Proposition 13 to explicitly write out the character table of each of the following 

groups: 
(a) the dihedral group of order 10 
(b) the non-abelian group of order 57 
(c) the non-abelian group of order 56 which has a normal, elementary abelian Sylow 

2-subgroup. 

4. Let H be a subgroup of G, let qJ be a representation of H and suppose that N is a normal 
subgroup of G with N :::; H and N contained in the kernel of qJ. Prove that N is also 
contained in the kernel of the induced representation of f{J. 

5. Let N be a normal subgroup of G and let t/11 be the principal character of N. Let IV be 
the induced character Ind� (t/lt ) so that by the preceding exercise we may consider IV as 
the character of a representation of GIN. Prove that IV is the character of the regular 
representation of GIN. 

6. Let Z be any subgroup of the center of G, let I G : Z l  = m and let t/1 be a character of Z. 
Prove that 

Ind9 (t/l)( ) = { m t/f (g) if g E Z 
z 

g 
0 if g � z. 

7. Let f{J be a matrix representation of the subgroup H of G and define matrices Cl> (g) for 
every g E G by the displayed formula in the statement of Theorem 1 1 . Prove directly that 
C1> is a representation by showing that Cl> (xy) = Cl> (x)CI> (y) for all x ,  y E G. 

8. Let G be a Frobenius group with Frobenius kernel Q. Assume that both Q and G 1 Q are 
abelian but G is not abelian (i.e., G f- Q). Let I Q I  = n and I G  : Ql  = m. 
(a) Prove that G 1 Q is  cyclic and show that G = QC for some cyclic subgroup C of G 

with C n Q = 1 (i.e., G is a sernidirect product of Q and C and I C I  = m). [Let q 
be a prime divisor of n and let G 1 Q act by conjugation on the elementary abelian 
q-group {h E Q I hq = 1 } .  Apply Exercise 14(e) of Section 18. 1  and the definition 
of a Frobenius group to an irreducible constituent of this lF q G 1 Q-module.] 

(b) Prove that n and m are relatively prime. [If a prime p divides both the order and 
index of Q, let P be a Sylow p-subgroup of G. Then P n Q ::::1 P and P n Q is a 
Sylow p-subgroup of Q. Consider the centralizer in G of the subgroup Z(P) n Q 
(this intersection is nontrivial by Theorem 1 of Section 6. 1 ).] 

(c) Show that G has no elements of order qp, where q is any nontrivial divisor of n and 
p is any nontrivial divisor of m .  [Argue as in Proposition 13 . ]  

(d) Prove that the number of nonidentity conjugacy classes of G contained in  Q i s  
(n - 1)1m and that each of these classes has size m .  [Argue as  in  Proposition 13 .] 

(e) Prove that no two distinct elements of C are conjugate in G. Deduce that the non­
identity elements of C are representatives for m - 1 distinct conjugacy classes of G 
and that each of these classes has size n. Deduce then that every element of G - Q 
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is conjugate to some element of C and that G has m + (n - 1)/m conjugacy classes. 
(f) Prove that G' = Q and deduce that G has m distinct characters of degree 1 .  [To 

show Q :::; G' let C = ( x ) and argue that the map h H- [h , x] = x-1h-1xh is a 
homomorphism from Q to Q whose kernel is trivial, hence this map is sutjective.] 

(g) Show that if 1/f is any nonprincipal irreducible character of Q, then Indg ("l/f) is an 
irreducible character of G. Show that every irreducible character of G of degree > I 
is equal to Indg ("l/f) for some nonprincipal irreducible character 1/f of Q. Deduce 
that every irreducible character of G has degree either 1 or m and the number of 
irreducible characters of degree m is (n - 1)/m. [Check that the proof of Proposition 
13(3) establishes this more general result with the appropriate changes to the numbers 
involved.] 

9. Use the preceding exercise to explicitly write out the character table of 
( ( 1  2 3 4 5) , (2 3 5 4) ) .  which is the normalizer in Ss of a Sylow 5-subgroup (this group 
is a Frobenius group of order 20) . 

10. Let N be a normal subgroup of G, let 1/f be a character of N and let g E G. Define 1/fg by 
1fr8 (h) = 1/f (ghg-1 ) for all h E N. 
(a) Prove that 1/fg is a character of N (1/f and 1/fg are called G-conjugate characters of N). 

Prove that 1/fg is irreducible if and only if 1/f is irreducible. 
(b) Prove that the map 1/f H- 1/fg is a right group action of G on the set of characters of 

N and N is in the kernel of this action. 
(c) Prove that if 1/ft and 1/f2 are G-conjugate characters of N, then Ind� ("l/ft ) = lnd� (1/f2). 

Prove also that if 1/ft and 1/f2 are characters of N that are not G-conjugate then 
lnd� ("l/ft ) =f= Ind� (1/f2).  [Use the argument in the proof of Proposition 13(3).] 

11. Show that if G = A4 and N = V4 is its Sylow 2-subgroup then any two nonprincipal 
irreducible characters of N are G-conjugate (cf. the preceding exercise). 

12. Let G = D2n be presented by its usual generators and relations. Prove that if 1/f is any 
degree 1 character of H = ( r ) such that 1/f -=j:. 1/fs , then Ind� ( 1/f) is an irreducible character 
of D2n· Show that every irreducible character of D2n is the induced character of some 
degree I character of ( r ) . 

13. Prove both parts of Proposition 14. 

14. Prove the following result known as Frobenius Reciprocity: let H < G, let 1/f be any 
character of H and let x be any character of G. Then 

(1/f , x i H ) H = (lnd� ("l/f) , x) c .  

[Expand the right hand side using the formula for the induced character Ind� ( 1/f )  or follow 
the proof of Shapiro's Lemma in Section I7.2.] 

15. Assume G were a simple group of order 33 · 7 · 13 · 409 whose Sylow subgroups and their 
normalizers are described by properties ( 1 )  to (5) in this section. Prove that the permutation 
character of degree 8I9 obtained from the action of G on the left cosets of the subgroup 
N4 decomposes as xo + y + y', where xo is the principal character of G and y and y' 
are distinct irreducible characters of G of degree 409. [Use Exercise 9 in Section 18.3 to 
show that this permutation character rr has l l rr  1 1

2 = 3.] 
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APPEN DIX I 

Cartesian Prod u cts 
and Zo rn 's Le m ma 

Section 1 of this appendix contains the definition of the Cartesian product of an arbitrary 
collection of sets. In the text we shall primarily be interested in products of finitely 
many (or occasionally countably many) sets. We indicate how the general definition 
agrees with the familiar "ordered n-tuple" notion of a Cartesian product in these cases. 
Section 2 contains a discussion of Zorn's Lemma and related topics. 

1 .  CARTESIAN PRODUCTS 

A set I is called an indexing set or index set if the elements of I are used to index 
some collection of sets. In particular, if A and I are sets, we can form the collection 
{A; I i E I }  by specifying that A; = A for all i E I .  Thus any set can be an indexing 
set; we use this term to emphasize that the elements are used as indices. 

Definition. 
(1) Let I be an indexing set and let {A; I i E I }  be a collection of sets. A choice 

function is any function 

such that f (i )  E A; for all i E I .  
(2) Let I be an indexing set and for all i E I let A;  be a set. The Cartesian product 

of {A; I i E I }  is the set of all choice functions from I to U; e/ A; and is denoted 
by fle/ A; (where if either I or any of the sets A; are empty the Cartesian 
product is the empty set). The elements of this Cartesian product are written as 
nie/ a; , where this denotes the choice function f such that f(i )  = a; for each 
i E I .  

(3) For each j E I the set Aj is called the jth component of the Cartesian product 
ni E/ A; and a j is the jth coordinate of the element ni E/ a; . 

(4) For j E I the projection map of 0ie/ A; onto the jth coordinate, A_;,  is defined 
by nie/ a; I-+ aj . 

Each choice function f in the Cartesian product OieJ A; may be thought of as a 
way of "choosing" an element f(i) from each set A; . 

If I = { 1 .  2, . . .  , n} for some n E z+ and if f is a choice function from I to 
A1  U · · · U An, where each A; is nonempty, we can associate to f a  unique (ordered) 
n-tuple: 

f --+  ( /( 1 ) ,  /(2) , . . .  , f(n) ) . 
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Note that by definition of a choice function, f(i) E A; for all i ,  so the n-tuple above 
has an element of A; in the ith position for each i . 

Conversely, given an n-tuple (a1 , a1 , . . .  , an ) ,  where a; E A; for all i E I ,  there is 
a unique choice function, f, from I to U; EI A; associated to it, namely 

f(i) = a; ,  for all i E I. 

It is clear that this map from n-tuples to choice functions is the inverse to the map 
described in the preceding paragraph. Thus there is a bijection between ordered n­
tuples and elements offiiEI A; . Henceforth when I = { 1 , 2, . . . , n }  we shall write 

n 

Il A; or A 1 x Az x · · · x An 
i=l 

for the Cartesian product and we shall describe the elements as ordered n-tuples. 
If I = tz+, we shall similarly write: fl:1 A; or A 1 x Az x · · · for the Cartesian 

product of the A; 's. We shall write the elements as ordered tuples: (a1 , az , . . .  ), i.e. , as 
infinite sequences whose ith terms are in A; . 

Note that when I = { 1 , 2, . . . , n }  or I = z+ we have used the natural ordering on 
I to arrange the elements of our Cartesian products into n-tuples. Any other ordering 
of I (or any ordering on a finite or countable index set) gives a different representation 
of the elements of the same Cartesian product. 

Examples 

(1) A x B = { (a ,  b) I a E A,  b E B} .  
(2) !Rn = lR x lR x · · · x lR (n  factors) i s  the usual set of  n-tuples with real number entries, 

Euclidean n-space. 
(3) Suppose I = z+ and A; is the same set A, for all i E I. The Cartesian product ni EZ+ A 

is the set of all (infinite) sequences a1 , az , a3 . . . of elements of A. In particular, if 
A = IR, then the Cartesian product niEZ+ lR is the set of all real sequences. 

(4) Suppose I is any indexing set and A; is the same set A, for all i E I. The Cartesian 
product DiE/ A is just the set of all functions from I to A, where the function f : 
I � A corresponds to the element DiE/ f(i) in the Cartesian product. This Cartesian 
product is often (particularly in topology books) denoted by A1 . Note that for each 
fixed j E I the projection map onto the jth coordinate sends the function f to f (j), 
i .e. ,  is evaluation at j .  

(5) Let R be a ring and let x b e  an indeterminate over R .  The definition of the ring R[x] of 
polynomials in x with coefficients from R may be given in terms of Cartesian products 
rather than in the more intuitive and familiar terms of "formal sums" (in Chapters 7 
and 9 we introduced them in the latter form since this is the way we envision and 
work with them). Let I be the indexing set z+ U {0} and let R[x] be the subset 
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of the Cartesian product D�o R consisting of elements (ao, a1 , az , . . .  ) such that 
only finitely many of the a; 's are nonzero. If (ao, a1 , az , . . .  , an , 0, 0, . . . ) is such a 
sequence we represent it by the more familiar "formal sum" L:7 =O a; xi . Addition and 
multiplication of these sequences is defined so that the usual rules for addition and 
multiplication of polynomials hold. 
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Proposition 1. Let I be a nonempty countable set and for each i E I let A; be a set. 
The cardinality of the Cartesian product is the product of the cardinalities of the sets 

l O Ad =  D IAd , 
iel iel 

(where if some A; is an infinite set or if I is infinite and an infinite number of A; 's have 
cardinality � 2, both sides of this equality are infinity). In particular, 

IA 1  X A2 X · • · X An i = lAd X IA2 I  X · · · X IAn l ·  

Proof" In order to count the number of choice functions note that each i E I may be 
mapped to any of the 1 A; I elements of A; and for i =f. j the values of choice functions at 
i and j may be chosen completely independently. Thus the number of choice functions 
is the product of the cardinalities of the A; 's, as claimed. 

For Cartesian products of finitely many sets, A1 x A2 x · · · x An , one can see this 
easily from the n-tuple representation: the elements of A 1  x A2 x · · · x An are n-tuples 
(a1 , a2 , • • •  , an) and each a; may be chosen as any of the l A; I elements of A; . Since 
these choices are made independently for i =f. j, there are IA 1 I · I A2 I  · · · I An I elements 
in the Cartesian product. 

E X E R C I S E  

1. Let I and J be any two indexing sets and let A be an arbitrary set. For any function 
({! : J --+ I define 

(/!* : n A -+ n A 
iel jeJ 

by ({!* (f) = f o ({! for all choice functions f E n  A. 
iel  

(a) Let I =  { 1 ,  2}, let J = { 1 ,  2, 3 }  and let ({! : J --+  I be defined by f{J(l)  = 2,  ({!(2) = 2 
and ({!(3) = 1 .  Describe explicitly how a 3-tuple in A x A x A maps to an ordered 
pair in A x A under this ({!* . 

(b) Let I = J = { 1 ,  2, . . .  , n }  and assume ({! is a permutation of I. Describe in terms of 
n-tuples in A x A x · · · x A the function ({!*. 

2. PARTIALLY ORDERED SETS AND ZORN'S LEMMA 

We shall have occasion to use Zorn's Lemma as a form of "infinite induction" in a 
few places in the text where it is desirable to know the existence of some set which is 
maximal with respect to certain specified properties. For example, Zorn's Lemma is 
used to show that every vector space has a basis. In this situation a basis of a vector space 
V is a subset of V which is maximal as a set consisting of linearly independent vectors 
(the maximality ensures that these vectors span V). For finite dimensional spaces this 
can be proved by induction; however, for spaces of arbitrary dimension Zorn's Lemma 
is needed to establish this. By having results which hold in full generality the theory 
often becomes a little neater in places, although the main results of the text do not 
require its use. 
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A specific instance in the text where a maximal object which helps to simplify 
matters is constructed by Zorn's Lemma is the algebraic closure of a field. An algebraic 
closure of a field F is an extension of F which is maximal among any collection of 
algebraic extensions. Such a field contains (up to isomorphism) all elements which 
are algebraic over F, hence all manipulations involving such algebraic elements can 
be effected in this one larger field. In any particular situation the use of an algebraic 
closure can be avoided by adjoining the algebraic elements involved to the base field 
F, however this becomes tedious (and often obscures matters) in complicated proofs. 
For the specific fields appearing as examples in this text the use of Zorn's Lemma 
to construct an algebraic closure can be avoided (for example, the construction of an 
algebraic closure of any subfield of the complex numbers or of any finite field does not 
require it). 

The first example of the use of Zorn's Lemma appears in the proof of Proposition 
1 1  in Section 7 .4. 

In order to state Zorn's Lemma we need some terminology. 

Definition. A partial order on a nonempty set A is a relation ::; on A satisfying 
(1) x ::; x for all x E A (reflexive), 
(2) if x ::; y and y ::; x then x = y for all x ,  y E A ( antisymmetric ), 
(3) if x ::; y and y ::; z then x ::; z for all x,  y. z E A (transitive). 

We shall usually say that A is a partially ordered set under the ordering :S or that 
A is partially ordered by ::;. 

Definition. Let the nonempty set A be partially ordered by ::;. 
(1) A subset B of A is called a chain if for all x,  y E B, either x ::; y or y ::; x. 
(2) An upper bound for a subset B of A is an element u E A such that b ::; u ,  for 

all b E B. 
(3) A maximal element of A is  an element m E A such that if  m ::; x for any x E A, 

then m = x.  

In the literature a chain is  also called a tower or called a totally ordered or linearly 
ordered or simply ordered subset. 

Some examples below highlight the distinction between upper bounds and maximal 
elements. Also note that if m is a maximal element of A, it is not necessarily the case 
that x ::; m for all x E A (i.e., m is not necessarily a maximum element). 

Examples 

(1) Let A be the power set (i.e., set of all subsets) of some set X and � be set containment: 
�- Notice that this is only a partial ordering since some subsets of X may not be 
comparable, e.g. singletons: if x #- y then {x } £ {y} and {y} £ {x }. In this situation 
an example of a chain is a collection of subsets of X such as 
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X1 � X2 � X3 � · · · .  
Any subset B of A has an upper bound, b,  namely, 

b =  u x. 
xEB 
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This partially ordered set A has a (unique) maximal element, X. 
In many instances the set A consists of some (but not necessarily all) subsets of 

a set X (i.e., A is a subset of the power set of X) and with the ordering on A again 
being inclusion. The existence of upper bounds and maximal elements depends on 
the nature of A. 

(2) Let A be the collection of all proper subsets of z+ ordered under �.  In this situation, 
chains need not have maximal elements, e.g. the chain 

{ 1 }  � { 1 ,  2} � { 1 ,  2, 3} � . . . 

does not have an upper bound. The set A does have maximal elements: for example 
z+ - {n} is a maximal element of A for any n E z+ . 

(3) Let A = lR under the usual :OS relation. In this example every subset of A is a chain 
(including A itself) . The notion of a subset of A having an upper bound is the same as 
the usual notion of a subset of lR being bounded above by some real number (so some 
sets, such as intervals of finite length, have upper bounds and others, such as the set 
of positive reals, do not). The set A does not have a maximal element. 

Zorn's Lemma If A is a nonempty partially ordered set in which every chain has 
an upper bound then A has a maximal element. 

It is a nontrivial result that Zorn 's Lemma is independent of the usual (Zermel£r 
Fraenkel) axioms of set theory1 in the sense that if the axioms of set theory are con­
sistent,2 then so are these axioms together with Zorn's Lemma; and if the axioms of 
set theory are consistent, then so are these axioms together with the negation of Zorn's 
Lemma. The use of the term "lemma" in Zorn's Lemma is historical. 

For the sake of completeness (and to relate Zorn's Lemma to formulations found 
in other courses) we include two other equivalent formulations of Zorn's Lemma. 

The Axiom of Choice The Cartesian product of any nonempty collection of non empty 
sets is nonempty. In other words, if I is any nonempty (indexing) set and A; is a 
non empty set for all i E I, then there exists a choice function from I to U; EI A; . 

Definition. Let A be a nonempty set. A well ordering on A is a total ordering on A 
such that every nonempty subset of A has a minimum (or smallest) element, i.e., for 
each nonempty B � A there is some s E B such that s :::: b, for all b E B. 

The Well Ordering Principle Every nonempty set A has a well ordering. 

Theorem 2. Assuming the usual (Zermelo-Fraenkel) axioms of set theory, the following 
are equivalent: 

(1) Zorn's Lemma 
(2) the Axiom of Choice 
(3) the Well Ordering Principle. 

Proof This follows from elementary set theory. We refer the reader to Real and 
Abstract Analysis by Hewitt and Stromberg, Springer-Verlag, 1965, Section 3 for these 
equivalences and some others. 

1 See P.J. Cohen's papers in: Proc. Nat. Acad. Sci., 50(1963), and 51(1964). 
2Thls is not known to be the case! 
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E X E R C I S E S  

1. Let A be the collection of all finite subsets of JR. ordered by inclusion. Discuss the exis­
tence (or nonexistence) of upper bounds, minimal and maximal elements (where minimal 
elements are defined analogously to maximal elements). Explain why this is not a well 
ordering. 

2. Let A be the collection of all infinite subsets of JR. ordered by inclusion. Discuss the 
existence (or nonexistence) of upper bounds, minimal and maximal elements. Explain 
why this is not a well ordering. 

3. Show that the following partial orderings on the given sets are not well orderings: 
(a) JR. under the usual relation ::::= . 
(b) JR.+ under the usual relation ::::= . 
(c) JR.+ U {0} under the usual relation ::::= . 
(d) Z under the usual relation ::::= . 

4. Show that z+ is well ordered under the usual relation ::::= . 
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APPEN D IX I I  

Catego ry Th eo ry  

Category theory provides the language and the mathematical foundations for discussing 
properties of large classes of mathematical objects such as the class of "all sets" or "all 
groups" while circumventing problems such as Russell's Paradox. In this framework 
one may explore the commonality across classes of concepts and methods used in 
the study of each class: homomorphisms, isomorphisms, etc., and one may introduce 
tools for studying relations between classes: functors, equivalence of categories, etc. 
One may then formulate precise notions of a "natural" transformation and "natural" 
isomorphism, both within a given class or between two classes. (In the text we described 
"natural'' as being "coordinate free.") A prototypical example of natural isomorphisms 
within a class is the isomorphism of an arbitrary finite dimensional vector space with its 
double dual in Section 1 1 .3 . In fact one of the primary motivations for the introduction 
of categories and functors by S .  Eilenberg and S. MacLane in 1945 was to give a precise 
meaning to the notions of"natural" in cases such as this. Category theory has also played 
a foundational role for formalizing new concepts such as schemes ( cf. Section 15.5) that 
are fundamental to major areas of contemporary research (e.g., algebraic geometry). 
Pioneering work of this nature was done by A. Grothendieck, K. Morita and others. 

Our treatment of category theory should be viewed more as an introduction to some 
of the basic language. Since we have not discussed the Zermelo-Fraenkel axioms of set 
theory or the Godel-Bernays axioms of classes we make no mention of the foundations 
of category theory. To remain consistent with the set theory axioms, however, we 
implicitly assume that there is a universe set U which contains all the sets, groups, 
rings, etc. that one would encounter in "ordinary" mathematics (so that the category 
of "all sets" implicitly means "all sets in U"). The reader is referred to books on set 
theory, logic, or category theory such as Categories for the Working Mathematician by 
S .  MacLane, Springer-Verlag, 197 1  for further study. 

We have organized this appendix so that wherever possible the examples of each 
new concept use terminology and structures in the order that these appear in the body 
of the text. For instance, the first example of a functor involves sets and groups, the 
second example uses rings, etc. In this way the appendix may be read early on in one's 
study, and a greater appreciation may be gained through rereading the examples as one 
becomes conversant with a wider variety of mathematical structures. 

1 .  CATEGORIES AND FU NCTORS 

We begin with the basic concept of this appendix. 

Definition. A category C consists of a class of objects and sets of morphisms between 
those objects. For every ordered pair A ,  B of objects there is a set Homc(A, B) of 
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morphisms from A to B, and for every ordered triple A ,  B, C of objects there is a law 
of composition of morphisms, i.e., a map 

Homc(A , B) x Homc(B, C) � Homc(A, C) 

where (f, g) � gf, and gf is called the composition of g with f. The objects and 
morphism satisfy the following axioms: for objects A, B, C and D 

(i) if A =f. B or C =f. D, then Homc(A , B) and Home( C. D) are disjoint sets, 
(ii) composition of morphisms is associative, i.e., h(gf) = (hg)f for every f in 

Homc(A , B), g in Homc(B, C) and h in Home( C. D), 
(iii) each object has an identity morphism, i.e., for every object A there is a mor­

phism l A  E Homc(A , A) such that flA  = f for every f E Homc(A , B) and 
l Ag =  g for every g E Homc(B, A) .  

Morphisms are also called arrows. I t  i s  an exercise to see that the identity morphism 
for each object is unique (by the same argument that the identity of a group is unique). 
We shall write Hom(A , B) for Homc(A , B) when the category is clear from the context. 

The terminology we use throughout the text is common to all categories: a mor-

phism from A to B will be denoted by f : A --+ B or A .!.,. B. The object A is the 
domain of f and B is the codomain of f. A morphism from A to A is an endomorphism 
of A. A morphism f : A -+ B is an isomorphism if there is a morphism g : B --+ A 
such that gf = l A  and fg = l n .  

There is a natural notion of a subcategory category C of D, i.e., when every ob­
ject of C is also an object in D, and for objects A ,  B in C we have the containment 
Homc(A ,  B) s; Homn (A , B). 

Examples 

In each of the following examples we leave the details of the verification of the axioms for 
a category as exercises. 
(1) Set is the category of all sets. For any two sets A and B, Hom(A , B) is the set of 

all functions from A to B.  Composition of morphisms is the familiar composition of 
functions: gf = g o  f. The identity in Hom(A , A) is the map 1 A (a) = a, for all 
a E A. This category contains the category of all finite sets as a subcategory. 

(2) Grp is the category of all groups, where morphisms are group homomorphisms. Note 
that the composition of group homomorphisms is again a group homomorphism. A 
subcategory of Grp is Ab, the category of all abelian groups. Similarly, Ring is the 
category of all nonzero rings with 1 ,  where morphisms are ring homomorphisms that 
send 1 to 1 .  The category CRing of all commutative rings with I is a subcategory of 
Ring. 

(3) For a fixed ring R, the category R-mod consists of all left R-modules with morphisms 
being R-module homomorphisms. 

( 4) Top is the category whose objects are topological spaces and morphisms are continuous 
maps between topological spaces (cf. Section 1 5.2). Note that the identity (set) map 
from a space to itself is continuous in every topology, so Hom(A , A) always has an 
identity. 

(5) Let 0 be the empty category, with no objects and no morphisms. Let I denote 
the category with one object, A, and one morphism: Hom(A, A) = { lA }. Let 2 
be the category with two objects, A1 and A2, and only one nonidentity morphism: 
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Hom(A I ,  Az) = {f}  and Hom(Az , A 1 ) = 0. Note that the objects AI and Az and the 
morphism f are "primitives" in the sense that A I  and Az arc not defined to be sets 
and f is simply an arrow (literally) from AI  to Az ; it is not defined as a set map on the 
elements of some set. One can continue this way and define N to be the category with 
N objects AI ,  Az , . . .  , AN with the only nonidentity morphisms being a unique arrow 
from A; to A j for every j > i (so that composition of arrows is uniquely determined). 

(6) lfG is a group, formthe category G as follows. The only object is G and Hom(G, G) = 
G; the composition of two functions f and g is the product gf in the group G. Note 
that Hom( G, G) has an identity morphism: the identity of the group G.  

Definition. Let C and D be categories. 
(1) We say :F is a covariant functor from C to D if 

(a) for every object A in C, :FA is an object in D, and 
(b) for every f E Homc(A , B) we have F(/) E Homn(F A ,  :FB), 

such that the following axioms are satisfied: 
(i) if gf is a composition of morphisms in C, then :F(gf) = :F(g):F(f) 

in D, and 
(ii) F(lA)  = l :FA .  

(2) We say :F is a contravariant functor from C to D if the conditions in (1 ) hold 
but property (b) and axiom (i) are replaced by: 

(b') for every f E Holllc(A , B), :F(f) E Homn(F B, :FA), 
(i') if gf is a composition of morphisrns in C, then :F(gf) = :F(f):F(g) 

in D 
(i .e. , contravariant functors reverse the arrows). 

Examples 

In each of these examples the verification of the axioms for a functor are left as exercises. 
Additional examples of functors appear in the exercises at the end of this section. 
(1) The identity functor Ic maps any category C to itself by sending objects and mor­

phisms to themselves. More generally, if C is a subcategory ofD, the inclusion functor 
maps C into D by sending objects and morphisms to themselves. 

(2) Let :F be the functor from Grp to Set that maps any group G to the same set G and 
any group homomorphism cp to the same set map cp. This functor is called the forgeiful 
functor since it "removes" or "forgets" the structure of the groups and the homomor­
phisms between them. Likewise there are forgetful functors from the categories Ab, 
R-mod, Top, etc., to Set. 

(3) The abelianizing functor maps Grp to Ab by sending each group G to the abelian 
group Gab = GfG', where G' is the commutator subgroup of G (cf. Section 5.4). 
Each group homomorphism cp : G � H is mapped to the induced homomorphism on 
quotient groups: 

q; :  Gab � Hab by qi(xG') = cp(x)H'.  

The definition of the commutator subgroup ensures that q; is well defined and the 
axioms for a functor are satisfied. 

(4) Let R be a ring and let D be a left R-module. For each left R-module N the 
set HomR (D, N) is an abelian group, and is an R-module if R is commutative 
(cf. Proposition 2 in Section 10.2). If cp : NI � Nz is an R-module homomor­
phism, then for every f E HomR (D, NI ) we have cp o f E HomR(D, Nz). Thus 

Sect. 1 Categories and Functors 91 3 



q/ : HomR (D, N1) --+  HomR (D , N2) by q/(f) = ({! o f. This shows the map 

1-lom(D, _) : N ---+ HomR (D, N) 

1-lom(D, _) : ({! ---+ ({11 

is a covariant functor from R-Mod to Grp. If R is commutative, it maps R-Mod to 
itself. 

(5) In the notation of the preceding example, we observe that if ({! : N1 --+ N2, then for 
every g E HomR(N2 , D) we have g o ({l E HomR (Nl , D). Thus ({!' : HomR (N2 .  D) --+ 
HomR (Nt , D) by ({11(g) = g o ({!. In this case the map 

1-lom(_, D) : N ---+ HomR(N, D) 

1-lom(_, D) : ({! ---+ ({11 

defines a contravariant functor. 
(6) When D is a right R-module the map D ®R _ : N --+ D ®R N defines a covariant 

functor from R-Mod to Ab (or to R-Mod when R is commutative). Here the mor­
phism ({! : N1 --+ N2 maps to the morphism 1 ® ({!.  

Likewise when D is a left R-module _ ®R D : N --+ N ®R D defines a co­
variant functor from the category of right R -modules to Ab (or to R-Mod when R is 
commutative), where the morphism ({! maps to the morphism ({! ® 1 .  

(7) Let K be a field and let K -fdVec be the category of all finite dimensional vector spaces 
over K, where morphisms in this category are K-linear transformations. We define 
the double dual functor V2 from K -fdVec to itself. Recall from Section 1 1 .3 that 
the dual space, V*, of V is defined as V* = HomK (V, K);  the double dual of V is 
V** = HomK (V* , K).  Then V2 is defined on objects by mapping a vector space V 
to its double dual V** .  If ({! : V --+ W is a linear transformation of finite dimensional 
spaces, then 

by 

where Ev denotes "evaluation at v" for each v E V. By Theorem 19 in Section 1 1 .3, 
Ev E V** , and each element of V** is of the form Ev for a unique v E V. Since 
({J(V) E W we have E'P(v) E W**, so V2(({1) is well defined. 

The functor :F from C to D is called faithful (or is called full) if for every pair 
of objects A and B in C the map :F :  Hom( A ,  B) --* Hom(:F A,  :FB) is injective (or 
surjective, respectively). Thus, for example, the forgetful functor is faithful but not full. 

E X E R C I S E S  

1. Let N be a group and let Nor-N be the collection of all groups that contain N as a  normal 
subgroup. A morphism between objects A and B is any group homomorphism that maps 
N into N. 
(a) Prove that Nor-N is a category. 
(b) Show how the projection homomorphism G f-+ GIN may be used to define a functor 

from Nor-N to Grp. 

2. Let H be a group. Define a map 1-l x from Grp to itself on objects and morphisms as 
follows: 
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1-l x  : G --+  H x G, and 

if ({! :  G1 --+ G2 then 1-l x (({l) : H x G1 --+ H x G2 by (h , g) f-+ (h , ({!(g)) . 
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Prove that 1-£ x is a functor. 
3. Show that the map Ring to Grp by mapping a ring to its group of units (i.e., R �---* R x )  

defines a functor. Show by explicit examples that thi s  functor i s  neither faithful nor fulL 

4. Show that for each n ::::: 1 the map Q Cn : R � G Ln (R) defines a functor from CRing to 
Grp. [Define QCn on morphisms by applying each ring homomorphism to the entries of 
a matrix.] 

5. Supply the details that show the double dual map described in Example 7 satisfies the 
axioms of a functor. 

2. NATURAL TRANSFORMATIONS AND UNIVERSALS 

As mentioned in the introduction to this appendix, one of the motivations for the in­
ception of category theory was to give a precise definition of the notion of "natural" 
isomorphism. We now do so, and see how some natural maps mentioned in the text 
are instances of the categorical concept. We likewise give the categorical definition of 
"universal arrows" and view some occurrences of universal properties in the text in this 
light. 

Definition. Let C and D be categories and let F, g be covariant functors from C to 
D. A natural transfonnation or morphism of functors from F to g is a map rJ that 
assigns to each object A in C a morphism 'fJA in HomD(FA , QA) with the following 
property: for every pair of objects A and B in C and every f E Homc(A , B) we have 
Q(J)rJA = rJBF(j), i.e., the following diagram commutes: 

FA 

:F(f) 1 
:FB 

QA 

lQ(f) 
QB 

If each rJ A is an isomorphism, rJ is called a natural isomorphism of functors. 

Consider the special case where C = D and C is a subcategory of Set, and where 
F is the identity functor. There is a natural transformation rJ from the identity functor 
to g if whenever g maps the object A to the object QA there is a morphism 'fJA from 
A to QA, and whenever there is a morphism f from A to B the morphism Q(J) is 
compatible with f as a map from g A to Q B. In fact g (f) is uniquely determined by 
f as a map from the subset rJA (A) in QA to the subset rJ8 (B) of QB. If rJ is a natural 
isomorphism, then the value of g on every morphism is completely determined by rJ, 
namely g (f) = rJ 8 f rJ A 1 •  In this case the functor g is entirely specified by rJ. We shall 
see that some of the examples of functors in the preceding section arise this way. 

Examples 

(1) For any categories C and D and any functor F from C to D the identity is a natural 
isomorphism from F to itself: TJ A = 1 :FA for every object A in C. 
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(2) Let R be a ring and let :F be any functor from R-Mod to itself. The zero map is a 
natural transformation from :F to itself: I'} A = OA for every R-module A, where OA is 
the zero map from A to itself. This is not a natural isomorphism. 

(3) Let :F be the identity functor from Grp to itself, and let Q be the abelianizing functor 
(Example 3) considered here as a map from Grp to itself. For each group G let 
1'JG : G -+ GIG' be the usual projection map onto the quotient group. Then 1'J is a 
natural transformation (but not an isomorphism) with respect to these two functors. 
(We call the maps 1'JG the natural projection maps.) 

( 4) Let g = V2 be the double dual functor from the category of finite dimensional vector 
spaces over a field K to itself (Example 7). Then there is a natural isomorphism 1'J 
from the identity functor to Q given by 

1'Jv : v -+  v** by I'}V (V) = Ev 

where Ev is "evaluation at v" for every v E V.  
(5) Let Q£n be the functor from CRing to Grp defined as follows. Each object (com­

mutative ring) R is mapped by Q £n to the group G Ln (R) of n x n invertible matrices 
with entries from R.  For each ring homomorphism f : R -+ S let Q£n (f) be the 
map of matrices that applies f to each matrix entry. Since f sends 1 to 1 it follows 
that Q £n (f) sends invertible matrices to invertible matrices ( cf. Exercise 4 in Section 
1 ). Let Q be the functor from CRing to Grp that maps each ring R to its group of 
units R x ,  and each ring homomorphism f to its restriction to the groups of units (also 
denoted by f). The detenninant is a natural transformation from Q £n to Q because 
the determinant is defined by the same polynomial for all rings so that the following 
diagram commutes: 

GLn (S) � sx 

Let C, D and E be categories, let :F be a functor from C to D, and let g be a 
functor from D to E. There is an obvious notion of the composition of functors Q:F 
from C to E. When E = C the composition Q:F maps C to itself and :FQ maps D 
to itself. We say C and D are isomorphic if for some :F and g we have Q:F is the 
identity functor Ic, and :FQ = Iv. By the discussion in Section 10. 1 the categories Z­
Mod and Ab are isomorphic. It also follows from observations in Section 10. 1 that the 
categories of elementary abelian p-groups and vector spaces over lF P are isomorphic. In 
practice we tend to identify such isomorphic categories. The following generalization 
of isomorphism between categories gives a broader and more useful notion of when 
two categories are "similar." 

Definition. Categories C and D are said to be equivalent if there are functors :F from 
C to D and g from D to C such that the functor Q:F is naturally isomorphic to Ic (the 
identity functor of C) and :FQ is naturally isomorphic to the identity functor Iv.  

It i s  an exercise that equivalence of categories i s  reflexive, symmetric and transi­
tive. The example of Affine k-algebras in Section 15 .5 is an equivalence of categories 
(where one needs to modify the direction of the arrows in the definition of a natural 
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transformation to accommodate the contravariant functors in this example). Another 
example (which requires some proving) is that for R a commutative ring with 1 the 
categories of left modules R-Mod and Mn xn (R)-Mod are equivalent. 

Finally, we introduce the concepts of universal arrows and universal objects. 

Definition. 
(1) Let C and D be categories, let F be a functor from C to D, and let X be an 

object in D. A universal arrow from X to F is a pair (U (X) ,  t), where U (X) is 
an object in C and t : X ---+ FU (X) is a morphism in D satisfying the following 
property: for any object A in C if cp is any morphism from X to FA in D, then 
there exists a unique morphism tP : U(X) ---+ A in C such that F(tP)t = cp, 
i.e., the following diagram commutes: 

X FU(X) 

� ! F(tP) 

FA 
(2) Let C be a category and let F be a functor from C to the category Set of all 

sets. A universal element of the functor F is a pair (U, t ) , where U is an object 
in C and t is an element of the set FU satisfying the following property: for 
any object A in C and any element g in the set FA there is a unique morphism 
cp :  U ---+ A in C such that F(cp)(t) = g. 

Examples 

(1) (Universal Arrow: Free Objects) Let R be a ring with 1 .  We translate into the language 
of universal arrows the statement that if U (X) is the free R-module on a set X then any 
set map from X to an R-module A extends uniquely by R-linearity to an R-module 
homomorphism from U(X) to A (cf. Theorem 6, Section 10.3): Let F be the forgetful 
functor from R-Mod to Set, so that F maps an R-module A to the set A, i.e., A = FA 
as sets. Let X be any set (i.e., an object in Set), let U(X) be the free R-module with 
basis X, and let t : X --""* FU (X) be the set map which sends each b E X to the basis 
element b in U(X). Then the universal property of free R-modules is precisely the 
result that (U(X), t) is a universal arrow from X to the forgetful functor F. 

Similarly, free groups, vector spaces (which are free modules over a field), poly­
nomial algebras (which are free R-algebras) and the like are all instances of universal 
arrows. 

(2) ( UniversalArrow: Fields of Fractions) Let Fbe the forgetful functor from the category 
of fields to the category of integral domains, where the morphisms in both categories 
are injective ring homomorphisms. For any integral domain X let U(X) be its field 
of fractions and let t be the inclusion of X into U(X) . Then (U(X) , t) is a universal 
arrow from X to the functor F (cf. Theorem 15(2) in Section 7.5). 

(3) (Universal Object: Tensor Products) This example refers to the construction of the 
tensor product of two modules in Section 1 0.4. Let C = R-Mod be the category of 
R-modules over the commutative ring R, and let M and N be R-modules. For each 
R-module A let Bilin(M, N; A) denote the set of all R-bilinear functions from M x N 
to A. Define a functor from R-Mod to Set on objects by 

F :  A ---+ Bilin(M, N;  A) , 
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and if rp : A --+- B is an R-module homomorphism then 

:F(rp) (h) = rp o h for every h E Bilin(M, N; A). 

Let U = M ® R N and let t be the bilinear function 

t :  M x N --+- M ®R M by t (m , n) = m ® n, 

so t is an element of the set Bilin(M, N; M ®R N) = FU. Then (M ®R N, t} 
is a universal element of F because for any R-module A and for any bilinear map 
g :  M x N --+- A (i.e., any element of:FA) there is a unique R-module homomorphism 
rp :  M ®R N --+- A such that g = rp o t = :F(rp} (t) . 

E X E R C I S E S  

1. Let Nor-N be the category described in Exercise 1 of Section l ,  and let F be the inclusion 
functor from Nor-N into Grp. Describe a functor g from Nor-N into Grp such that the 
transformation 1J defined by 1/G : G --+- GIN is a natural transformation from F to g. 

2. Let H and K be groups and let 'H.x and /C x  be functors from Grp to itself described in 
Exercise 2 of Section 1 .  Let rp : H --+- K be a group homomorphism. 
(a) Show that the maps TJA : H x A --+- K x A by TJA (h. a) = (rp(h} , a) determine a 

natural transformation 1J from 'H. x  to /C x .  
(b) Show that the transformation 1J is a natural isomorphism if and only i f  rp is a group 

isomorphism. 

3. Express the universal property of the commutator quotient group - described in Propo­
sition 7(5) of Section 5.4 - as a universal arrow for some functor F. 
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I n d ex 

A 
!-parameter subgroup, 505 
2-stage Euclidean Domain, 294 
A.C.C. - see ascending chain condition 
abelian, 17 
abelian categories, 79 1 
abelian extensions of Q, 599ff. 
abelian group, 17, 84, 158ff. ,  196, 339, 468 

representation of, 861 
Abel's Theorem (insolvability of quintic), 625 
absolutely flat, 797 
action, faithful, 43, 1 12ff. 

group ring, 842 
group, 4 1ff. ,  1 1 2ff., 45 1 
left VS. right, 1 28, 156 

Adjoint Associativity, 401 ,  804, 8 1 1 
affine algebraic sets, 658ff. 
affine curve, 726 
affine k-algebra, 734 
affine n-space, 338, 658 
affine scheme, 742 
affords a representation, 1 14, 843 
algebra, 342ff. ,  657 
algebraic, element, 520ff., 527 

extension, 520ff. , 527 
integer, 695ff., 887 
number, 527 

algebraic closure, 543 
of a finite field, 588 

algebraic conjugate - see conjugate 
algebraic geometry, 330, 655ff. , 658, 742, 745, 

760, 762, 91 1 
algebraically closed, 543 
algebraically conjugate characters, 878 
algebraically independent, 645, 699 
algebraically indistinguishable, 5 1 8  
algorithm, for Jordan Canonical Form, 496 

for rational canonical form, 481 
alternating form, 437 
alternating group, 107ff. ,  6 1 1 

A4, 1 10, 1 1 1  
As simplicity of, 127, 145 
characters of, 883 
simplicity of, 1 10, 149ff. 

alternating, function, 436, 446 
tensor, 45 1 

angle trisecting, 535, 535 
annihilated by, 338 
annihilator, 249 

of a submodule, 344, 460 
of a subspace, 434, 435 

arrow, 9 1 2  
Artin-Schreier extensions, 589, 636 
Artin-Schreier map, 623 
Artinian, 657, 750ff. ,  855 
ascending chain condition (A.C.C.), 458, 656ff. 
assassin, 670 
associate, 284ff. 
associated primes, of a module, 670, 730, 748 

of a prime ideal, 685 
of an ideal, 682 

associative, 1 6  
asymptotic behavior, 508 
augmentation, ideal, 245, 253, 255, 258, 846 

map, 245, 255, 799, 8 1 1  
augmented matrix. 424 
Aut(IR/Q), 567 
auromorphism, 41 ,  133ff. 

group. 4 1 ,  133ff. 
of Dg, 1 36, 220 
of Qg, 1 36, 220ff. 
of s6 . 221 
of Sn , 1 36ff. 
of a cyclic group, 6 1 ,  1 35, 136, 3 1 4  
o f  a field extension, 558ff. 
of a field, 558ff. 
of an elementary abelian group, 1 36 

autonomous system, 507 

B 
Bn (G; A) - see coboundaries 
Baer's Criterion, 396 
balanced map, 365ff. 
bar resolution, 799 
base field, 5 1 1  
basic open set, 738 
basis, 354 
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free, 218, 354 
of a field extension, 5 1 3  
of a vector space, 408 

Bass' Characterization of Noetherian Rings, 793 
belongs to an ideal, 682 
Berlekamp's Factorization Algorithm, 3 1 1 ,  589.ff. 
Betti number, 1 59, 464 
Bezout Domain, 274. 283, 294. 302, 307, 775 
bijection, 2 
bilinear, 368.ff. , 372, 436 
bimodule, 366, 404 
binary, operation, 16 

relation, 3 
Binomial Theorem, 60, 249, 548 
biquadratic, extension, 530, 582, 589 

polynomial, 617 
block, 1 17 

diagonal, 423, 475 
upper triangular, 423 

Boolean ring, 23 1 , 232, 249, 250, 258, 267 
Brauer group, 836 
Buchberger's Algorithm, 324.ff. 
Buchberger's Criterion, 324.ff., 332 
building, 212 
Building-Up Lemma. 41 1 
Burnside's Basis Theorem, 199 
Burnside's Lemma, 877 
Burnside's N /C-Theorem, 2 1 3  
Burnside's Jl'qb Theorem, 196, 886.ff. 

c 
C" (G; A) - see cochains 
cancellation laws, 20 
canonical forms, 457, 472 
canonical model, 734 
Cardano's Formulas, 630.ff. , 638.ff. 
cardinality, l 
Cartesian product, l ,  905ff. 
Castelnuovo's Theorem. 646 
Casus irreducibilis, 633, 637 
category, 391 , 91 1 ff. 
Cauchy's Theorem, 93, 96, 102, 146 
Cayley-Hamilton Theorem, 478 
Cayley's Theorem, l l 8.ff. 
center, of a group, 50, 84, 89, 124, 1 34, 198 

of a group ring, 239 
of a matrix ring, 239, 834, 856 
of a p-group, 1 25, 1 88 
of a ring, 23 1 ,  23 1 ,  344, 832.ff. , 856 

central idempotent, 357, 856 
central product, 1 57, 169 
central simple algebra, 832.ff. 
centralize, 94 

920 

centralizer, 49.ff. , 123.ff., l33.ff. 
of a cycle, 173 
of a representation, 853 

chain complex, 777 
homotopy, 782 

change of basis, 40, 419 
changing the base - see extension of scalars 
character, of a group. 568, 866 

of a representation, 866 
character table, 880.ff. 

of A4, 883 
of Dg, 881 
of Q8, 882 
of S3, 881 
of s4, 883 
of s5, 884 
of 7Lj27L, 880 
of 7Lj37L, 881 

characteristic, of a field, 510  
of a ring, 250 

characteristic function, 249 
characteristic p fields, 510  
characteristic polynomial, 473 
characteristic subgroup, 135.ff. , 174 
Chinese Remainder Theorem, 246. 265ff., 3 1 3, 357, 

768 
choice function, 905 
class equation, l 22.ff. , 5 56 
class field theory, 600 
class function, 866, 870 
class group, 761 ,  774 
class number, 761 
Classical Greek Problems, 53 l.ff. 
classification theorems, 38, l42.ff. , l 8 l.ff. 
closed, topologically, 676 

under an operation, 16, 242, 528 
closed points, 733 
coboundaries, 800 
cochain. 777, 799, 808 
cochain complex, 777 
cochain homotopy, 792 
cocycle, 800 
codomain, l 
coefficient matrix, 424 
cofactor, 439 

Expansion Formula, 439 
Formula for the Inverse of a Matrix, 440 

coherent module sheaf, 748 
cohomologically trivial, 802, 804, 8 1 2  
cohomology group, 777, 798.ff. 
coinduced module, 803, 8 1 1 ,  8 12  
cokernel, 792 
coloring graphs, 335 
column rank, 4 1 8, 427, 434 
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comaximal ideals, 265 
commutative, 16, 223 

diagram, 100 
commutator, 89, 169 
commutator series - see derived series 
commutator subgroup, 89, 169, l95.ff. 
commute, diagram, 100 
compact, 688 

support, 225 
companion matrix, 475 
compatible homomorphisms, 805 
complement, 1 80, 453, 454, 820, 829, 890 
complete, 759.ff. 
complete preimage, 83 
completely reducible, 847 
completion, 759.ff. 
complex conjugation, 345, 567, 603, 61 8, 654, 872 
complex numbers, 1, 5 1 2, 5 1 5, 654 
component of a direct product, 155, 338 
composite extensions, 529, 59l.ff. 

of fields, 528 
composition factors. 103 
composition series, 103.ff. 
computing k-algebra homomorphisms, 664.ff. 
computing Galois groups, 640.ff. 
congruence class, 8.ff. 
congruent, 8 
conjugacy class, 123.ff. , 489, 860 
conjugate, algebraic, 573 

field, 573 
of a field element, 573 
of a group element, 82, l23.ff. 
of a set, 1 23.ff. 
of a subgroup, 134, 139.ff. 

conjugation, 45, 52, 1 22.ff. , 133 
in An , 127, 1 3 1  
i n  Sn , 125.ff. 

connected, 687 
connecting homomorphisms, 778, 79 1 
constituent of a module, 847 

constructible, 532.ff. 
constructibility of a regular n-gon, 534ff., 60l.ff. 
construction of cube roots, 535 
construction of the regular 17 -gon, 602.ff. 
continuous cohomology groups, 809 
continuous group action, 808.ff. 
contracting homomorphisms, 809 
contraction of ideals, 693, 708.ff. 

contravariant, 659 
converge. 503 
coordinate ring, 661 
coprime - see relatively prime 
corestriction homomorphism, 806, 807 
corresponding group actions, 129 

I ndex 

coset, 17ff., 89.ff. 
representatives, 77 

Cramer's Rule, 438 
Criterion for the Solvability of a Quintic, 639 
crossed homomorphisms, 814ff. 
crossed product algebra, 833.ff. 
cubic equations, formulas for roots, 630.ff. 
curve, 726 
cycle, 29, 30, 33, l06.ff. , 1 73 

cycle decomposition. 29, 30, 1 15.ff. , 641 
algorithm, 30.ff. 

cycle type, 1 26.ff. 
of automorphisms, 640 

cyclic extensions, 625. 636 
cyclic group, 22, 54ff., 90, 149, 192, 198, 539 

characters of, 880, 881 
cohomology of, 801, 8 1 1  

cyclic module, 351 , 462 
cyclotomic extensions, 552.ff. , 596ff. 
cyclotomic field, 540.ff., 698 
cyclotomic polynomial, 3 10, 489, 552.ff. 
cyclotomy, 598 

D 
D.C.C. - see descending chain condition 
decomposable module, 847 
Dedekind Domain, 764.ff. 

modules over, 769.ff. 
Dedekind-Hasse Criterion, 281 
Dedekind-Hasse norm, 28 1 , 289, 294 
degree, of a character, 866 

of a field element, 520 
of a field extension, 5 12 
of a monomial, 621 
of a polynomial, 234, 295, 297 
of a representation. 840 
of a symmetric group, 29 

degree ordering, 331 
dense, 677, 687 
density of primes, 642 
derivative, of a polynomial, 3 12, 546 

of a power series, 505 
derived functors, 785 
derived series, 195.ff. 
descending chain condition (D.C.C.), 33 1 , 657, 751,  

855 
determinant, 248, 435.ff. , 450, 488 

computing, 441 
determinant ideal, 67 1 
diagonal subgroup, 49, 89 
diagonalizable matrices criterion, 493, 494 
Dickson's Lemma, 334 
differential, 723 
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of a morphism, 728 
dihedral group, 23/f. 

as Galois group, 617/f. 
characters of, 88 1 ,  885 
commutator subgroup of, 171  
conjugacy classes in, 132 

dimension, of a ring, 750, 754/f. 
of a tensor product, 421 
of a variety, 68 1 , 729 
of a vector space, 408, 41 1 
of Sk (V), 446 
of Tk (V),  443 
of /\k (V), 449 

dimension shifting, 802 
Diophantine Equations, 14. 245. 276, 278 
direct factor, 455 
direct limit, 268, 358, 741 
direct product, characters of, 879 

infinite, 157, 357, 414 
of free modules, 358 
of groups, 1 8, 15�, 385, 593 
of injective modules, 793 
of injective resolutions. 793 
of modules, 353, 357, 358, 385 
of rings, 23 1 , 233, 265/f. 

direct sum, infinite, 158, 357, 414 
of injective modules, 403 
of modules, 35 1/f., 357, 385 
of projective modules. 392, 403, 793 
of projective resolutions, 793 
of rings, 232 

direct summand, 373, 385, 451 
directed set, 268 
Dirichlet's Theorem on Primes in Arithmetic 

Progressions, 557 
discrete G-module, 808 
discrete cohomology groups, 808/f. 
discrete valuation, 232, 238, 272, 755 
Discrete Valuation Ring, 232, 272, 755/f.,  762 
discriminant, 610 

as resultant, 621 
of a cubic, 612 
of a polynomial, 610 
of a quadratic, 6 1 1 
of a quartic, 614 
of pllJ cyclotomic polynomial. 621 

distributive laws, 34, 223 
divides, 4, 252, 274 
divisibility of ideals, 767 
divisible, group, 66, 86, 167 

module, 397 
Division Algorithm, 4, 270, 299 
division ring, 224, 225, 834 
divisor, 274 
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domain, 1 
double coset, 1 17 
double dual, 432, 823, 914 
Doubling the Cube impossibility of, 53 1/f. 
doubly transitive, 1 17, 877 
dual basis, 432 
dual group, 167, 8 15, 823 
dual module, 404, 404 
dual numbers, 729 
dual vector space, 43 1 

E 
echelon, 425 
eigenspace, 473 
eigenvalue, 414, 423, 472 
eigenvector, 414, 423, 472 
Eisenstein's Criterion, 309ft., 3 1 2  
elementary abelian group, 1 36, 155, 339, 654 
elementary divisor, 161/f.,  465/f. 

decomposition, 161/f.,  464 
decomposition algorithm, 495 

elementary Jordan matrix, 492 
elementary row and column operations, 424, 470/f., 

479/f. 
elementary symmetric functions, 607 
elimination ideal, 328/f. 
elimination theory, 327/f. 
elliptic, curve, 14 

function, 600 
function field, 653 
integral, 14 

embedded prime ideal, 685 
ernbedding, 83, 359, 569 
endomorphism, 347 

ring, 347 
equivalence class, 3, 45, 1 14 
equivalence of categories, 734, 916 
equivalence of short exact sequences, 381  
equivalence relation, 3 ,  45, 1 14 
equivalent extensions, 3 8 1 , 787, 824 
equivalent representations, 846, 869 
Euclidean Algorithm, 5, 271 
Euclidean Domain, 270/f., 299 

modules over, 470, 490 
Euler cp-function, 7, 8, 1 1 , 267, 3 15, 539/f., 589 
Euler's Theorem, 13, 96 
evaluation homomorphism, 244, 255, 43� 
exact, functor, 391, 396 

sequence, 378 
exactness, of Hom, 389ft., 393/f. 

of tensor products, 399 
exceptional characters, 901 
exponent of a group, 165/f., 626 
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exponential map, 86 
exponential notation, 20, 22 
exponential of a matrix, 503ff. 
Ext� (A , B), 779ff. 
extension, of a map, 3, 386, 393 

of ideals, 693, 708ff. 
of modules, 378 
of scalars, 359ff. ,  363ff. , 369, 373 

extension field, 5 1 1ff. 
extension problem. 104, 378, 776 
Extension Theorem, for Isomorphisms of Fields, 

5 1 9, 541 
exterior algebra, 446 
exterior power, 446 
exterior product - see wedge product 
external, direct product, 172 

direct sum, 353 

F 
F -algebra - see algebra 
factor group - see quotient group 
factor set, 824ff. 
factor through, homomorphism, 1 00, 365 
factorial variety, 726 
factorization, 283ff. 
faithful, action, 43, 1 12ff. 

functor, 914 
representation, 840 

Fano Plane, 210 
Feit-Thompson Theorem, 104, 106, 149, 1 96, 21 2, 

899 
Fermat primes, 601 
Fermat's Little Theorem, 96 
Fermat's Theorem on sums of squares, 291 
fibe� 2. 73ff. , 24<U(. 
fiber product of homomorphisms, 407 
fiber sum of homomorphisms, 407 
field, 34, 224, 226, 51 Off 

of fractions, 260ff. 
of p-adic numbers, 759 
of rational functions, 264, 5 1 6, 530, 567, 585, 

647ff. ,  68 1 ,  721 
field extension, 5 1 1ff. 
field generated by, 51 1 ,  5 1 6  
field norm, 229 
finite covering, 704 
finite dimensional, 408, 41 1 
finite extensions, 5 1 2ff., 521 ,  526 
finite fields, 34, 301 , 529 

algebraic closure of, 588 
existence and uniqueness of, 549ff. 
Galois groups of, 566, 586 
of four elements, 5 1 6, 653 

I ndex 

subfields of, 588 
finite group, 17 
finitely generated, field extension, 524ff., 646 

group, 65, 1 58, 218ff. 
ideal, 25 1 ,  3 1 7  
k-algebra, 657 
module, 351ff. ,  458 

finitely presented, group, 218ff. 
module, 795ff. 

First Order Diophantine Equation, 276, 278 
First Orthogonality Relation, 872 
Fitting ideal, 67 1 
Fitting's Lemma, 668 
fixed, element, 558 

field, 560 
set, 1 3 1 , 798 

fixed point free, 4 1 ,  1 32 
fiat module, 400ff., 405ff., 790, 795 
form, 297 
formal Laurent series, 238, 265, 756, 759 
formal power series, 238, 258, 265, 668 
formally real fields, 530 
Fourier Analysis, 875ff. 
fractional ideal, 760ff. 
fractional linear transformations, 567, 647 
Frattini subgroup, 198ff. 
Frattini's Argument, 1 93 
free, abelian group, 158, 355 

group, 215ff. 
module, 338, 352, 354ff., 358, 400 
nilpotent group, 221 

free generators, 2 1 8  
o f  a module, 354 

free rank, 159, 21 8, 355, 460, 464 
Frobenius automorphism, 549, 556, 566, 586, 589, 

604 
Frobenius group, 1 68, 638, 643ff., 896 

as Galois group, 638 
characters of, 896 

Frobenius kernel, 896 
Frobenius Reciprocity, 904 
full functor, 914 
function, 1 
function field, 646, 653 
functor, 391 ,  396, 398, 9 1 3  

contravariant, 395, 913  
covariant, 39 1 ,  398, 913  

fundamental matrix, 506 
Fundamental Theorem, of Algebra, 545, 6 1 5ff. 

of Arithmetic, 6, 289 
of Finitely Generated Abelian Groups, 1 58ff. , 

1 96, 468 
of Finitely Generated Modules over a 

Dedekind Domain, 769ff. 
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of Finitely Generated Modules over a P.I.D., 462, 
464, 466 

of Galois Theory, 574ff. 
on Symmetric Functions, 608 

G 
G-invariant, 843 
G-module, 798 
G-stable, 843 
Galois closure, 594 
Galois cohomology groups, 809ff. 
Galois conjugates, 573 
Galois extension, 562, 512ff. 
Galois group, 562ff., 514ff. 

of !Fp" •  566, 586 

of IQI(2118 , i) or x8 - 2, 577ff. 
of IQI(2118 , i) over quadratic subfields, 581 

of 1Qi(J(2 + .J2 ) (3 + ,J3)), 584 

of IQI( Jz + .J2 ), 582 
of IQI( .J2 ), 563 
of iQI(.J2 , ,J3), 563ff., 567, 576 
of iQI(.JDI , .JD2), 582 
of IQI(st3 ) , 598ff. 
of 1Qi(s5) ,  597 
of IQI(sn + sn- l ), 601 , 603 
of iQI(sn) .  596ff. 
of IQI(sp). 597 

of x3 - 2, 564ff. ,  568, 576 
of x4 + 1, 579ff. 
of x4 - 2x2 - 2, 582 
of x6 - 2x3 - 2, 623, 644 
of xn - a, 636 
of xP - x - a, 589 
of a biquadratic, 582 
of a composite extension, 592 
of a cubic, 612 
of a cyclotomic field, 599 
of a general polynomial, 609 
of a quadratic, 563 
of a quartic, 615, 618 

Galois groups, of polynomials, 606ff. 
infinite, 65 1ff. 
over IQI, 640ff. 

Galois Theory, 14, 105, 558ff. 
Gaschiitz's Theorem, 838 
Gauss' Lerruna, 303, 530, 819, 824 
Gauss-Jordan elimination, 327, 424ff. 
Gauss sum, 637 
Gaussian integers, 229ff. ,  271 ,  278, 289ff. , 377 
general linear group, 35, 89, 236, 413, 4 1 8  
general polynomial, 607, 609, 629, 646 
general polynomial division, 320ff. ,  331 
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generalized associative law, 1 8  
generalized character, 898 
generalized eigenspace, 501 
generalized quaternion group, 178 
generating set, 61ff. 
generator, 25ff. ,  54, 218ff. 

of Sn , 64, 107ff. ,  219 
of Sp. 1 1 1  
of a cyclic group, 57 
of a free module, 354 
of a subgroup, 61ff. 
of a submodule, 35 1 
of an ideal, 25 1 

generic point, 733 
germs of continuous functions, 269 
GL3 (IF2), 2 1 lff., 489, 644 
global sections, 740 
globally asymptotically stable, 508 
Going-down Theorem, 694, 728 
Going-up Theorem, 694, 720 
graded, ordering, 331  

ring, 443 
graded ideal, 443 
graded lexicographic ordering (grlex), 331  
graph, 210, 669, 687 

coloring, 335ff. 
greatest corrunon divisor (g.c.d.), 4, 252, 274ff., 287 

of ideals, 767 
grevlex monomial ordering, 331  
Grobner basis, 3 1 5ff. ,  3 1 9ff. ,  664ff. ,  702, 712 

in field extensions, 672 
group, 1 3, 16ff. 

of nth roots of unity - see root of unity 
of units in a ring, 226 

group extensions, 824ff. 
group ring, 236ff., 798, 840 
group table, 21 
groups, of order 12, 144, 182 

of order 30, 143, 1 82 
of order 56, 1 85 
of order 60, 145ff., 1 86 
of order 75, 1 85 
of order 147, 1 85 
of order 168, 207ff. 
of order 33 . 7 .  1 3 . 409, 212ff., 898ff. 
of order p2, 1 25, 1 37 
of order p3 , 179, 1 83, 198, 1 99ff., 886 
of order 2p2, 1 86 
of order 4p, 1 86 
of order pq, 143, 179, 1 8 1  
of order p2q, 1 44  

groups, table of small order, 167ff. 
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H 
H" (G; A) - see cohomology group 
Flall subgroup, 101 , 200, 829, 890 
Flall's Theorem, 1 05, 1 96, 890 
Hamilton Quatemions, 224ff., 23 1 , 237, 249, 299 
Flannonic Analysis, 875 
Fleisenberg group, 35, 53, 174, 179, 187 
Hilbert's Basis Theorem, 3 1 6, 334, 657 
Flilbert's Nullstellensatz, 675, 700ff. 
Flilbert's Specialization Theorem, 648 
Flilbert',s Theorem 90, 583, 8 14 

additive fonn, 584, 815 
Flilbert's Zahlbericht, 815 
Flotder Program, 103ff. 

holomorph, 179, 186 
Flom, of direct products, 404 

of direct sums, 388, 388, 404 
FlomF (V, W), 416  
FlomR (M, N), 345ff., 385ff. 
homeomorphism, 738 
homogeneous cochains, 810 
homogeneous component, of a polynomial, 297 

of a graded ring, 443 
homogeneous ideal, 299 
homogeneous of degree m, 621 
homogeneous polynomial, 297 
homological algebra, 391 , 655, 716ff. 

homology groups, 777 
homomorphism, of algebras, 343, 657 

of complexes, 777 
of fields, 253, 512  
of graded rings, 443 
of groups, 36, 73ff., 215 
of modules, 345ff. 
of rings, 239ff. 
of short exact sequences, 38lff. 
of tensor algebras, 450 

homotopic, 792 
hypemilpotent group, 191  
hypersurface, 659 

I 
icosahedron - see Platonic solids 
ideal quotient, 333, 69 1 

ideal, 242ff. 
generated by set, 251 

idempotent, 267, 856 
idempotent linear transfonnation, 423 
identity, of a group, 17 

matrix, 236 

of a ring, 223 
image, of a map, 2 

I ndex 

of ak-algebra homomorphism, computing, 665ff. 
of a linear transfonnation, computing, 429 

implicitization, 678 
incidence relation, 210 
indecomposable module, 847 
independence of characters, 569, 872 
independent transcendentals, 645 
index, of a subgroup, 90ff. 

of a field extension, 512  
induced, character, 892ff., 898 

module, 363, 803, 8 1 1 ,  8 12. 893 
representation, 893 

inductive limit - see direct limit 
inequivalent extensions, 379ff. 
inert prime, 749, 775 
infinite cyclic group, 57, 8 1 1  
infinite Galois groups, 65 lff. 
inflation homomorphism, 806 
inhomogeneous cochains, 810 
injective envelope - see injective hull 
injective hull, 398, 405, 405 
injective map, 2 
injective module, 395ff., 403ff., 784 
injective resolution, 786 
injectively equivalent, 407 
inner automorphism, 1 34 
inner product of characters, 870ff. 
inseparable degree, of a polynomial, 550 

of a field extension, 650 
inseparable extension, 551 ,  566 
inseparable polynomial, 546 
insolvability of the quintic;, 625, 629 
integer, 1. 695ff. 
integers mod n - see '!L./ n'!L. 
integral basis, 698, 775 
integral closure, 229, 691ff. 
integral domain, 228, 235 
integral element, 691 
integral extension, 691ff. 
integral group ring ('!L.G), 237, 798 
integral ideal, 760 
integral Quaternions, 229 
integrally closed, 69 1ff. 

internal, direct product, 172 
direct sum, 354 

intersection of ideals, computing, 330ff. 
intertwine, 847 
invariant factor, 159ff., 464, 774 

decomposition, 159ff., 462ff. 
of a matrix, 475, 477 

Invariant Factor Decomposition Algorithm, 480 
invariant subspace, 341 ,  843 
inverse, of a map, 2 

of an element in a group, 1 7  
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inverse image, 2 
inverse limit, 268, 358, 652ff. 
inverse of a fractional ideal, 760 
inverse of matrices, 427, 440 
invertible fractional ideal, 760 
irreducibility, criteria, 307ff. 

of a cyclotomic polynomial, 3 10  
irreducible algebraic set, 679 
irreducible character, 866, 870, 873 
irreducible element, 284 

in Z[i ], 289ff. 
irreducible ideal, 683 
irreducible module, 356, 847 
irreducible polynomial, 287, 5 12ff.,  572 

of degree n over IF P • 301 , 586 
irreducible topological space, 733 
isolated prime ideal, 685 
isomorphism, classes, 37 

of algebras, 343 
of cyclic groups, 56 
of groups, 37 
of modules, 345 
of rings, 239 
of short exact sequences, 381  
of vector spaces, 408 

Isomorphism Theorems, for groups, 97ff. 
for modules, 349 
for rings, 243, 246 • 

isomorphism type, 37 
isotypic component, 869 

J 
Jacobson radical, 259, 750 
join, 67, 88 
Jordan block, 492 
Jordan canonical form, 457, 472, 492ff. 
Jordan-Holder Theorem, 103ff. 

K 
k-stage Euclidean Domains, 294 
k-tensors, 442 
kernel, of a group action, 43, 5 1 ,  1 1 2ff. 

of a homomorphism, 40, 75, 239, 345 
of ak-algebrahomomorphism, computing, 665ff. 
of a k-algebra homomorphism, 678 
of a linear transformation, computing, 429 

Klein 4-group (Viergruppe), 68, 1 36, 1 55 
Kronecker product, 42lff. ,  43 1 
Kronecker-Weber Theorem, 600 
Krull dimension, 704, 750ff., 754 
Krull topology, 652 
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Krull's Theorem, 652 
Kummer extensions, 627, 8 17  
Kummer generators for cyclic extensions, 636 
Kummer theory, 626, 8 1 6, 823 

L 
Lagrange resolvent, 626 
Lagrange's Theorem, 13 ,  45, 89ff. ,  460 
lattice of subfields, 57 4 

of Q( Vi .  p), 568 
of Q(�13 ) ,  598 
of Q(2118 , i ) ,  581 

lattice of subgroups, 66ff. 
of A4, 1 1 1  
of Ds , 69, 99 
of DJ6, 70 
of Qs, 69, 99 
of Q D!6· 72, 580 
of s3 . 69 
of Z/2Z, 67 
of Z/4Z, 67 
of Z/6Z, 68 
of Z/8Z, 67 
of Z/ 12Z, 68 
of Z/nZ, 67 
of Z/p" Z, 68 
of Z/2Z x Z/2Z (Klein 4-group), 68 
of Z/2Z x Z/4Z, 7lff. 
of Z/2Z x Z/8Z, 72 
of the modular group of order 16, 72 

lattice of subgroups for quotient group, 98ff. 
Laurent series - see formal Laurent series 
leading coefficient, 234, 295 
leading term, 234, 295, 3 1 8  

ideal of, 3 18ff. 
least common multiple (l.c.m.), 4, 279, 293 
least residue, 9 
left derived functor, 788 
left exact, 391 ,  395, 402 
left group action, 43 
left ideal, 242, 25 1 , 256 
left inverse, in a ring, 233 

of a map, 2 
left module, 337 
left multiplication, 44, 1 1 8ff., 53 1 
left Principal Ideal Domain, 302 
left regular representation, 44, 1 20 
left translation, 44 
left zero divisor, 233 
Legendre symbol, 8 1 8  
length o f  a cycle, 30 
lexicographic monomial ordering, 3 1 7ff., 622 
Lie groups, 505, 876 
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lifts, 386 
linear algebraic sets, 659 
linear character, 569 
linear combination, 5, 275, 280, 408 
linear equations, solving, 425ff. 
linear functional, 43 1 
linear representation, 840 
linear transformation, 340ff. ,  346, 408 
linearly independent, characters, 569, 872 

vectors, 409 
local homomorphism, 723, 744 
local ring, 259, 717, 752ff., 755 

of an affine variety, 72lff. 
localization, 706ff., 795, 796 

at a point in a variety, 722 
at a prime, 708ff., 7 1 8 
of a module, 7 14ff. 

locally ringed spaces, 745 
locus. 659 
Long Exact Sequence, 778, 789 

in Group Cohomology, 802 
lower central series, 193 
Liiroth's Theorem, 647 

M 
map, 1 , 215 
Maschke's Theorem, 453, 849 
matrix, 34, 235, 415ff. 

of a composition, 418  
of  a linear transformation, 415ff. 

matrix representation, 840 
matrix ring, 235ff., 418  

ideals of, 249 
maximal ideal, 253ff., 280, 5 12  
maximal order. 232 
maximal real subfield of a cyclotomic field, 603 
maximal spectrum, 73 1 

of k[x], 735 
of k[x, y], 735 
of Z[i], 735 
of /L[x], 736 

maximal subgroup, 65, 1 17, 1 3 1 , 188, 198 
of solvable groups, 200 

middle linear map - see balanced map 

minimal element, 4 
minimal Grobner basis, 325ff. 
minimal normal subgroup, 200 
minimal polynomial, 474 

of a field element. 520 
of a field element, computing, 667 

minimal prime ideal, 298, 688 
minimal primary decomposition, 683 
minimum condition, 855 
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Minkowski's Criterion, 441 
minor, 439 
Mobius inversion formula, 555, 588 
modular arithmetic, 9, 224 
modular group of order 1 6, 72, 186 
modular representations, 846 
module, 337ff. 

over Z, 339, 456ff. 
over F[x], 340ff.,  456ff. 
over a Dedekind Domain, 769ff. 
over a group ring, 798ff., 843ff. 
over a P.I.D., 456ff. 
sheaf of, 7 48 

module of fractions, 714  
monic, 234 
monomial, 297 
monomial ideal, 3 1 8, 332, 334 
monomial ordering, 3 17  
monomial part, 297 
monomial term, 297 
Monster simple group, 865 
morphism, 9 1 1  

of affine algebraic sets, 662 
of affine schemes, 743 

multidegree, 297, 3 1 8  
multilinear form, 435 
multilinear map, 372, 435 
multiple, 252, 274 
multiple root of a polynomial, 3 1 2, 545, 547 
multiplicative field norm, 230, 582 
multiplicative function, 7, 267 
multiplicative subgroup of a field, 3 14  
multiplicativity of  extension degrees, 523, 529 
multiplicity of a root, 3 1 3, 545 

N 
Nakayama's Lemma, 75 1 
natural, 83, 1 67, 432, 9 1 1ff. 

projection, 83, 243, 348, 916  
Newton's Formulas, 618  
nilpotence class, 190 
nilpotent, element, 23 1 , 250, 596, 689 

group, 190ff., 198 
ideal, 25 1 , 258, 674 
matrix, 502 

nilradical, 250, 258, 673, 674 
Noetherian, module, 458, 469 

ring, 3 1 6, 458, 656ff., 793 
Noether's Normalization Lemma, 699ff. 
noncommutative polynomial algebra, 302, 443 
nonfinitely generated ideal, 298, 657 
nongenerator, 199 
nonpivotal, 425 
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nonprincipal ideal, 252, 273, 298 
nonsimple field extension, 595 
nonsingular, point, 725, 742, 763 

variety, 725 
nonsingular, linear transformation, 413 

matrix, 417 
nonsingular curve, 775 
nonsingular model, 726 
norm, 232, 270, 299 

of a character, 872 
of an element in a field, 582, 585 

normal basis, 815 
normal complement, 385 
normal extension, 537, 650 
normal ring, 691 
normal subgroup, 82ff. 
normal variety, 726 
normalization, 69 1, 726 
normalize, 82, 94 
normalized, cocycle, 827 

factor set, 825 
section, 825 

normalizer, 50ff., 123ff., 134, 147, 206ff. 
null space, 413 
nullity, 413 
number fields, 696 

0 
object, 91 1 
opposite algebra, 834 
orbit, 45, 1 15ff., 877 
order, of a permutation, 32 

of a set, 1 
of an element in a group, 20, 55. 57, 90 

order of conductor f, 232 
order of zero or pole, 756, 763 
ordered basis, 409 
orthogonal characters, 872 
orthogonal idempotents, 377, 856, 870 
orthogonality relations, 872 
outer automorphism group, 137 

p 
p-adic integers, 269, 652, 758ff. 
p-adic Laurent series, 759 
p-adic valuation, 759 
p-extensions, 596, 638 
p-group, 139, 1 88 

characters of, 886 
representations of, 854, 864 

p-primary component, 142, 358, 465 

pth-power map, l66, 174 
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P.I.D. - see Principal Ideal Domain 
parabolic subgroup, 212 
partition, of a set, 3 

of n, 126, 162 
Pell's equation, 230 
perfect field, 549 
perfect group, 174 
periods in cyclotomic fields, 598, 602, 604 
permutation, 3, '19, 42 

even, 108ff. 
odd, 108ff. 
sign of, 108ff., 436ff. 

permutation character, 866, 877, 895 
permutation group, 1 16, 120 
permutation matrix, 157 
permutation module, 803 
permutation representation, 43, 1 1 2ff., 203ff., 840, 

844, 852, 877 
pivotal element, 425 
Platonic solids, symmetries of, 28, 45, 92, 1 1 1 , 148 
pole, 756 
polynomial, 234 

map, 299, 662 
ring. 234ff., 295ff. 

polynomials with Sn as Galois group, 642ft. 
Pontriagin dual group, 787 
positive nonn, 270 
Postage Stamp Problem, 278 
power of an ideal, 247 
power series of matrices, 502ft. 
power set, 232 
preimage, 2 
presentation, 26ff., 39, 218ff., 380 
primary component - see p-primary component 
Primary Decomposition Theorem. for abelian 

groups, 161 
for ideals, 68 lff., 716ff. 
for modules, 357, 465, 772 

primary ideal, 260, 298, 748 
prime, 6 
prime element in a ring, 284 
prime factorization, 6 

for ideals, 765ff. 
prime ideal, 255ff., 280, 674 

algorithm for determining, 71 Off. 
prime spectrum, 731ff. 
prime subfield, 264, 5 1 1 , 558 
primes associated, to a module, 670 

to an ideal, 670 
primitive central idempotent, 856, 870 
primitive element, 517, 594 
Primitive Element Theorem, 595 
primitive idempotent, 856 
primitive permutation group, 1 17 
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primitive roots of unity, 539ff. 
principal character, 866 
principal crossed homomorphisms, 8 1 4  
principal fractional ideal, 760 
principal ideal, 25 1 
Principal Ideal Domain (P.I.D.), 279ff., 284, 459 

characterization of, 28 1 ,  289, 294 
that is not Euclidean, 282 

principal open set, 687, 738 
product, of ideals, 247, 250 

of subgroups, 93ff. 
profinite, 809, 8 1 3  
projection, 83, 423, 453 

homomorphism, 153ff. 
projections of algebraic sets, 679 
projective limit - see inverse limit 
projective module, 390ff., 400, 403ff. ,  761 , 773, 786 
projective plane, 210 
projective resolution, 779 
projectively equivalent, 407 
Public Key Code, 279 
pullback of a homomorphism, 407 
purely inseparable, 649 
purely transcendental, 646 
pushout of a homomorphism, 407 
Pythagoras' equation rational solutions, 584 

Q 
Q, subgroups of, 65, 198 
Q/71.., 86 
quadratic, equation, 522, 533 

extensions, 522, 533 
field, 227, 698 
subfield of cyclic quartic fields, criterion, 638 
subfield of Q(�p),  62 1 ,  637 

quadratic integer rings, 229ff. ,  248, 27 1 ,  278, 286, 
293ff. .  698, 749 

that are Euclidean, 278 
that are P.I.D.s, 278 

Quadratic Reciprocity Law, 8 1 9  
quadratic residue symbol, 8 1 8  
quartic equations, formulas for roots, 634ff. 
quasicornpact, 688, 738, 746 
quasidihedral group, 7 lff. ,  1 86 

as Galois group, 579 
quaternion group, 36 

as Galois group, 584 
characters of, 882 
generalized, 178 
representations of, 845, 852 

Quaternion ring, 224, 229, 258 
(see also Hamilton Quatemions) 

quintic, insolvability, 625, 629 
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quotient, computations in k-algebras, 672 
group, 15, 73ff. ,  76, 574 
module, 348 
ring, 24 lff. 
vector space, 408, 412 

quotient field, 260ff. 

R 
radical extension, 625ff. 
radical ideal, 258, 673, 689 
radical of an ideal, 258, 673ff., 701 

computing, 70 1 
radical of a zero-dimensional ideal, 706ff. 
radicals, 625 
ramified prime, 749, 775 
range, 2 
rank, of a free module, 338, 354, 356, 358, 459 

of a group, 1 65, 21 8, 355 
of a linear transformation, 4 1 3  
o f  a module, 460, 468, 469, 47 1 ,  7 1 9, 773 

rational canonical form, 457, 472ff. 
computing, 48 lff. 

rational functions - see field of rational functions 
rational group ring, 237 
rational numbers, 1, 260 
rational valued characters, 879 
real numbers, 1 

modulo 1, 21 ,  86 
reciprocity, 229, 62 1 
recognition theorem, 1 7 1 ,  180 
reduced Grabner basis, 326ff. 
reduced row echelon form, 425 
reduced word, 216ff. 
reducible character, 866 
reducible element, 284 
reducible module, 847 
reduction homomorphism, 245, 296, 300, 586 
reduction mod n, 10, 243, 296, 640 
reduction of polynomials mod p, 586, 589 
reflexive, 3 
regular at a point, 721 
regular local ring, 725, 755 
regular map, 662, 722 
regular representation, 844, 862ff. 
relations, 25ff. ,  21 8ff. .  380 
relations matrix, 470 
relative Brauer group, 836 
relative degree of a field extension, 5 1 2  
relative integral basis, 7 7  5 
relatively prime, 4, 282 
remainder, 5, 270, 320ff. 
Replacement Theorem, 410, 645 
representation, 840ff. 
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permutation, 43, 1 12ff., 203ff., 840. 844. 852, 
877 

representative, 3, 9, 77 
residue class, 8 
resolvent cubic, 614, 623 
resolvent polynomials, 642 
restricted direct product, 158 
restriction homomorphism, 269, 805, 807 
restriction maps, 269, 740 
restriction of scalars, 359 
resultant, 619ff. 
reverse of a polynomial, 3 12  
right derived functor, 785 
right Euclidean Domain, 302 
right exact, 400, 402 
right group action, 43, 128, 844, 852 
right ideal, 242, 25 1 
right inverse, in a ring, 233 

of a map, 2 
right module, 337 
right regular representation, 132 
right zero divisor, 233 
ring, 223 

of algebraic integers, 695ff. 
of continuous functions, 225, 227, 259 
of dual numbers, 729 
of fractions, 260ff. ,  708 
of integers, 229 
of sets, 232 

root, 3 10, 521 
root extension, 627 
root of a polynomial, 307ff. ,  512 
root of unity, 22, 66, 86, 539ff., 552 
row equivalent, 425 
row rank, 418, 427, 434 
row reduced, 424 
ruler and compass constructions, 534 

s 
saturated, 710 
saturation of an ideal, 710ff. 
scalar, 408 
scalar matrix, 236 
scalar transformations, 348 
Schanuel's Lemma, 407 
scheme, 745 
Schur multiplier, 838 
Schur's Lemma, 356, 853, 856 
Schur's Theorem, 829 
second dual - see double dual 
Second Orthogonality Relation, 872 
section, 384, 740 
semidihedral group - see quasidihedral group 

930 

semidirect product, 175ff., 383, 385, 821 , 829 
semisimple, 855 
separable, 551 

extension, 551, 572, 594ff. 
polynomial, 546, 562, 572 

separable degree, of a field extension, 650 
of a polynomial, 550 

separating transcendence base, 650 
Shapiro's Lemma, 804 
short exact sequence, 379 

of complexes, 778 
Short Five Lemma, 383 
similar, linear transformations, 419, 476 

matrices, 419, 476, 493ff. 
similar central simple algebras, 835 
similar representations, 846 
similarity, 40 
simple algebra, 832 
simple extensions, 517, 586, 594 
simple group, 91 ,  102ff.,  149ff., 20lff., 212 

classification of, 103, 212 
of order 168, 207ff. 
sporadic, 104, 865 

simple module - see irreducible module 
simple radical extension, 625 
simple ring, 253, 863 
simple tensor, 360 
Simultaneous Resolution, 783 
singular point, 725 
skew field - see division ring 
skew-symmetrization, 452 
Smith Normal Form, 479 
smooth, 725, 742 
Snake Lemma, 792 
solution, of cubic equations, 630 

of quartic equations, 634ff. 
solvability of a quintic, criterion, 630, 639 
solvability of groups of odd order - see 

Feit-Thompson Theorem 
solvable by radicals, 627ff. 
solvable extensions, 625ff. 
solvable group, 105, 149, 19(ff., 628, 886, 890 
solvable length, l95ff. 
solving algebraic equations, 327ff. 
solving linear equations, 425ff. 
span, 62, 351, 408, 427 
special linear group, 48, 89, 101, 669 
specialization, 648 
spectral sequences, 808 
spectrum - see also prime spectrum and maximal 

spectrum 
of k[x], 735 
of k[x , y], 735 
of Z[Z/2Z], 747 
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of Z[i], 735 
of Z[x], 736 

split algebra, 835 
split exact sequence, 384, 388Jr. 
split extension, 384 
split prime, 749, 775 
splits completely, 536 
splitting field, 5 1 3, 536Jr., 562, 572 

of (x2 - 2)(x2 - 3), 537 
of x2 - 2. 537 
of x2 - t over k(t), 5 1 6  
of x2 + 1 ,  5 1 5  
o f  x2 + x + 1 over IFz, 5 1 6  
of x3 - 2 ,  537 
of x4 - px + q, 618 
of x4 - px2 + q. 618 
of x4 + 4, 538 
of x4 + 8, 581 
of x4 - 2x2 - 2, 582 
of x6 - 2x3 - 2, 623 
of x8 - 2, 577jf. 
of x" - 1 ,  539jf. 
of xP - 2, 541 
of xP - x - a over IFP, 589 

splitting homomorphism, 384 
splitting of polynomials in Galois extensions, 572, 

584. 595 
sporadic simple group-see simple group, sporadic 
square root of a matrix, 502 
squarefree part, 227 
Squaring the Circle, impossibility of, 531jf. 
stability group, 8 1 9  
stabilizer, 44 ,  51jf. ,  l 1 2jf., 1 23jf. 
stable subspace, 341 ,  843 
stalk, 741 
standard bimodule structure, 367 
standard resolution, 799 
steady states, 507 
Steinitz class, 773 
Stone-Cech compaetification, 259 
straightedge and compass constructions, 531Jr. , 602 
structure sheaf, 7 40jf. 
Sturm's Theorem, 624 
subfield, 5 1 1 ,  5 1 6  
subgroup, 22, 46jf. 

criterion, 47 
of cyclic groups, 58Jr. 
of index 2, 91 ,  1 20, 122 

sublattice, 70 
submodulc, 337 

criterion, 342 
subring, 228 
subspace topolog� 677 
sum, of ideals, 247, 250 

Index 

of submodules, 349, 35 1 
support, 729Jr. 
smjective, 2 
Sylow p-subgroup, 101,  1 39Jr. , 161 
Sylow's Theorem, 93,  1 05, 1 39jf., 617 
symmetric algebra, 444 
symmetric function, 436, 608 
symmetric group, 29jf. 

as Galois group, 642Jr., 6491f. 
characters of, 879, 881,  883, 884 
conjugation in - see conjugation 
isomorphisms between, 37, 40 
Sylow p-subgroups of, 1 68, 1 87 

symmetric polynomials, 608, 621jf. 
symmetric relation, 3 
symmetric tensor, 45 1 
symmetrization, 452 

T 
table, group, 21 
tangent space, 724ff. , 741jf. 
Tchebotarov Density Theorem, 642 
tensor algebra, 443 
tensor product, 359Jr., 788Jr. 

associativity of, 37 1 
of algebras, 374 
of direct products, 376 
of direct sums, 373, 376 
of fields, 377, 53 1 , 596 
of free modules, 404 
of homomorphisms, 370 
of ideals, 377 
of matrices. 421 
of projective modules, 402, 404 
of vector spaces, 420 

tensors, 360, 364 
tetrahedron - see Platonic solids 
Thompson subgroup, 1 39 
Thompson Transfer Lemma, 822 
Thompson's Theorem, 1 96 
topological space, 676jf. 
Tor� (A,  B), 788Jr. 
torsion, element, 344 

module, 356, 460, 463 
subgroup, 48 
submodule, 344 

torsion free, 406, 460 
trace, of a field element, 583, 585 

of a matrix, 248, 43 1 , 43 1 , 488, 866 
trace ideal of a group ring, 846 
transcendence base, 645 
transcendence degree, 645 
transcendental, element, 520, 527, 534 
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extension, 645ff. 
transfer homomorphism, 817 , 822 
transgression homomorphism, 807 
transition matrix, 419 
transitive, action, 1 15, 606, 640 

subgroups of Ss , 643 
subgroups of Sn , 640 

transitive relation, 3 
transpose, 434, 501 
transposition, 107ff. 
trilinear, 372, 436 
Trisecting an Angle impossibility of, 53 1ff. 
trivial, action, 43 

homomorphism, 79 

ideal, 243 
representation, 844 
ring, 224 
subgroup, 47 
submodule, 338 

twisted polynomial ring, 302 
two-sided ideal, 242, 251 
two-sided inverse, 2 

u 
U.F.D. - see Unique Factorization Domain 

ultrametric, 759 
uniformizing parameter, 756 
unipotent radical, 212 
Unique Factorization Domain (U.F.D.), 283ff. , 303ff.,  

690, 698, 769 
unique factorization of ideals, 767 
uniqueness of splitting fields, 542 
unital module, 337 
units, 226 

in Z/nZ, 10, 17, 61 ,  135, 267, 3 14, 596 
universal property, of direct limits, 268 

of free groups, 215ff. 
of free modules, 354 

of inverse limits, 269 
of multilinear maps, 372, 442, 445, 447 
of tensor products, 361,  365 

universal side divisor, 277 
universe, 91 1 
upper central series, 1 90 
upper triangular matrices, 49, 174, 1 87, 236, 502 
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v 
valuation ring, 232, 755ff. 
value of f in Spec R, 732 
Vandermonde determinant. 619  
variety, 679ff. 
vector space, 338, 408ff.,  5 1 2  
Verlagerungen - see transfer homomorphism 
virtual character, 898 

w 
Wedderburn components, 855 
Wedderburn decomposition, 855 
Wedderburn's Theorem on Finite Division Rings, 

556ff. 
Wedderburn's Theorem on Semisimple rings, 854.ff. 
wedge product, 447 

of ideals, 449, 455 
of a monomial, 621 

well defined, 1, 77, 100 
Well Ordering o f  Z, 4,  8, 273, 909 
Wilson's Theorem, 55 1 
word, 215  
wreath product. 1 87 

z 
zn (G; A) - see cocycles 

Z[i] - see Gaussian integers 

Z[.J2 ], 278, 3 1 1  
Z[.J=S" ], 273, 279. 283ff. 
Z[( 1 + ..J=f9)/2], 277, 280, 282 
Zfn'Jl, 8jf., 17, 56, 15ff., 226, 267 
(Z/n/Z)x ,  1 0, 1 8, 6 1 ,  1 35, 267, 3 1 4, 596 
Zariski closed set, 676 
Zariski closure, 677Jf., 691 
Zariski dense, 677, 687 
Zariski topology, 676ff. ,  733 
zero divisor, 226, 689 
zero ring, 224 
zero set, 659 
zero-dimensional ideal, 705ff. 
Zorn's Lemma, 65, 254, 414, 645, 907ff. 
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